JPH0555593A - Manufacture of insulated-gate field-effect transistor - Google Patents

Manufacture of insulated-gate field-effect transistor

Info

Publication number
JPH0555593A
JPH0555593A JP21886591A JP21886591A JPH0555593A JP H0555593 A JPH0555593 A JP H0555593A JP 21886591 A JP21886591 A JP 21886591A JP 21886591 A JP21886591 A JP 21886591A JP H0555593 A JPH0555593 A JP H0555593A
Authority
JP
Japan
Prior art keywords
film
forming
glass film
gate electrode
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21886591A
Other languages
Japanese (ja)
Inventor
Hideo Isobe
英男 磯部
Tadashi Natsume
正 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21886591A priority Critical patent/JPH0555593A/en
Publication of JPH0555593A publication Critical patent/JPH0555593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To provide a vertical MOSFET with reduced input capacitance, feedback capacitance, and ON resistance and an improved reliability by a simple manufacturing process. CONSTITUTION:A pattern of a phosphor glass film 6 is formed at a drain region on a gate insulation film 4 on a surface of a semiconductor substrate 1, a polycrystalline silicon film gate electrode 5 is formed so that the pattern of the phosphor glass film 6 is covered, a P-type impurity is diffused for forming a channel diffusion region 2, and at the same time an N-type impurity is diffused from the phosphor glass film 6, thus forming a high-concentration diffusion layer 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁ゲート形電界効果ト
ランジスタに係り、特にパワーMOSFET等に好適な
縦型の絶縁ゲート形電界効果トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate field effect transistor, and more particularly to a vertical insulated gate field effect transistor suitable for power MOSFETs and the like.

【0002】[0002]

【従来の技術】図2は従来の縦型絶縁ゲート形電界効果
トランジスタ(以下、MOSFETという)の断面図で
ある。符号1はN型の半導体基板であり、MOSFET
のドレイン領域を形成する。符号2はP+ 型の縦型MO
SFETのチャンネル拡散領域である。符号3は、チャ
ンネル拡散領域2内に設けられたN+ 型の拡散層であ
り、ソース拡散領域を形成する。符号4は薄い酸化膜か
らなるゲート絶縁膜であり、符号5は多結晶シリコン膜
からなるゲート電極であり、このゲート電極5に電圧が
印加されることによって、ソース拡散領域3とドレイン
領域とがゲート絶縁膜4を介して導通が制御される。符
号9は酸化膜等からなる層間絶縁膜であり、符号10は
アルミ膜等の金属電極であり、MOSFETのソース電
極等を形成する。このような縦型のMOSFETは、高
耐圧、大電流を取扱うパワーMOSFETに好適な構造
である。
2. Description of the Related Art FIG. 2 is a sectional view of a conventional vertical insulated gate field effect transistor (hereinafter referred to as MOSFET). Reference numeral 1 is an N-type semiconductor substrate, which is a MOSFET
Forming a drain region of. Reference numeral 2 is a P + type vertical MO
This is the channel diffusion region of the SFET. Reference numeral 3 is an N + type diffusion layer provided in the channel diffusion region 2 and forms a source diffusion region. Reference numeral 4 is a gate insulating film made of a thin oxide film, reference numeral 5 is a gate electrode made of a polycrystalline silicon film, and when a voltage is applied to the gate electrode 5, the source diffusion region 3 and the drain region are separated from each other. Conduction is controlled through the gate insulating film 4. Reference numeral 9 is an interlayer insulating film made of an oxide film or the like, and reference numeral 10 is a metal electrode such as an aluminum film, which forms a source electrode or the like of the MOSFET. Such a vertical MOSFET has a structure suitable for a power MOSFET handling a high breakdown voltage and a large current.

【0003】しかしながら、係る図2のような構造のM
OSFETにおいては、ゲート電極5が薄いゲート絶縁
膜4を介して直接ドレイン領域である半導体基板1に対
面しているので、MOSFETのゲートドレイン間の帰
還容量及びゲートソース間の入力容量が大きくなり、ス
イッチングスピードが遅くなるという問題がある。又ド
レイン領域は低濃度のN型半導体基板であるため、パワ
ーMOSFETにおいては、ON抵抗が大きくなるとい
う問題がある。この点を解決するために、ゲート絶縁膜
4をドレイン領域上において厚く形成することにより容
量を低減し、且つその厚いゲート絶縁膜直下のドレイン
領域の濃度を高くすることによりON抵抗を低減するこ
とが、特開昭63−21876号公報、特開平2−37
777号公報等に開示されている。
However, the M having the structure shown in FIG.
In the OSFET, since the gate electrode 5 directly faces the semiconductor substrate 1, which is the drain region, through the thin gate insulating film 4, the feedback capacitance between the gate and drain of the MOSFET and the input capacitance between the gate and source become large, There is a problem that the switching speed becomes slow. Further, since the drain region is a low-concentration N-type semiconductor substrate, there is a problem that the ON resistance becomes large in the power MOSFET. To solve this problem, the gate insulating film 4 is formed thick on the drain region to reduce the capacitance, and the drain region directly below the thick gate insulating film is increased in concentration to reduce the ON resistance. However, JP-A-63-21876 and JP-A-2-37
No. 777, etc.

