JPS624339A - Semiconductor device and manufacture thereof - Google Patents
Semiconductor device and manufacture thereofInfo
- Publication number
- JPS624339A JPS624339A JP60143710A JP14371085A JPS624339A JP S624339 A JPS624339 A JP S624339A JP 60143710 A JP60143710 A JP 60143710A JP 14371085 A JP14371085 A JP 14371085A JP S624339 A JPS624339 A JP S624339A
- Authority
- JP
- Japan
- Prior art keywords
- conductivity type
- layer
- type
- semiconductor
- diffusion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Bipolar Integrated Circuits (AREA)
- Element Separation (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は半導体装置及びその製造方法に関し、特にバイ
ポーラ型半導体装置あるいはバイポーラ型及びMOS型
の素子が混在した半導体装置の素子分離を改良して低電
圧化及びへ集積化を図ろうとするものである。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and in particular to a semiconductor device of a bipolar type or a semiconductor device in which bipolar and MOS type elements are mixed, by improving element isolation and reducing the cost. This is an attempt to achieve voltage conversion and integration.
バイポーラ型半導体装置あるいはバイポーラ型及びMO
S型の素子が混在した半導体装置は、例えばp型のシリ
コン基板表面にn+型の埋込み拡散層を形成し、この基
板上の全面にn型エピタキシャル層を形成し、このエピ
タキシャル層内にバイポーラトランジスタ等の素子を構
成する拡散層を形成した構造を有している。従来、この
ような半導体装置の素子分離は、以下のような2つの技
術により行なわれている。まず、第1の技術はp型のシ
リコン基板表面にn4″型の埋込み拡散層を形成し、全
面にn型のエピタキシャル層を形成−した後、エピタキ
シャル層表面からp型の不純物を拡散させて基板に達す
るp+型抵拡散層形成して素子分離領域とするものであ
る。また、第2の技術は基板表面に04型拡散層とp+
型抵拡散層を形成しておき、エピタキシャル層形成後、
前記p+型型数散層上対応するエピタキシャル層表面か
らp型不純物を拡散させて両方向からの拡散によりp+
型抵拡散層形成して素子分離領域とするものである。Bipolar type semiconductor device or bipolar type and MO
A semiconductor device in which S-type elements are mixed includes, for example, an n+ type buried diffusion layer formed on the surface of a p-type silicon substrate, an n-type epitaxial layer formed on the entire surface of this substrate, and a bipolar transistor in this epitaxial layer. It has a structure in which a diffusion layer is formed to constitute an element such as. Conventionally, element isolation of such a semiconductor device has been performed using the following two techniques. First, the first technique is to form an n4'' type buried diffusion layer on the surface of a p-type silicon substrate, form an n-type epitaxial layer on the entire surface, and then diffuse p-type impurities from the surface of the epitaxial layer. The second technique is to form a p+ type resistive diffusion layer that reaches the substrate and use it as an element isolation region.
After forming the type resistance diffusion layer and forming the epitaxial layer,
P-type impurities are diffused from the surface of the corresponding epitaxial layer on the p+ type scattering layer, and p+ is formed by diffusion from both directions.
A resistive diffusion layer is formed to serve as an element isolation region.
前記第1の技術では、素子分離領域を形成するために不
純物を拡散させるのに要する時間が長いため生産性が低
下するうえに、形成される素子分離領域の横方向への広
がりが大きいため集積度を向上させることが困難となる
。In the first technique, productivity decreases due to the long time required to diffuse impurities to form the element isolation region, and the lateral spread of the formed element isolation region is large, making it difficult to integrate. It becomes difficult to improve the degree of
一方、第2の技術では基板側及びエピタキシャル層の表
面側の両方向から不純物の拡散を行なうので、拡散時間
が少なくてすみ、第1の技術のような欠点は解消できる
。しかし、第2の技術を用いた場合、特にn1型埋込み
層とp+型の素子分離領域との間の接合耐圧を高くする
ために、n+・型埋込み層とpゝ型埋込み層との間を一
定距離(マスク合わせ精度を考慮して1〜2−程度)離
間させて形成する必要がある。このため、素子の高集積
化が制限される。また、n+型及びp1型の埋込み層は
それぞれ別の選択拡散工程で形成しなければならない。On the other hand, in the second technique, since impurities are diffused from both the substrate side and the surface side of the epitaxial layer, the diffusion time is shortened, and the drawbacks of the first technique can be overcome. However, when using the second technique, in order to particularly increase the junction breakdown voltage between the n1 type buried layer and the p+ type element isolation region, the gap between the n+ type buried layer and the p type buried layer is increased. It is necessary to form them at a certain distance (approximately 1 to 2 mm in consideration of mask alignment accuracy). For this reason, high integration of elements is limited. Furthermore, the n+ type and p1 type buried layers must be formed in separate selective diffusion processes.
