KR890004971B1 - Semiconductor manufacturing method - Google Patents

Semiconductor manufacturing method Download PDF

Info

Publication number
KR890004971B1
KR890004971B1 KR1019870010129A KR870010129A KR890004971B1 KR 890004971 B1 KR890004971 B1 KR 890004971B1 KR 1019870010129 A KR1019870010129 A KR 1019870010129A KR 870010129 A KR870010129 A KR 870010129A KR 890004971 B1 KR890004971 B1 KR 890004971B1
Authority
KR
South Korea
Prior art keywords
type
region
collector
electrode
emitter
Prior art date
Application number
KR1019870010129A
Other languages
Korean (ko)
Other versions
KR890005880A (en
Inventor
이선동
이형근
Original Assignee
한국전자 주식회사
유원영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자 주식회사, 유원영 filed Critical 한국전자 주식회사
Priority to KR1019870010129A priority Critical patent/KR890004971B1/en
Publication of KR890005880A publication Critical patent/KR890005880A/en
Application granted granted Critical
Publication of KR890004971B1 publication Critical patent/KR890004971B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

growing thermal oxide film (21) on the top of the N-type epitaxial layer and forming the pattern of intrinsic base region (22) and extrinsic base region (23), respectively, by photograph and injecting P-type impurity into them ; Spreading said substrate with an oxide layer and etching only (4) and the upper layer of (23) and forming the second intrinsic base region (25) and extrinsic base region (26) by thermal diffusion ; forming the pattern of nitride film (27) and opening collector and emitter window by using (21) and forming collector region (29) and emitter region (30) by N-type polysilicon film (28) ; opening the electrode window of (26) and forming emitter electrode (31), base electrodes (32),(33), and collector electrode (34).

Description

반도체소자의 제조방법Manufacturing method of semiconductor device

제 1도는 종래의 일반적인 반도체소자의 개략단면도.1 is a schematic cross-sectional view of a conventional general semiconductor device.

제 2도는 본 발명에 따른 반도체소자의 개략단면도.2 is a schematic cross-sectional view of a semiconductor device according to the present invention.

제 3(a)도, 제3(b)도, 제3(c)도는 본 발명 반도체소자의 제조방법에 따른 반도체소자 제조공정도.3 (a), 3 (b), and 3 (c) are semiconductor device manufacturing process diagrams according to the manufacturing method of the semiconductor device of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : P형규소기판 2 : 고농도 N형매몰층1: P-type silicon substrate 2: High concentration N-type buried layer

3 : N형에피텍셜층 4 : 고농도 N형불순물층3: N-type epitaxial layer 4: High-concentration N-type impurity layer

5 : 고농도 P형불순물층 21 : 열산화막5: high concentration P-type impurity layer 21: thermal oxide film

24 : 산화막 25 : 인트린식베이스영역24: oxide film 25: intrinsic base region

26 : 익스트린식베이스영역 27 : 질화막26: extruded base area 27: nitride film

28 : 고종도 N형다결정규소막 29 : 콜렉터영역28: high-concentration N-type polycrystalline silicon film 29: collector region

30 : 에미터영역 31 : 에미터전극30 emitter region 31 emitter electrode

32,33 : 베이스전극 34 : 콜렉터전극32, 33: base electrode 34: collector electrode

본 발명은 반도체소자의 제조방법에 관한 것으로, 특히 마스크 접합정도를 높혀서 미세패턴 형성시에 마스크 잘못정렬(Miss Align)에 의한 전기적 특성불량을 줄일 수 있게한 반도체소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device, by which the degree of mask bonding can be increased to reduce an electrical characteristic defect due to a mask misalignment when forming a fine pattern.