【0004】[0004]

【発明が解決しようとする課題】前述のように図2に示
された従来の縦型MOSFET構造では、ゲート電極と
ドレイン領域が薄い絶縁膜を介して直接対向しているた
め、MOSFETの入力容量、帰還容量が大きくなると
いう問題があり、且つドレイン領域でのON抵抗が大き
くなるという問題があった。又、前述の特開昭63−2
1876号公報、特開平2−37777号公報に開示さ
れたMOSFETでは、その製造工程が複雑となるとい
う問題があった。
As described above, in the conventional vertical MOSFET structure shown in FIG. 2, since the gate electrode and the drain region directly face each other through the thin insulating film, the input capacitance of the MOSFET is reduced. However, there is a problem that the feedback capacitance becomes large, and a problem that the ON resistance in the drain region becomes large. In addition, the above-mentioned JP-A-63-2
The MOSFETs disclosed in Japanese Patent No. 1876 and Japanese Patent Laid-Open No. 2-37777 have a problem that the manufacturing process is complicated.

【0005】[0005]

【課題を解決するための手段】本発明は係る課題を解決
するため、縦型MOSFETの製造方法を、半導体基板
の表面にゲート絶縁膜を形成する工程と、該ゲート絶縁
膜上にリンガラス膜を被着し、ホトエッチにより前記半
導体基板のドレイン領域上にパターンを形成する工程
と、該リンガラス膜上に多結晶シリコン膜を被着し、前
記リンガラス膜のパターンを覆うように、ホトエッチに
よりゲート電極を形成する工程と、前記多結晶シリコン
膜からなるゲート電極をマスクとしてP型不純物をデポ
ジションする工程と、熱処理により該P型不純物を拡散
しチャンネル拡散領域を形成するとともに、前記リンガ
ラス膜よりリンを拡散しドレイン領域に高濃度拡散層を
形成する工程と、前記多結晶シリコン膜からなるゲート
電極及びホトレジストをマクスとしてN型不純物を拡散
することによりソース拡散領域を形成する工程と、コン
タクト開口を設け金属電極を形成する工程とから構成し
た。
In order to solve the above problems, the present invention provides a method of manufacturing a vertical MOSFET, including a step of forming a gate insulating film on the surface of a semiconductor substrate, and a phosphorus glass film on the gate insulating film. And forming a pattern on the drain region of the semiconductor substrate by photoetching, and by depositing a polycrystalline silicon film on the phosphor glass film and by photoetching so as to cover the pattern of the phosphor glass film. Forming a gate electrode; depositing a P-type impurity using the gate electrode made of the polycrystalline silicon film as a mask; heat-treating the P-type impurity to form a channel diffusion region; A step of diffusing phosphorus from the film to form a high-concentration diffusion layer in the drain region, and a gate electrode and a photo resist made of the polycrystalline silicon film. It was composed of a step of forming a source diffusion region by diffusing N-type impurity as Makusu, and forming a metal electrode provided contact openings.

【0006】[0006]

【作用】本発明においては、ゲート電極の下でドレイン
領域を形成する半導体基板1の上に厚い絶縁膜であるリ
ンガラス膜を有しているので、MOSFETの入力容
量、帰還容量が図2に示す従来の構造と比較して大幅に
減少する。又リンガラス膜より半導体基板1のドレイン
領域にN+ 型の高濃度拡散層を形成するため、MOSF
ETのON抵抗が減少する。そして厚い絶縁膜を、リン
ガラス膜を使用して形成しているので、上述の構造を実
現する簡単な製造工程が実現された。
In the present invention, since the phosphor glass film which is a thick insulating film is provided on the semiconductor substrate 1 which forms the drain region under the gate electrode, the input capacitance and the feedback capacitance of the MOSFET are shown in FIG. Significantly reduced compared to the conventional structure shown. Further, since the N + type high-concentration diffusion layer is formed in the drain region of the semiconductor substrate 1 from the phosphorus glass film, the MOSF
ON resistance of ET decreases. Since the thick insulating film is formed by using the phosphor glass film, a simple manufacturing process for realizing the above structure was realized.