このため、エピタキシャル層形成前にホトリソグラフィ
一工程(PEP)を2回必要とし、工程が複雑となり、
歩留りを低下させる要因ともなる。Therefore, two photolithography steps (PEP) are required before forming the epitaxial layer, making the process complicated.
It also becomes a factor that reduces yield.
本発明は上記欠点を解消するためになされたものであり
、高集積化を達成し得るバイポーラ型又はバイポーラ型
とMOS型の素子が混在した半導体装置及びこのような
半導体装置を極めて簡便な工程で製造し得る方法を提供
しようとするものである。The present invention has been made in order to eliminate the above-mentioned drawbacks, and provides a bipolar type semiconductor device that can achieve high integration, or a semiconductor device in which bipolar type and MOS type elements are mixed, and a semiconductor device that can be manufactured using an extremely simple process. The aim is to provide a method for manufacturing.
本発明者は、素子の高集積化が達成できれば、作動電圧
の低電圧化も可能となり、その結果埋込み層と素子分離
領域との接合耐圧が低くとも問題が少ないことから、例
えばp型シリコン基板表面にn+型の埋込み層と素子分
離領域の一部を構成するp++埋込み層とを互いに接し
て形成することを考え、本発明をなすに至った。The present inventor believes that if high integration of elements can be achieved, it will be possible to lower the operating voltage, and as a result, there will be fewer problems even if the junction breakdown voltage between the buried layer and the element isolation region is low. The present invention was developed based on the idea of forming an n+ type buried layer and a p++ buried layer constituting a part of an element isolation region in contact with each other on the surface.
すなわち、本願筒1の発明の半導体装置は、第1導電型
の半導体基板と、該半導体基板上に形成された第2導電
型の半導体層と、これら半導体基板と半導体層との境界
領域に、互いに接して形成された第1及び第2導電型の
高濃度拡散層と、前記半導体層表面から前記第1導電型
の高濃度拡散層まで達するように形成された素子分離領
域と、これら第1導電型の高濃度拡散層及び素子分離領
域に囲まれた半導体層内に形成された、半導体素子を構
成する拡散層とを具備したことを特徴とするものである
。That is, the semiconductor device of the invention of the present application cylinder 1 includes a semiconductor substrate of a first conductivity type, a semiconductor layer of a second conductivity type formed on the semiconductor substrate, and a boundary region between the semiconductor substrate and the semiconductor layer. first and second conductivity type high concentration diffusion layers formed in contact with each other; an element isolation region formed to reach the first conductivity type high concentration diffusion layer from the surface of the semiconductor layer; It is characterized by comprising a conductive type high concentration diffusion layer and a diffusion layer constituting a semiconductor element formed in a semiconductor layer surrounded by an element isolation region.
このような半導体装置によれば、第2導電型の高濃度拡
散層(埋込み層)と素子分離領域の一部を構成する第1
導電型の高濃度拡散層とが互いに接して形成されている
ので、素子の^集積化を図ることができる。この結果、
作動電圧を低電圧化することができ、第1及び第2導電
型の高濃度拡散層の間の接合耐圧が低くとも問題は生じ
ない。According to such a semiconductor device, the second conductivity type high concentration diffusion layer (buried layer) and the first
Since the conductive type high concentration diffusion layers are formed in contact with each other, the device can be integrated. As a result,
The operating voltage can be lowered, and no problem occurs even if the junction breakdown voltage between the first and second conductivity type high concentration diffusion layers is low.