일반적으로 바이폴라 집적회로소자는 세트 및 시스템의 소형화를 위해 다기능화, 저전력소비화가 요구되고, 통신시스템의 발달로 인하여 고주파특성화 및 아날로그/디지탈 복합기능화가 요구되고 있다. 이를 만족시키기 위해서 소자내의 에리멘트(Element)크기를 줄이기 위한 패턴의 미세화와 에미터베이스의 얇은 접합깊이(Shallow Junction) 및 패시베이션(Passivation)막에서의 불필요한 전하이동에 의한 잡음의 최소화등이 요구되고 있다. 제 1 도는 종래의 일반적인 반도체소자의 개략단면도로서 이에 도시한 바와같이 피(P)형규소기판(1)에 콜렉터 연속저항 감소를 위한 고농도 엔형 매몰층(N+Buried Layer)(2)을 형성시킨 후 N형에피텍셜(Epitaxial)층(3)을 성장시키고, 이후 상기 N형에피텍셜층(3) 표면에 열산화막을 10,000Å 두께로 성장시킨 후 사진식각법으로 고농도 N형 불순물 및 고농도 P형불순물을 도포하고 열확산으로 흡수시켜 고농도 N형불순물층(4) 및 고농도 P형불순물층(5)을 형성하고, 콜렉터연속저항감소 및 엘리멘트에 대한 절연형성으로 외부로부터 전기적 영향을 받지 않게하였다.In general, bipolar integrated circuit devices require multifunction and low power consumption for miniaturization of sets and systems, and high frequency characteristics and analog / digital complex functionalization are required due to the development of communication systems. In order to satisfy this problem, miniaturization of the pattern to reduce the element size in the device, minimization of noise due to unnecessary junctions of the emitter base and unnecessary charge transfer in the passivation film is required. have. FIG. 1 is a schematic cross-sectional view of a conventional semiconductor device, in which a high concentration N-type buried layer (N + Buried Layer) 2 is formed on a P-type silicon substrate 1 to reduce collector continuous resistance. After growing the N-type epitaxial layer (3), and then growing a thermal oxide film to the surface of the N-type epitaxial layer (3) to a thickness of 10,000Å, high concentration N-type impurities and high concentration P-type by photolithography Impurities were applied and absorbed by thermal diffusion to form a high concentration N-type impurity layer 4 and a high concentration P-type impurity layer 5, and the collector continuous resistance was reduced and insulation formed against elements prevented electrical influences from the outside.

이와같이 한 후 상기 열산화막을 제거하고, 다시 열산화막(6)을 10,000Å두께로 성장시키고, 다음에 사진시각법으로 베이스창을 열고 붕소산화막(Boron Doped Oxide)(7)을 5,000-6,000Å두께로 도포한 후 열확산으로 베이스 영역(8)을 형성하고 에미터와 콜렉터 전극창을 열어 고농도 인산화막(Phoshorous Doped Oxide)(9)을 5,000-6,000Å두께로 도포한 후 열확산으로 에미터 영역(10)과 고농도 N형콜렉터영역(11)을 형성한다. 이와같이 베이스영역(8), 에미터영역(10) 및 콜렉터영역(11)을 형성한 후에 사진식각법으로 금속전극창을 열고 금속증착을 하여 상기 베이스영역(8), 에미터영역(10) 및 콜렉터영역(11)의 각 전극단자(12-14)를 인출함으로써 종래 반도체소자의 제조가 완료되었다. 그러나, 이와같은 종래의 반도체소자의 제조에 있어서는 산화막(6),(7),(9)의 두께가 두꺼워 사진식각시에 측면식각(Side Etching)현상이 크게 나타나게 되므로 미세패턴 형성이 곤란하게 되고, 베이스영역(8), 에미터영역(10) 및 콜렉터영역(11)의 형성과 그의 각 전극창열기를 위한 마스크작업을 개별적으로 하기때문에 마스크정렬시 잘못정렬(Miss Align)에 따른 패턴여유분을 주어야하므로 패턴크기를 크게해야하고, 베이스영역(8)형성에 따른 붕소산화막(7)과 에미터영역(10)형성에 따른 인산화막(9)을 사용함에 따라 패시베이션층(일반적으로 유리로써 유해한 환경으로 부터 반도체접합과 표면을 보호하는 층)내에서 불필요한 전하이동이 있게되므로 잡음이 발생하는등의 결점이 있었다.After doing this, the thermal oxide film was removed, and the thermal oxide film 6 was grown to 10,000Å thickness, and then the base window was opened by photo-visual method, and the Boron Doped Oxide 7 was 5,000-6,000ÅÅ. After forming the base region (8) by thermal diffusion, open the emitter and the collector electrode window to apply a high concentration of phosphorous (Phoshorous Doped Oxide) (9) to a thickness of 5,000-6,000Å, and then the emitter region (10) ) And a high concentration N-type collector region 11 are formed. After forming the base region 8, the emitter region 10, and the collector region 11, the metal electrode window is opened by metal etching by photolithography, and the base region 8, the emitter region 10, and The manufacture of the conventional semiconductor device is completed by drawing out the electrode terminals 12-14 of the collector region 11. However, in the fabrication of such a conventional semiconductor device, since the thickness of the oxide films 6, 7, and 9 is thick, side etching occurs greatly during photolithography, thus making it difficult to form fine patterns. Since the mask operation for forming the base region 8, the emitter region 10 and the collector region 11 and the respective electrode window openings are performed separately, the pattern margins due to the misalignment during the mask alignment are eliminated. The pattern size must be increased, and the passivation layer (generally harmful environment as glass) is used by using the boron oxide film 7 according to the formation of the base region 8 and the phosphorylation film 9 according to the formation of the emitter region 10. There is a defect such as noise generated because there is unnecessary charge transfer in the layer protecting the semiconductor junction and the surface.