【0007】[0007]

【実施例】まず、N+型基体の上にN型のエピタキシャ
ル層を備えた半導体基板1を準備し、セル間の分離のた
めの拡散層及びガードリング拡散層となる、P型の深い
拡散領域を形成する。これは熱酸化により酸化膜を成長
させ、ホトエッチにより開口し、ボロンをデポジション
又はイオン注入し熱処理によって拡散層を形成する。次
にチップ端部のアニュラー拡散層となるN+ 型の深い拡
散層を形成する。これは酸化膜をホトエッチで開口し、
リンをデポジションしドライブインすることによって拡
散層を形成する。そして、MOSFETのセル部分の酸
化膜をホトエッチにより開口する。
EXAMPLE First, a semiconductor substrate 1 having an N type epitaxial layer on an N + type substrate was prepared, and a P type deep diffusion layer serving as a diffusion layer for separating cells and a guard ring diffusion layer was prepared. Form an area. This grows an oxide film by thermal oxidation, opens it by photoetching, deposits or ion-implants boron, and forms a diffusion layer by heat treatment. Next, an N + type deep diffusion layer to be an annular diffusion layer at the chip end is formed. This opens the oxide film by photoetching,
A diffusion layer is formed by depositing phosphorus and driving it in. Then, the oxide film in the cell portion of the MOSFET is opened by photoetching.

【0008】図2は、本発明のMOSFETの製造工程
の一実施例の断面図である。(A)はリンガラス膜パタ
ーンを形成後の断面図である。まず、熱酸化によるゲー
ト酸化膜6をセル部分の全面に形成する。そして、次に
リンガラス膜を半導体基板全面に化学気相蒸着(CV
D)にて、被着する。そしてホトレジストを塗布し、ド
レイン領域上に、ホトエッチによってリンガラス膜をパ
ターン形成して、ドレイン領域上のリンガラス膜6を形
成する。
FIG. 2 is a sectional view of an embodiment of the manufacturing process of the MOSFET of the present invention. (A) is a cross-sectional view after forming a phosphorus glass film pattern. First, the gate oxide film 6 is formed on the entire surface of the cell portion by thermal oxidation. Then, a phosphorus glass film is deposited on the entire surface of the semiconductor substrate by chemical vapor deposition (CV).
At D), it is applied. Then, a photoresist is applied, and a phosphorus glass film is patterned on the drain region by photoetching to form a phosphorus glass film 6 on the drain region.

【0009】(B)はリンガラス膜6上に多結晶シリコ
ン膜を被着し、前記リンガラス膜6のパターンを覆うよ
うに、ホトエッチによりゲート電極5を形成した後の断
面図である。まず、多結晶シリコン膜をCVDにより半
導体基板全面に被着させる。そしてホトレジストを塗布
し、ホトエッチによってパターン形成されたリンガラス
膜6を覆うようにゲート電極5のパターンを形成する。
FIG. 3B is a cross-sectional view after depositing a polycrystalline silicon film on the phosphor glass film 6 and forming the gate electrode 5 by photoetching so as to cover the pattern of the phosphor glass film 6. First, a polycrystalline silicon film is deposited on the entire surface of a semiconductor substrate by CVD. Then, a photoresist is applied, and a pattern of the gate electrode 5 is formed so as to cover the phosphorus glass film 6 patterned by photoetching.