また、本願第2の発明の半導体装置の製造方法は、第1
導電型の半導体基板表面に第2導電型の不純物が添加さ
れた非単結晶シリコン膜を形成する工程と、全面に第1
の絶縁膜を形成した後、その一部を選択的に除去する工
程と、残存した第1の絶縁膜をマスクとして露出した前
記非単結晶シリコン躾を除去する工程と、露出した基板
表面に第2の絶縁膜を形成する工程と、前記非単結晶シ
リコン膜から不純物を拡散させ、第2導電型の高濃度拡
散層を形成する工程と、前記第2の絶縁膜を通して基板
に第1導電型の不純物をイオン注入した後、熱処理する
ことにより、前記第2導電型の高濃度拡散層と接する第
1導電型の高濃度拡散層を形成する工程と、前記第1及
び第2の絶縁膜を除去する工程と、残存している非単結
晶シリコン膜を酸化膜に変換した後、該酸化膜を除去す
る工程と、全面に第1導電型の半導体層を形成する工程
と、該半導体層の一部に選択的に前記第1導電型の高濃
度拡散層まで達する素子分離領域(第1導電型の拡散層
でもよいし、絶縁膜でもよい)を形成する工程と、これ
ら第1導電型の高濃度拡散層及び素子分離領域に囲まれ
た半導体層内に、半導体素子を構成する拡散層を形成す
る工程とを具備したことを特徴とするものである。Further, the method for manufacturing a semiconductor device according to the second invention of the present application includes the method for manufacturing a semiconductor device according to the first invention.
A step of forming a non-single crystal silicon film doped with a second conductivity type impurity on the surface of a conductivity type semiconductor substrate;
After forming the insulating film, a step of selectively removing a part of the insulating film, a step of removing the exposed non-single-crystal silicon layer using the remaining first insulating film as a mask, and a step of removing the exposed non-single-crystal silicon layer on the exposed surface of the substrate. a second step of forming an insulating film; a step of diffusing impurities from the non-single crystal silicon film to form a second conductivity type high concentration diffusion layer; forming a first conductivity type high concentration diffusion layer in contact with the second conductivity type high concentration diffusion layer by ion-implanting impurities and then heat-treating the first and second insulating films; a step of converting the remaining non-single crystal silicon film into an oxide film and then removing the oxide film; a step of forming a semiconductor layer of the first conductivity type on the entire surface; A step of forming an element isolation region (which may be a first conductivity type diffusion layer or an insulating film) selectively reaching a part of the first conductivity type high concentration diffusion layer; The method is characterized by comprising a step of forming a diffusion layer constituting a semiconductor element in a semiconductor layer surrounded by a high concentration diffusion layer and an element isolation region.
このような方法によれば、半導体基板表面の第1及び第
2導電型の高濃度拡散層を自己整合的に形成することが
できるので、第2導電型の半導体層(エピタキシャル層
)を形成する以前のホトリソグラフィ一工程(PEP)
は1回でよい。したがって、本願第1の発明の低電圧・
高集積半導体装置を簡便な工程で、ぶつ高歩留りで製造
することができる。According to such a method, the first and second conductivity type high concentration diffusion layers on the surface of the semiconductor substrate can be formed in a self-aligned manner, so that the second conductivity type semiconductor layer (epitaxial layer) can be formed. Previous photolithography process (PEP)
only needs to be done once. Therefore, the low voltage and
Highly integrated semiconductor devices can be manufactured with simple steps and extremely high yields.
(発明の実施例)
以下、本発明の実施例を第1図(a)〜(i)に示す製
造工程を参照して説明する。(Embodiments of the Invention) Examples of the present invention will be described below with reference to manufacturing steps shown in FIGS. 1(a) to (i).