본 발명은 이와같은 종래의 결점을 해결하기 휘하여 창안한 것으로, 규소표면이 깨끗하고 얇은 열산화막을 성장시키고 포토작업으로 인트린식(Intrinsic) 및 익스트린식(Extrinsic)베이스영역에 이온주입한 후 산화막을 도포하고, 이후 다시 포토작업으로 베이스영역의 도포산화막만 식각하고 열확산으로 베이스영역을 형성한 다음 질화막(Si3N4)을 도포하고, 콜렉터베이스전극창 및 에미터창열기 마스크를 사용해서 질화막층을 식각하여 질화막 패턴을 형성하며, 콜렉터전극창, 에미터전극창 및 베이스전극창을 열어서 에미터영역 및 각 단자의 금속전극을 형성시킴으로써 균일한 얇은 산화막에 의한 이온주입 깊이를 균일하게 할 수 있고, 베이스영역 이외에는 깨끗한 열산화막 내로 불필요한 전하이동을 억제시키며, 질화막과 함께 동일마스크 공정에서 콜레터, 베이스창 및 에미터영역을 형성시켜 마스크접합 정도를 높일 수 있게함으로써 미세패턴형성시에 마스크 잘못 정렬에 의한 전기적 특성불량을 줄일 수 있는 반도체소자의 제조방법을 제공함에 본 발명의 목적이 있다.The present invention was devised to solve such a conventional drawback, and after growing a thin thermal oxide film with a clean silicon surface and ion implanting it into an Intrinsic and Extrinsic base region by photo work. The oxide film is applied, and after that, only the coated oxide film of the base region is etched by photo work, the base region is formed by thermal diffusion, and the nitride film (Si 3 N 4 ) is applied, and the nitride film is formed by using a collector base electrode window and an emitter window mask. The layer is etched to form a nitride film pattern, and the collector electrode window, the emitter electrode window, and the base electrode window are opened to form the emitter region and the metal electrode of each terminal, thereby making the ion implantation depth by the uniform thin oxide film uniform. In addition to the base region, unnecessary charge transfer into a clean thermal oxide film is suppressed, and the same mask process is performed together with the nitride film. SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a semiconductor device which can reduce the electrical defects caused by misalignment of masks when forming a fine pattern by forming a collet, a base window, and an emitter region to increase the degree of mask bonding. have.