【0010】(C)は、MOSFET完成後の断面図で
ある。P型拡散層であるチャンネル拡散領域2及びN+
型拡散層であるソース拡散領域3を二重にゲート電極5
をマスクとしてセルフアラインの拡散により形成する。
この拡散は、まずボロンをゲート電極をマスクとしてイ
オン注入し熱処理により、チャンネル拡散領域2を拡散
層として形成する。この時の熱処理に伴って、リンガラ
ス膜6より薄い酸化膜であるゲート絶縁膜4を通して、
リンがドレイン領域である半導体基板1に拡散され高濃
度拡散層11が形成される。つぎに、レジストおよびゲ
ート電極をマスクとして、同様にリンのイオン注入と拡
散により、ソース拡散領域3が形成される。そして半導
体基板全面にCVDによってリンドープの厚い酸化膜を
成長させる。このリンドープ酸化膜(PSG)は、多結
晶シリコンによるゲート電極5とその上に配線されるア
ルミ等の金属電極との層間絶縁膜9となる。そしてソー
ス拡散領域へのコンタクト等のコンタクトパターンをホ
トエッチによって開口して、アルミ蒸着によりアルミ膜
を形成し、ホトエッチによりアルミ膜の金属電極10等
を形成して、MOSFETが完成する。
FIG. 1C is a sectional view after the MOSFET is completed. Channel diffusion region 2 and N + which are P-type diffusion layers
The source diffusion region 3 which is the type diffusion layer is doubled to the gate electrode 5
Is used as a mask to form a self-aligned diffusion.
In this diffusion, first, boron is ion-implanted using the gate electrode as a mask and heat treatment is performed to form the channel diffusion region 2 as a diffusion layer. With the heat treatment at this time, through the gate insulating film 4 which is an oxide film thinner than the phosphorus glass film 6,
Phosphorus is diffused into the semiconductor substrate 1 which is the drain region to form the high concentration diffusion layer 11. Next, using the resist and the gate electrode as a mask, the source diffusion region 3 is similarly formed by ion implantation and diffusion of phosphorus. Then, a thick phosphorus-doped oxide film is grown on the entire surface of the semiconductor substrate by CVD. The phosphorus-doped oxide film (PSG) serves as an interlayer insulating film 9 between the gate electrode 5 made of polycrystalline silicon and the metal electrode such as aluminum to be wired thereon. Then, a contact pattern such as a contact to the source diffusion region is opened by photoetching, an aluminum film is formed by aluminum vapor deposition, and a metal electrode 10 or the like of the aluminum film is formed by photoetching to complete the MOSFET.

【0011】[0011]

【発明の効果】本発明においては、ドレイン領域を形成
する半導体基板1の上部に厚いリンガラス膜を有してい
るので、MOSFETの入力容量、帰還容量が減少す
る。又リンガラス膜より半導体基板1のドレイン領域に
+ 型の高濃度拡散層を形成するため、MOSFETの
ON抵抗が減少する。そして厚いゲート絶縁膜をリンガ
ラス膜を使用して形成しているので、上述の構造を実現
する簡単な製造工程が実現された。
According to the present invention, since the thick phosphorus glass film is provided on the semiconductor substrate 1 forming the drain region, the input capacitance and the feedback capacitance of the MOSFET are reduced. Further, since the N + type high-concentration diffusion layer is formed in the drain region of the semiconductor substrate 1 from the phosphor glass film, the ON resistance of the MOSFET is reduced. Since the thick gate insulating film is formed by using the phosphorus glass film, a simple manufacturing process for realizing the above structure was realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の絶縁ゲート形電界効果トラ
ンジスタの製造方法の断面図である。
FIG. 1 is a sectional view of a method for manufacturing an insulated gate field effect transistor according to an embodiment of the present invention.

【図2】従来の絶縁ゲート形電界効果トランジスタの断
面図である。
FIG. 2 is a cross-sectional view of a conventional insulated gate field effect transistor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面にゲート絶縁膜を形成
する工程と、該ゲート絶縁膜上にリンガラス膜を形成
し、ホトエッチにより前記半導体基板のドレイン領域上
にパターンを形成する工程と、該リンガラス膜上に多結
晶シリコン膜を被着し、前記リンガラス膜のパターンを
覆うように、ホトエッチによりゲート電極を形成する工
程と、前記多結晶シリコン膜からなるゲート電極をマス
クとしてP型不純物をデポジションする工程と、熱処理
により該P型不純物を拡散しチャンネル拡散領域を形成
するとともに、前記リンガラス膜よりリンを拡散しドレ
イン領域に高濃度拡散層を形成する工程と、前記多結晶
シリコンからなるゲート電極及びホトレジストをマクス
としてN型不純物を拡散することによりソース拡散領域
を形成する工程と、コンタクト開口を設け金属電極を形
成する工程とからなることを特徴とする絶縁ゲート形電
界効果トランジスタの製造方法。
1. A step of forming a gate insulating film on the surface of a semiconductor substrate, a step of forming a phosphorus glass film on the gate insulating film, and forming a pattern on the drain region of the semiconductor substrate by photoetching, Depositing a polycrystal silicon film on the phosphor glass film, and forming a gate electrode by photoetching so as to cover the pattern of the phosphor glass film; and using the gate electrode made of the polycrystal silicon film as a mask, a P-type impurity And a step of depositing the P-type impurity by heat treatment to form a channel diffusion region, and diffusing phosphorus from the phosphorus glass film to form a high-concentration diffusion layer in the drain region. Forming a source diffusion region by diffusing N-type impurities using the gate electrode and the photoresist made of a mask as masks; And a step of forming a metal electrode to provide a contact opening, and a method of manufacturing an insulated gate field effect transistor.
JP21886591A 1991-08-29 1991-08-29 Manufacture of insulated-gate field-effect transistor Pending JPH0555593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21886591A JPH0555593A (en) 1991-08-29 1991-08-29 Manufacture of insulated-gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21886591A JPH0555593A (en) 1991-08-29 1991-08-29 Manufacture of insulated-gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0555593A true JPH0555593A (en) 1993-03-05