まず、p型シリコン基板1の表面に膜厚300〜500
人の多結晶シリコン[12を形成し°た後、例えば加速
エネルギー50 keV 1ドーズ量1X1016/α
2の条件でヒ素をイオン注入する。First, a film with a thickness of 300 to 500 is applied to the surface of the p-type silicon substrate 1.
After forming human polycrystalline silicon [12°, for example, acceleration energy 50 keV 1 dose 1X1016/α
Arsenic ions are implanted under the conditions of 2.
このイオン注入条件は最終的に形成されるn1型埋込み
層の層抵抗値、拡散深さ等に応じて決定される。なお、
上記のような条件では、ヒ素濃度のピーク位置が基板1
と多結晶−シリコン1lI2との境界から若干多結晶シ
リコン膜2側に入った位置となるような不純物分布を示
す (第1図(a)図示)。次に、全面に膜厚450o
〜5000人のCvD酸化膜3を堆積した後、素子分離
領域の予定部上のみを選択的にエツチングして開孔部4
を設ける(同図(b)図示)。つづいて、残存している
CVOm化11化合13クとして反応性イオンエツチン
グ(RIE)により開孔部4において露出してりる多結
晶シリコン112をエツチングし、更にヒ素濃度が約1
0”/a13以下となる領域まで基板1をエツチングす
る(同図(C)図示)。The ion implantation conditions are determined depending on the layer resistance value, diffusion depth, etc. of the n1 type buried layer to be finally formed. In addition,
Under the above conditions, the peak position of arsenic concentration is at substrate 1.
The impurity distribution is located at a position slightly closer to the polycrystalline silicon film 2 than the polycrystalline silicon 1lI2 boundary (as shown in FIG. 1(a)). Next, a film thickness of 450o was applied to the entire surface.
After depositing ~5,000 CvD oxide films 3, selective etching is performed only on the intended part of the element isolation region to form the openings 4.
(Illustrated in Figure (b)). Subsequently, the polycrystalline silicon 112 exposed in the opening 4 is etched by reactive ion etching (RIE) as the remaining CVOm compound 11, and the arsenic concentration is further reduced to about 1.
The substrate 1 is etched to a region where the etching ratio is 0''/a13 or less (as shown in FIG. 2C).
次いで、1000℃で熱酸化を行ない、開孔部4におい
て露出している基板1の表面に膜厚1000人の熱酸化
I!A5を形成する。つづいて、窒素雰囲気中、120
0℃で4〜6時間熱処理を行ない、多結晶シリコン膜2
からヒ素を拡散させてn+型型埋界層6を形成する(同
図(d)図示)。Next, thermal oxidation is performed at 1000° C., and the surface of the substrate 1 exposed in the opening 4 is thermally oxidized to a thickness of 1000° C. Form A5. Subsequently, in a nitrogen atmosphere, 120
Heat treatment is performed at 0°C for 4 to 6 hours to form polycrystalline silicon film 2.
Arsenic is diffused from the wafer to form an n+ type buried layer 6 (as shown in FIG. 4(d)).
つづいて、残存しているCVD酸化膜3をマスクとして
開孔部に形成されている熱酸化115を通して基板1に
例えば加速エネルギー50 keV 、ドーズ量3.4
X 10” /3”の条件でボロンをイオン注入して
ボロンイオン注入層7を形成する(同図(e)図示)。Subsequently, using the remaining CVD oxide film 3 as a mask, the substrate 1 is exposed to an acceleration energy of 50 keV and a dose of 3.4 through thermal oxidation 115 formed in the opening.
Boron is ion-implanted under the conditions of X 10''/3'' to form a boron ion-implanted layer 7 (as shown in FIG. 3(e)).
つづいて、窒素雰囲気中、1200℃で20〜30分間
アニールを行ない、ボロンイオン注入層7を活性化して
素子分離領域の一部となるp++埋込み層8を形成する
。つづいて、残存しているCvD酸化膜3及び熱酸化膜
5をエツチングする(同図(f)図示)。Subsequently, annealing is performed at 1200 DEG C. for 20 to 30 minutes in a nitrogen atmosphere to activate the boron ion implantation layer 7 and form a p++ buried layer 8 that will become a part of the element isolation region. Subsequently, the remaining CvD oxide film 3 and thermal oxide film 5 are etched (as shown in FIG. 3(f)).
次いで、酸化性雰囲気中、1000℃で水素燃焼酸化を
行ない、残存している多結晶シリコン膜2を完全に酸化
膜に変換する。この際、露出している基板1表面にも薄
い酸化膜が形成される。つづいて、基板1表面に形成さ
れている酸化膜を全て除去する(同図(a)図示)。つ
づいて、基板1の全面に厚さ4〜6譚、比抵抗1.5〜
2Ω・C屑のn型エピタキシャル層9を形成する。この
際、前記n1型埋込み層6及びp+型型埋界層8の不純
物がそれぞれエピタキシャル!19側へも拡散する。ま
た、最終的にn++埋込み層6は拡散深さ約1.5〜2
譚、層抵抗値40〜50Ω・σ、n1型埋込み層8は拡
散深さ約2譚、層抵抗値170〜200Ω・1となる。Next, hydrogen combustion oxidation is performed at 1000° C. in an oxidizing atmosphere to completely convert the remaining polycrystalline silicon film 2 into an oxide film. At this time, a thin oxide film is also formed on the exposed surface of the substrate 1. Subsequently, all of the oxide film formed on the surface of the substrate 1 is removed (as shown in FIG. 3(a)). Next, the entire surface of the substrate 1 is coated with a thickness of 4 to 6 layers and a specific resistance of 1.5 to 1.
An n-type epitaxial layer 9 of 2Ω·C scrap is formed. At this time, the impurities in the n1 type buried layer 6 and the p+ type buried layer 8 are epitaxial! It also spreads to the 19th side. Furthermore, the final n++ buried layer 6 has a diffusion depth of about 1.5 to 2
The layer resistance value is 40 to 50 Ω·σ, the diffusion depth of the n1 type buried layer 8 is approximately 2 tan, and the layer resistance value is 170 to 200 Ω·1.
このp+型型埋界層8の層抵抗値は、従来のp”型埋込
み層の層抵抗値、すなわち数十Ω/口に対してかなり高
抵抗に設定されている(同図(h)図示)。つづいて、
エピタキシャル層9の一部に選択的にボロンを拡散させ
て前記n3型埋込み層8とともに素子分離amを構成す
るp型拡散層10を形成する。。これと同時にp型ベー
ス領域11を形成する。つづいて、エピタキシャル層9
の一部に選択的にヒ素を拡散させることにより、n++
エミッタ領域12及びn4型コレクタ取出し領域13を
形成し、バイポーラ型半導体装置を製造する(同図に)
図示)。The layer resistance value of this p+ type buried layer 8 is set to a considerably high resistance value compared to the layer resistance value of the conventional p'' type buried layer, that is, several tens of Ω/hole (see figure (h)). ).Continued,
Boron is selectively diffused into a part of the epitaxial layer 9 to form a p-type diffusion layer 10 that constitutes the element isolation am together with the n3-type buried layer 8. . At the same time, a p-type base region 11 is formed. Next, epitaxial layer 9
By selectively diffusing arsenic into a part of n++
An emitter region 12 and an n4 type collector extraction region 13 are formed, and a bipolar semiconductor device is manufactured (as shown in the same figure).
(Illustrated).
第1図(i)図示のバイポーラ型半導体装置では、n4
′型埋込み層6とp+型型埋界層8とが互いに接して形
成されているので、素子の高集積化を達成することがで
きる。この結果、作動電圧を低電圧化することができる
ので、n0型埋込み層6とp+型型埋界層8との間の接
合耐圧が低くとも問題は生じない。In the bipolar semiconductor device shown in FIG. 1(i), n4
Since the '-type buried layer 6 and the p+-type buried layer 8 are formed in contact with each other, high integration of the device can be achieved. As a result, the operating voltage can be lowered, so that no problem occurs even if the junction breakdown voltage between the n0 type buried layer 6 and the p+ type buried layer 8 is low.
また、上記のような方法では第1図(C)の工程で形成
される多結晶シリコン膜2のパターンが第1図(d)の
工程でn4″型埋込み層6の拡散源となるとともに、第
1図(e)の工程でボロンのイオン注入のマスクとして
使用されるので、n++埋込み層6とp+型型埋界層8
とを自己整合的に形成することができる。したがって、
エピタキシャル層9形成以前にはホトリソグラフィ工程
(PEP)は第1図(bl)工程でのCvDl化113
のエツチングにのみ使用され、従来よりもPEPを1回
減少させることができる。したがって、従来よりも工程
を簡便にすることができ、歩留りも向上することができ
る。また、エピタキシャル層9の上下両方向からの拡散
により素子分離領域を形成しているので、当然、拡散時
間を低減でき。Furthermore, in the above method, the pattern of the polycrystalline silicon film 2 formed in the step of FIG. 1(C) becomes a diffusion source for the n4'' type buried layer 6 in the step of FIG. 1(d), and The n++ buried layer 6 and the p+ type buried layer 8 are used as masks for boron ion implantation in the process shown in FIG. 1(e).
can be formed in a self-consistent manner. therefore,
Prior to the formation of the epitaxial layer 9, the photolithography process (PEP) was performed in the CvDl conversion process 113 in the process shown in FIG.
It is used only for etching, and PEP can be reduced by one time compared to the conventional method. Therefore, the process can be made simpler than in the past, and the yield can also be improved. Furthermore, since the element isolation region is formed by diffusion from both the upper and lower directions of the epitaxial layer 9, the diffusion time can naturally be reduced.
かつ素子分離領域自体の面積も低減して素子の高集積化
が容易であるという効果を有している。In addition, the area of the element isolation region itself is reduced, making it easy to achieve high integration of elements.
なお、上記実施例では素子分離領域をp+型型埋界層8
とp型拡散層10とで構成したが゛、p型拡散層10の
代わりに例えば選択酸化法により形成された酸化膜を用
いてもよい。In the above embodiment, the element isolation region is formed by a p+ type buried layer 8.
However, instead of the p-type diffusion layer 10, an oxide film formed by, for example, a selective oxidation method may be used.
また、上記実施例ではエピタキシャル層内にバイポーラ
型半導体素子を形成したが、これに限らずバイポーラ型
とMOS型の半導体素子を混在させてもよい。Further, in the above embodiment, a bipolar type semiconductor element is formed in the epitaxial layer, but the present invention is not limited to this, and bipolar type and MOS type semiconductor elements may be mixed.
以上詳述した如く本発明によれば、高い集積度を有し、
かつ低電圧で作動するバイポーラ型又はバイポーラ型と
MOS型の素子が混在した半導体装置及びこのような半
導体装置を極めて簡便な工程で製造し得る方法を提供で
きるものである。As detailed above, according to the present invention, it has a high degree of integration,
Furthermore, it is possible to provide a semiconductor device that operates at low voltage and includes a bipolar type or a mixture of bipolar and MOS type elements, and a method for manufacturing such a semiconductor device using extremely simple steps.
第1図(a)〜(i)、は本発明の実施例におけるバイ
ポーラ型半導体装置を得るための製造工程を示す断面図
である。
1・・・p型シリコン基板、2・・・多結晶シリコン躾
、3・・・cvoaa化躾、4・・・開孔部、5・・・
熱酸化膜、6・・・n0型埋込み層、7・・・ボロンイ
オン注入層、8・・・じ型埋込み層、9・・・n型エピ
タキシャル層、10・・・p型拡散層(素子分離領域)
、11・・・p型ベース領域、12・・・n0型エミツ
タ領域、13・・・n1型コレクタ取出し領域。FIGS. 1(a) to 1(i) are cross-sectional views showing manufacturing steps for obtaining a bipolar semiconductor device in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Polycrystalline silicon substrate, 3... CVOAA coating, 4... Opening part, 5...
Thermal oxide film, 6... n0 type buried layer, 7... boron ion implantation layer, 8... double type buried layer, 9... n type epitaxial layer, 10... p type diffusion layer (element separation area)
, 11...p-type base region, 12...n0-type emitter region, 13...n1-type collector extraction region.
Claims (4)
成された第2導電型の半導体層と、これら半導体基板と
半導体層との境界領域に、互いに接して形成された第1
及び第2導電型の高濃度拡散層と、前記半導体層表面か
ら前記第1導電型の高濃度拡散層まで達するように形成
された素子分離領域と、これら第1導電型の高濃度拡散
層及び素子分離領域に囲まれた半導体層内に形成された
、半導体素子を構成する拡散層とを具備したことを特徴
とする半導体装置。(1) A semiconductor substrate of a first conductivity type, a semiconductor layer of a second conductivity type formed on the semiconductor substrate, and a first conductivity type semiconductor layer formed in contact with each other in a boundary region between the semiconductor substrate and the semiconductor layer.
and a high concentration diffusion layer of a second conductivity type, an element isolation region formed to reach the high concentration diffusion layer of the first conductivity type from the surface of the semiconductor layer, and the high concentration diffusion layer of the first conductivity type; What is claimed is: 1. A semiconductor device comprising: a diffusion layer constituting a semiconductor element formed within a semiconductor layer surrounded by an element isolation region.
物が添加された非単結晶シリコン膜を形成する工程と、
全面に第1の絶縁膜を形成した後、その一部を選択的に
除去する工程と、残存した第1の絶縁膜をマスクとして
露出した前記非単結晶シリコン膜を除去する工程と、露
出した基板表面に第2の絶縁膜を形成する工程と、前記
非単結晶シリコン膜から不純物を拡散させ、第2導電型
の高濃度拡散層を形成する工程と、前記第2の絶縁膜を
通して基板に第1導電型の不純物をイオン注入した後、
熱処理することにより、前記第2導電型の高濃度拡散層
と接する第1導電型の高濃度拡散層を形成する工程と、
前記第1及び第2の絶縁膜を除去する工程と、残存して
いる非単結晶シリコン膜を酸化膜に変換した後、該酸化
膜を除去する工程と、全面に第1導電型の半導体層を形
成する工程と、該半導体層の一部に選択的に前記第1導
電型の高濃度拡散層まで達する素子分離領域を形成する
工程と、これら第1導電型の高濃度拡散層及び素子分離
領域に囲まれた半導体層内に、半導体素子を構成する拡
散層を形成する工程とを具備したことを特徴とする半導
体装置の製造方法。(2) forming a non-single crystal silicon film doped with second conductivity type impurities on the surface of the first conductivity type semiconductor substrate;
After forming the first insulating film on the entire surface, a step of selectively removing a part of the first insulating film, a step of removing the exposed non-single crystal silicon film using the remaining first insulating film as a mask, and a step of removing the exposed non-single-crystal silicon film using the remaining first insulating film as a mask. forming a second insulating film on the surface of the substrate; diffusing impurities from the non-single crystal silicon film to form a second conductivity type high concentration diffusion layer; After ion-implanting impurities of the first conductivity type,
forming a first conductivity type high concentration diffusion layer in contact with the second conductivity type high concentration diffusion layer by heat treatment;
a step of removing the first and second insulating films, a step of converting the remaining non-single crystal silicon film into an oxide film and then removing the oxide film, and a step of removing a semiconductor layer of a first conductivity type over the entire surface. forming an element isolation region selectively reaching the first conductivity type high concentration diffusion layer in a part of the semiconductor layer; 1. A method of manufacturing a semiconductor device, comprising the step of forming a diffusion layer constituting a semiconductor element in a semiconductor layer surrounded by a region.
導電型の不純物を添加することを特徴とする特許請求の
範囲第2項記載の半導体装置の製造方法。(3) A second layer is added to the non-single-crystal silicon film by ion implantation.
3. The method of manufacturing a semiconductor device according to claim 2, wherein a conductive type impurity is added.
純物としてボロンをそれぞれ用いることを特徴とする特
許請求の範囲第2項又は第3項記載の半導体装置の製造
方法。(4) The method of manufacturing a semiconductor device according to claim 2 or 3, wherein arsenic is used as the second conductivity type impurity, and boron is used as the first conductivity type impurity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60143710A JPS624339A (en) | 1985-06-29 | 1985-06-29 | Semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60143710A JPS624339A (en) | 1985-06-29 | 1985-06-29 | Semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS624339A true JPS624339A (en) | 1987-01-10 |
Family
ID=15345172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60143710A Pending JPS624339A (en) | 1985-06-29 | 1985-06-29 | Semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS624339A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4907216A (en) * | 1987-07-10 | 1990-03-06 | U.S. Philips Corporation | Optical record carrier having position indentifying track modulation |
JPH02309663A (en) * | 1989-05-25 | 1990-12-25 | Oki Electric Ind Co Ltd | Manufacture of semiconductor device |
US5556796A (en) * | 1995-04-25 | 1996-09-17 | Micrel, Inc. | Self-alignment technique for forming junction isolation and wells |
KR100789606B1 (en) | 2005-09-27 | 2007-12-27 | 산요덴키가부시키가이샤 | Semiconductor device and manufacturing method thereof |
JP2010003925A (en) * | 2008-06-20 | 2010-01-07 | Toppan Printing Co Ltd | Semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5827340A (en) * | 1981-08-12 | 1983-02-18 | Hitachi Ltd | Manufacture of semiconductor integrated circuit device |
-
1985
- 1985-06-29 JP JP60143710A patent/JPS624339A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5827340A (en) * | 1981-08-12 | 1983-02-18 | Hitachi Ltd | Manufacture of semiconductor integrated circuit device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4907216A (en) * | 1987-07-10 | 1990-03-06 | U.S. Philips Corporation | Optical record carrier having position indentifying track modulation |
JPH02309663A (en) * | 1989-05-25 | 1990-12-25 | Oki Electric Ind Co Ltd | Manufacture of semiconductor device |
US5556796A (en) * | 1995-04-25 | 1996-09-17 | Micrel, Inc. | Self-alignment technique for forming junction isolation and wells |
KR100789606B1 (en) | 2005-09-27 | 2007-12-27 | 산요덴키가부시키가이샤 | Semiconductor device and manufacturing method thereof |
JP2010003925A (en) * | 2008-06-20 | 2010-01-07 | Toppan Printing Co Ltd | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2934484B2 (en) | Method of manufacturing monolithic silicon planar pn junction separated integrated circuit | |
JPS62588B2 (en) | ||
US4412378A (en) | Method for manufacturing semiconductor device utilizing selective masking, etching and oxidation | |
JPH05347383A (en) | Manufacture of integrated circuit | |
US4408387A (en) | Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask | |
JP3098848B2 (en) | Self-aligned planar monolithic integrated circuit vertical transistor process | |
US5086005A (en) | Bipolar transistor and method for manufacturing the same | |
JPS62290173A (en) | Manufacture of semiconductor integrated circuit device | |
US5151378A (en) | Self-aligned planar monolithic integrated circuit vertical transistor process | |
JPS624339A (en) | Semiconductor device and manufacture thereof | |
JPH0555593A (en) | Manufacture of insulated-gate field-effect transistor | |
JPH0127589B2 (en) | ||
JP2890509B2 (en) | Method for manufacturing semiconductor device | |
JPS6143858B2 (en) | ||
JP2809662B2 (en) | Method for manufacturing double-diffused MOSFET device | |
JP2557840B2 (en) | Semiconductor device manufacturing method | |
JPH0579186B2 (en) | ||
JP2828264B2 (en) | Method for manufacturing semiconductor device | |
JPS63144567A (en) | Manufacture of semiconductor device | |
JP2624365B2 (en) | Method for manufacturing semiconductor device | |
JPS61139057A (en) | Manufacture of semiconductor integrated circuit device | |
JPH01144679A (en) | Manufacture of semiconductor device | |
JPH03278568A (en) | Manufacture of semiconductor device | |
JPS61136267A (en) | Bipolar semiconductor device | |
JPH0485936A (en) | Manufacture of semiconductor device |