이와같은 목적을 가지는 본 발명을 첨부된 도면 제 2 도 및 제 3 도를 참조하여 상세히 설명하면 다음과 같다. 제 2 도는 본 발명에 따른 반도체소자의 개략단면도이고, 제 3(a)도-제 3(c)도는 본 발명 반도체소자의 제조방법에 따른 제조공정도로서, 먼저 제 3(a)도에 도시한 바와같이 P형규소기판(1)에 콜렉터 연속저항 감소를 위한 고농도 N형매몰층(2)을 형성한 후에 N형에피텍셜층(3)을 성장시키고, 그 N형에피텍셜층(3) 표면에 열산화막을 10,000Å 두께로 성장시킨 후 사진식각법으로 고농도 N형 불순물 및 고농도 P형불순물을 도포하고 열확산으로 흡수시켜 고농도 N형불순물층(4) 및 P형불순물층(5)을 형성하고, 콜렉터연속저항감소 및 엘리멘트에 대한 절연형성으로 외부로부터 전기적 영향을 받지 않도록 한다.The present invention having such an object will be described in detail with reference to the accompanying drawings, FIGS. 2 and 3 as follows. FIG. 2 is a schematic cross-sectional view of a semiconductor device according to the present invention, and FIGS. 3 (a) to 3 (c) are manufacturing process drawings according to the manufacturing method of the semiconductor device of the present invention, as shown in FIG. Likewise, after forming a high concentration N-type buried layer 2 for reducing the collector continuous resistance on the P-type silicon substrate 1, the N-type epitaxial layer 3 is grown, and on the surface of the N-type epitaxial layer 3, After growing the thermal oxide film to a thickness of 10,000Å, a high concentration N-type impurity and a high concentration P-type impurity are coated by photolithography and absorbed by thermal diffusion to form a high concentration N-type impurity layer 4 and a P-type impurity layer 5, Reduces the collector's continuous resistance and creates insulation against elements to prevent electrical influences from the outside

이와같이 한 후 상기 열산화막을 전부 제거하고 다시 깨끗한 열산화막(21)을 1,000Å 두께로 성장시키고, 1차포토레지스트(Photo Resist)를 도포하여 인트린식베이스패턴을 형성한 후에 그 포토레지스트를 이온주입 마스크로 사용해서 p형불순물인 붕소를 1014-1015개/㎠ 정고 주입하여 (에너지 : 100KeV 정도) 인트린식베이스영역부분(22)을 형성하고, 이후 상기 포토레지스트를 제거한 후 다시 새로운 포토레지스트를 도포하여 현상작업을 통해 익스트린식베이스패턴을 형성한 후에 붕소를 1015-1016개/㎠ 정고 주입하여 (에너지 : 100KeV 정도) 익스트린식베이스영역부분(23)을 형성하고, 이후 상기 포토레지스트를 제거한다. 다음에는 제 3(b)도에 도시한 바와같이 불순물을 포함하지 않는 산화막(24)을 3,000-4,000Å 정도의 두께로 도포하고, 후에 포토레지스트를 제거한다. 이후 온도 1,000-1,100℃ 정도에서 규소격자 안정화 및 열확산을 통해서 인트린식 베이스영역(25)과 인스트린식베이스영역(26)을 형성한다.After doing so, the thermal oxide film was completely removed, and the clean thermal oxide film 21 was grown to a thickness of 1,000 Å, and a photoresist was applied to form an intrinsic base pattern, followed by ion implantation. P-type impurity boron 10 14 -10 15 pcs / cm 2 was used as a mask to inject (energy: about 100 KeV) to form an intrinsic base region portion 22, after which the photoresist was removed and again a new photoresist. To form an extrinsic base pattern through development and then inject and inject boron 10 15 -10 16 pcs / cm 2 (energy: about 100 KeV) to form an extrinsic base region part 23, and then Remove the photoresist. Next, as shown in FIG. 3 (b), an oxide film 24 containing no impurities is applied to a thickness of about 3,000 to 4,000 kPa, and then the photoresist is removed. Thereafter, the intrinsic base region 25 and the intrinsic base region 26 are formed through silicon lattice stabilization and thermal diffusion at a temperature of about 1,000-1,100 ° C.

다음에는 제 3(c)도에 도시한 바와같이 저압기상성장법(LPCVD)으로 질화막(27)을 1,000-1,200Å 도포한 후에 마스크를 사용하여 콜렉터와 베이스의 전극창 및 에미터창의 패턴을 형성한다.Next, as shown in FIG. 3 (c), the nitride film 27 was applied 1,000-1,200 으로 by low pressure vapor deposition (LPCVD), and then a pattern of the collector and base electrode windows and the emitter window was formed using a mask. do.