Family

ID=16726524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21886591A Pending JPH0555593A (en) 1991-08-29 1991-08-29 Manufacture of insulated-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0555593A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326316A (en) * 1993-05-13 1994-11-25 Nec Corp Manufacture of semiconductor device
DE19506340A1 (en) * 1994-02-23 1995-08-24 Nissan Motor Sintered alloy used for sliding element in corrosive environments
US5949003A (en) * 1996-04-15 1999-09-07 Nissan Motor Co., Ltd. High-temperature wear-resistant sintered alloy
DE19957323C1 (en) * 1998-05-22 2001-01-25 Hitachi Powdered Metals Wear-resistant sintered alloy production for valve seat of internal combustion engine
US6340377B1 (en) 1999-04-12 2002-01-22 Hitachi Powdered Metals Co., Ltd. High-temperature wear-resistant sintered alloy
JP2006100779A (en) * 2004-09-02 2006-04-13 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
US7572312B2 (en) 2005-06-13 2009-08-11 Hitachi Powdered Metals Co., Ltd. Sintered valve seat and production method therefor
US7892481B2 (en) 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326316A (en) * 1993-05-13 1994-11-25 Nec Corp Manufacture of semiconductor device
DE19506340A1 (en) * 1994-02-23 1995-08-24 Nissan Motor Sintered alloy used for sliding element in corrosive environments
US5529602A (en) * 1994-02-23 1996-06-25 Hitachi Powdered Metals Co., Ltd. Sintered iron alloy resistant to abrasion at high temperature and method of manufacturing the same
DE19506340C2 (en) * 1994-02-23 1999-02-11 Nissan Motor Sintered alloy and method for producing a sintered body therefrom
US5949003A (en) * 1996-04-15 1999-09-07 Nissan Motor Co., Ltd. High-temperature wear-resistant sintered alloy
DE19957323C1 (en) * 1998-05-22 2001-01-25 Hitachi Powdered Metals Wear-resistant sintered alloy production for valve seat of internal combustion engine
US6340377B1 (en) 1999-04-12 2002-01-22 Hitachi Powdered Metals Co., Ltd. High-temperature wear-resistant sintered alloy
JP2006100779A (en) * 2004-09-02 2006-04-13 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
US7572312B2 (en) 2005-06-13 2009-08-11 Hitachi Powdered Metals Co., Ltd. Sintered valve seat and production method therefor
US7892481B2 (en) 2005-10-12 2011-02-22 Hitachi Powdered Metals Co., Ltd. Manufacturing method for wear resistant sintered member, sintered valve seat, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP0094891B1 (en) Method of fabricating a vertical power mosfet structure
JPS60210861A (en) Semiconductor device
JPH0555593A (en) Manufacture of insulated-gate field-effect transistor
JP3113426B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPH03124065A (en) Integrated circuit element
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JP2834058B2 (en) Method for manufacturing semiconductor device
JP3162745B2 (en) Method of manufacturing insulated gate field effect transistor
JPH09102506A (en) Manufacture of semiconductor device
JPS63291473A (en) Manufacture of vertical field-effect transistor
US5595918A (en) Process for manufacture of P channel MOS-gated device
JPS624339A (en) Semiconductor device and manufacture thereof
JPH11186402A (en) Semiconductor device and manufacture of semiconductor
JPH10335643A (en) Manufacture of semiconductor device
JP3703427B2 (en) MOS field effect transistor
JPS6016469A (en) Manufacture of mis semiconductor device
JP3297102B2 (en) Method of manufacturing MOSFET
RU2106719C1 (en) Bicmos device and process of its manufacture
JP2630863B2 (en) Manufacturing method of insulated gate semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPS6155783B2 (en)
JPS6338260A (en) High breakdown strength semiconductor device and manufacture thereof
JPH022170A (en) Manufacture of insulated gate type field effect transistor
JPH08236542A (en) Manufacture of insulated-gate type thyristor
JPS6376470A (en) Manufacture of semiconductor device