이는 포토레지스트 현상후에 인산(H3PO4)에 넣으면 질화막(27)은 식각되고 열산화막(21)은 그대로 남게된다. 이후 포토레지스트를 제거한 후에 사진식각법으로 콜렉터전극창과 에미터창의 마스크를 사용해서 포토레지스트 현상하여 완충화된 불산(Bufferde HF)에 넣으면 열산화막(21)이 식각된다. 다음은 저압기상성장법(LPCVD)을 이용해서 고농도 N형다결정규소막(28)을 5,000Å두계로 도포하고 플라즈마식각(Plasma Etching)으로 콜렉터와 에미터의 다결정 규소전극을 형성한다.After the photoresist development, the nitride film 27 is etched and the thermal oxide film 21 is left as it is in phosphoric acid (H 3 PO 4 ). After the photoresist is removed, the thermal oxide film 21 is etched by photoresist development using a mask of a collector electrode window and an emitter window by photolithography and then placed in a buffered hydrofluoric acid (Bufferde HF). Next, a high concentration N-type polycrystalline silicon film 28 is applied using 5,000 low pressure vapor deposition (LPCVD) to form a polysilicon electrode of a collector and an emitter by plasma etching.

다음에는 온도 900-1,000℃정도에서 열확산하여 저항감소를 위한 콜렉터영역(29)과 에미터영역(30)을 형성한 후에 마스크 사용없이 완충화된 불산에 넣으면 질화막(27)과 고농도 N형다결정규소막(28)으로 도포되지 않는 부분의 열산화막(21)이 식각되어 베이스금속전극창이 열리게 된다.Next, heat-diffusion is performed at a temperature of about 900-1,000 ° C. to form a collector region 29 and an emitter region 30 for resistance reduction, and then placed in buffered hydrofluoric acid without using a mask. The nitride film 27 and the high concentration N-type polycrystalline silicon The thermal oxide film 21 in the portion not applied to the film 28 is etched to open the base metal electrode window.

이와같은 상태에서 스퍼터 설비를 이용해서 알루미늄(AI)과 규소(Si)의 화합물을 1-5㎛ 두께로 도포한 후에 사진식각법으로 제 2 도에 도시한 바와같이 에미터전극(31), 베이스전극(32), (33) 및 콜렉터전극(34)을 형성하고, 이후 인트린식베이스영역(25)과 고농도 N형다결정규소막(28)과의 접촉상태를 양호하게 하기위해서 온도 400-500℃ 정도에서 금속열처리를 수행한다.In this state, a compound of aluminum (AI) and silicon (Si) is applied to a thickness of 1-5 μm by using a sputtering apparatus, and then the emitter electrode 31 and the base as shown in FIG. The electrodes 32, 33 and collector electrodes 34 are formed, and then a temperature of 400-500 ° C. is used to improve the contact between the intrinsic base region 25 and the high concentration N-type polysilicon film 28. Metal heat treatment is performed at the degree.

이상에서 상세히 설명한 바와같이 본 발명은 균일한 열산화막(21)에 이온주입하므로 접합깊이의 편차를 줄일 수 있고, 베이스영역 이외에는 깨끗한 열산화막으로 되어 있으므로 불필요한 전하이동의 양을 줄이며, 콜렉터창열기를 2회에 걸쳐 진행하여 전극금속 형성시에 절단되는 현상을 장지하고, 질화막을 도포한 후에 동일마스크 공정에서 콜렉터, 베이스창 및 에미터영역을 형성시키므로 마스크접합 정도를 높일 수 있게되어 미세패턴 형성싱 마스크 잘못정렬에 의한 전기적 특성불량을 줄일 수 있는 효과가 있게된다.As described in detail above, in the present invention, ion implantation into the uniform thermal oxide film 21 can reduce the variation in the junction depth, and since it is a clean thermal oxide film other than the base region, it reduces the amount of unnecessary charge transfer and the collector window heater. It proceeds twice and prevents the phenomenon of cutting at the time of forming the electrode metal, and forms the collector, the base window, and the emitter region in the same mask process after applying the nitride film, thereby increasing the degree of mask bonding. This can reduce the electrical defect caused by misalignment of the mask.

Claims (1)

P형규소기판(1), 고농도 N형 매몰층(2), N형에피텍셜층(3),고농도 N형불순물층(4) 및 고농도 P형불순물층(5)등으로 이루어지는 반도체소자의 제조방법에 있어서, 상기 N형에피텍셜층(3)의 상부에 깨끗한 열산화막(21)을 성장시킨 후에 포토작업으로 인트린식베이스영역부분(22) 및 익스트린식베이스부분(23)의 패턴을 별도 형성하여 P형불순물을 주입하고, 이후 산화막(24)을 도포한 후에 상기 고농도 N형불순물층(4) 및 인트린식베이스영역부분(23)의 상부산화막(24)만을 식각하고 열확산하여 인트린식베이스영역(25)과 익스트린식베이스영역(26)을 형성하고, 이후 질화막(27)을 도포하여 질화막 패턴을 형성한 다음 상기 열산화막(21)을 이용하여 콜렉터, 에미터창열기를 하고 고농도 N형다결정규소막(28)으로 콜렉터영역(29)과 에미터영역(30)을 형성하며, 이후 상기 익스트린식베이스영역(26)의 전극창을 열고 에미터전극(31), 베이스전극(32), (33) 및 콜렉터전극(34)을 형성하여 이루어짐을 특징으로 하는 반도체소자의 제조방법.Fabrication of a semiconductor device comprising a P-type silicon substrate 1, a high concentration N-type buried layer 2, an N-type epitaxial layer 3, a high concentration N-type impurity layer 4, a high concentration P-type impurity layer 5, and the like In the method, after the clean thermal oxide film 21 is grown on the N-type epitaxial layer 3, the patterns of the intrinsic base region portion 22 and the extrinsic base portion 23 are separated by photo work. After forming and injecting the P-type impurities, after applying the oxide film 24, only the high-concentration N-type impurity layer 4 and the upper oxide film 24 of the intrinsic base region portion 23 is etched and thermally diffused to the intrinsic base The region 25 and the extrinsic base region 26 are formed, and then, the nitride film 27 is coated to form a nitride film pattern. The thermal oxide film 21 is used to collect a collector and an emitter window, and to form a high concentration N type. The collector region 29 and the emitter region 30 are formed of the polysilicon film 28, and then the blades are formed. And forming an emitter electrode (31), a base electrode (32), a (33) and a collector electrode (34) by opening the electrode window of the string type base region (26).
KR1019870010129A 1987-09-12 1987-09-12 Semiconductor manufacturing method KR890004971B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019870010129A KR890004971B1 (en) 1987-09-12 1987-09-12 Semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019870010129A KR890004971B1 (en) 1987-09-12 1987-09-12 Semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
KR890005880A KR890005880A (en) 1989-05-17
KR890004971B1 true KR890004971B1 (en) 1989-12-02

Family

ID=19264440

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019870010129A KR890004971B1 (en) 1987-09-12 1987-09-12 Semiconductor manufacturing method

Country Status (1)

Country Link
KR (1) KR890004971B1 (en)

Also Published As

Publication number Publication date
KR890005880A (en) 1989-05-17

Similar Documents

Publication Publication Date Title
GB1601676A (en) Semiconductor devices and method of manufacturing the same
EP0052198B1 (en) Method of manufacturing semiconductor devices using self-alignment techniques
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
GB2030002A (en) Semiconductor devices and methods of manufacturing them
KR900005123B1 (en) Bipolar transistor manufacturing method
KR930010116B1 (en) Bicmos semiconductor device and making method of the same
JPH04363046A (en) Manufacture of semiconductor device
KR880000483B1 (en) Fabricating semiconductor device with polysilicon protection layer during processing
KR910000020B1 (en) Manufacture of semiconductor device
GB2036431A (en) Double diffused transistor structure
KR890004971B1 (en) Semiconductor manufacturing method
US3503813A (en) Method of making a semiconductor device
JPH0465528B2 (en)
KR860001586B1 (en) Semiconductor device and method of its manufacturing
JPS5878457A (en) Manufacture of semiconductor device
KR890004424B1 (en) Manufacturing method of semiconductor device
KR940004257B1 (en) Manufacturing method of bipolar transistor
KR920000634B1 (en) Manufacturing method of mosfet
KR930006733B1 (en) Manufacturing method of high-speed transistor
KR100337073B1 (en) Isolation method of semiconductor device
KR0178994B1 (en) Method for forming an isolation region of junction
JPS62243361A (en) Manufacture of semiconductor device
JPS5966168A (en) Manufacture of semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
KR19980037024A (en) Collector Formation Method of Bipolar Transistor Using Trench

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031201

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee