JPH06326316A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06326316A
JPH06326316A JP13543593A JP13543593A JPH06326316A JP H06326316 A JPH06326316 A JP H06326316A JP 13543593 A JP13543593 A JP 13543593A JP 13543593 A JP13543593 A JP 13543593A JP H06326316 A JPH06326316 A JP H06326316A
Authority
JP
Japan
Prior art keywords
type
gate
semiconductor device
oxide film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13543593A
Other languages
Japanese (ja)
Other versions
JP2647611B2 (en
Inventor
Nobuyuki Yonetani
伸之 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5135435A priority Critical patent/JP2647611B2/en
Publication of JPH06326316A publication Critical patent/JPH06326316A/en
Application granted granted Critical
Publication of JP2647611B2 publication Critical patent/JP2647611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent the passing-through of impurities when P-type impurities are introduced into a gate polysilicon and improve the characteristics and reliablility of a semiconductor device. CONSTITUTION:In manufacturing a semiconductor device made of a P-type gate polysilicon 5, a gate oxide film 3 is formed on one conductivity type expitaxial layer 2 which is grown on the same conductivity type semiconductor substrate 1 and an N-type impurity layer is formed on the surface of the gate oxide film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に、P型ポリシリコンゲートを有する半導体装
置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device having a P-type polysilicon gate.

【0002】[0002]

【従来の技術】半導体装置の一つとして絶縁ゲート型の
電界効果トランジスタ(いわゆるMOSトランジスタ)
が広く用いられており、ドレインとソースが基板の同一
面上に存在する横型と基板の反対側に存在する縦型とが
ある。前者はLSIなどの回路素子として用いられ、後
者は大電流がとれることからスイッチング素子などに用
いられている。
2. Description of the Related Art As one of semiconductor devices, an insulated gate field effect transistor (so-called MOS transistor) is used.
Are widely used, and there are a horizontal type in which the drain and the source are on the same surface of the substrate and a vertical type in which the drain and the source are on the opposite side of the substrate. The former is used as a circuit element such as an LSI, and the latter is used as a switching element because a large current can be obtained.

【0003】図4は従来の半導体装置の一例として縦型
絶縁ゲート型電界効果トランジスタの製造方法の各製造
工程を示す。
FIG. 4 shows each manufacturing step of a method of manufacturing a vertical insulated gate field effect transistor as an example of a conventional semiconductor device.

【0004】図4(a)に示す製造工程において、P型
基板21上のP型エピタキシャル層22の表面にゲート
酸化膜23を形成する。次に、そのゲート酸化膜23の
上にゲートポリシリコン25を形成した後、フォトリソ
グラフィ技術を用いて窓開けを行う。ゲートポリシリコ
ン25とゲート酸化膜23のエッチングを行った後、ゲ
ートポリシリコン25をマスクとしてN型ベース層26
を形成する。
In the manufacturing process shown in FIG. 4A, a gate oxide film 23 is formed on the surface of the P type epitaxial layer 22 on the P type substrate 21. Next, after forming the gate polysilicon 25 on the gate oxide film 23, a window is formed by using the photolithography technique. After the gate polysilicon 25 and the gate oxide film 23 are etched, the N-type base layer 26 is formed using the gate polysilicon 25 as a mask.
To form.

【0005】続いて図4(b)に示す製造工程におい
て、N型ベース層26の中にレジストをマスクとしてN
+ 層27を形成した後、ゲートポリシリコン25とレジ
ストをマスクとしてイオン打ち込みによりP型ソース層
28を形成すると同時にゲートポリシリコン25へP型
不純物を導入する。その後、さらに全面に層間絶縁膜2
9を形成し、フォトリソグラフィ技術を用いて窓開けを
行った後、アルミ電極30及び裏面電極31を形成す
る。
Subsequently, in a manufacturing process shown in FIG. 4B, the N-type base layer 26 is exposed to N as a mask.
After forming the + layer 27, the P-type source layer 28 is formed by ion implantation using the gate polysilicon 25 and the resist as a mask, and at the same time, P-type impurities are introduced into the gate polysilicon 25. After that, the interlayer insulating film 2 is further formed on the entire surface.
9 is formed, a window is opened by using a photolithography technique, and then an aluminum electrode 30 and a back surface electrode 31 are formed.

【0006】ところで、上記製造方法において、ゲート
ポリシリコン25の中のP型不純物を導入する際P型不
純物がP型基板21へ突き抜けるため、これを防ぐため
に、従来ソース層28を形成した後低温処理したり、ゲ
ートポリシリコン25の中へN型不純物を導入したりす
る方法がとられている。たとえば特開昭63−4886
5に開示された発明では、イオン注入時の注入不純物の
突き抜けを防止する目的でN型不純物を含むポリシリコ
ンを付着させている。また、特開昭58−201369
号においては、ポリシリコン中に不純物を導入せずにポ
リシリコンの粒径をレーザアニール等を使って大きくす
る方法を採用している。
By the way, in the above manufacturing method, when the P-type impurity in the gate polysilicon 25 is introduced, the P-type impurity penetrates into the P-type substrate 21. Therefore, in order to prevent this, the conventional source layer 28 is formed at a low temperature. A method of processing or introducing an N-type impurity into the gate polysilicon 25 is adopted. For example, JP-A-63-4886
In the invention disclosed in No. 5, polysilicon containing N-type impurities is attached for the purpose of preventing penetration of implanted impurities during ion implantation. Also, JP-A-58-201369
In No. 6, a method is adopted in which the grain size of polysilicon is increased by using laser annealing or the like without introducing impurities into polysilicon.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前者の
低温処理化を行なうと、ゲートポリシリコン中のP型不
純物濃度が不均一となり、特性変動の原因となって信頼
性が低下するとともにソースの押し込みが制限され、特
性改善が困難であった。
However, if the former low-temperature treatment is performed, the concentration of P-type impurities in the gate polysilicon becomes non-uniform, which causes characteristic fluctuations and lowers reliability and pushes in the source. Was limited, and it was difficult to improve the characteristics.

【0008】また、後者の方法については本発明者らの
実験によれば、ゲートポリシリコンにあらかじめ1013
cm-2程度のリンをドープした後1000℃以上の熱処理
を行ってもP型不純物の導入後の熱処理が1000℃以
上であればP型不純物の突き抜けが生じており、レーザ
アニール等だけでは十分ではないことが判明した。
According to the experiments conducted by the inventors of the present invention, the latter method is applied to the gate polysilicon in advance of 10 13
Even if a heat treatment is performed at 1000 ° C or higher after doping phosphorus of about cm -2 , if the heat treatment after introducing the P-type impurity is 1000 ° C or higher, P-type impurity penetration occurs, and laser annealing or the like is sufficient. Turned out not to be.

【0009】本発明は上述の点にかんがみてなされたも
ので、絶縁ゲート型半導体装置の製造に当り、ゲートポ
リシリコンにP型不純物を導入する際の不純物の突き抜
けを防ぎ、特性および信頼性を向上することを目的とす
る。
The present invention has been made in view of the above points, and prevents penetration of impurities when introducing P-type impurities into gate polysilicon in manufacturing an insulated gate semiconductor device, thereby improving characteristics and reliability. The purpose is to improve.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明はゲートポリシリコンがP型である絶縁ゲー
ト型半導体装置の製造方法において、一導電型を有する
半導体基板の上に成長させた同一導電型のエピタキシャ
ル層の上にゲート酸化膜を形成し、該ゲート酸化膜の表
面にN型不純物層を形成することを特徴とする。
In order to solve the above problems, the present invention is a method for manufacturing an insulated gate type semiconductor device in which gate polysilicon is P type, which is grown on a semiconductor substrate having one conductivity type. A feature is that a gate oxide film is formed on an epitaxial layer of the same conductivity type, and an N-type impurity layer is formed on the surface of the gate oxide film.

【0011】[0011]

【作用】ゲート酸化膜の表面に形成されるN型不純物層
がP型不純物の突き抜けを阻止する。
The N-type impurity layer formed on the surface of the gate oxide film prevents the P-type impurity from penetrating.

【0012】[0012]

【実施例】以下に本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0013】図1は本発明による半導体装置の製造方法
の各製造工程を示す断面図である。図1に示す実施例は
本発明の方法を縦型絶縁型電界効果トランジスタに適用
したものである。
FIG. 1 is a sectional view showing each manufacturing step of a method of manufacturing a semiconductor device according to the present invention. In the embodiment shown in FIG. 1, the method of the present invention is applied to a vertical insulating field effect transistor.

【0014】図1(a)に示す製造工程において、P型
基板1の上に形成したP型エピタキシャル層2の表面に
ゲート酸化膜3を形成する。この酸化膜3の表面にN型
不純物4を導入する。この際の導入方法として、イオン
注入技術やランプアニール法等が考えられるが、酸化膜
の表面にN型不純物が導入可能ならば特にその方法は問
わない。
In the manufacturing process shown in FIG. 1A, a gate oxide film 3 is formed on the surface of the P type epitaxial layer 2 formed on the P type substrate 1. N-type impurities 4 are introduced into the surface of the oxide film 3. As the introduction method at this time, an ion implantation technique, a lamp annealing method, or the like is conceivable, but the method is not particularly limited as long as N-type impurities can be introduced into the surface of the oxide film.

【0015】次に図1(b)に示す製造工程において、
酸化膜3の上にゲートポリシリコン5を形成し、フォト
リソグラフィ技術を用いて窓開けを行った後ゲートポリ
シリコン5をマスクとしてN型ベース層6を形成する。
次に、N型ベース層6の中にN+ 層7を形成した後、ゲ
ートポリシリコン5をマスクとしてP型ソース層8を形
成する。
Next, in the manufacturing process shown in FIG.
A gate polysilicon 5 is formed on the oxide film 3, a window is opened using a photolithography technique, and then an N-type base layer 6 is formed using the gate polysilicon 5 as a mask.
Next, after forming the N + layer 7 in the N-type base layer 6, the P-type source layer 8 is formed using the gate polysilicon 5 as a mask.

【0016】続いて図1(c)に示す製造工程におい
て、全面に層間絶縁膜9を形成した後、フォトリソグラ
フィ技術を用いて窓開けを行った後、アルミ電極10及
び裏面電極11を形成する。
Subsequently, in a manufacturing process shown in FIG. 1C, an interlayer insulating film 9 is formed on the entire surface, a window is opened using a photolithography technique, and then an aluminum electrode 10 and a back surface electrode 11 are formed. .

【0017】図2はこうして製造されたトランジスタの
特にN型不純物導入部分を拡大して示す模式断面図であ
る。
FIG. 2 is a schematic cross-sectional view showing, in an enlarged manner, an N-type impurity introduced portion of the transistor thus manufactured.

【0018】図2からわかるように、酸化膜3の中のN
型不純物層12を示している。酸化膜3のゲートポリシ
リコン5との界面近くに導入されたN型不純物(斜線で
示す)はその後の熱処理によりゲートポリシリコン5中
に拡散していき、最終的にはゲートポリシリコン5およ
び酸化膜3とゲートポリシリコン5との界面にN型不純
物層を形成する。これによりその後の工程でゲートポリ
シリコン5に導入するP型不純物がゲートポリシリコン
5を突き抜けるのを防ぐことができる。N型不純物の濃
度は高いほどP型不純物の突き抜けを良好に防ぐことが
できるが、実験によれば約1014〜1015 cm-2 が適当
である。
As can be seen from FIG. 2, N in the oxide film 3 is
The type impurity layer 12 is shown. The N-type impurities (shown by diagonal lines) introduced near the interface of the oxide film 3 with the gate polysilicon 5 diffuse into the gate polysilicon 5 by the subsequent heat treatment, and finally, the gate polysilicon 5 and the oxide are oxidized. An N-type impurity layer is formed at the interface between the film 3 and the gate polysilicon 5. This can prevent P-type impurities introduced into gate polysilicon 5 from penetrating through gate polysilicon 5 in the subsequent step. The higher the concentration of the N-type impurity, the better the penetration of the P-type impurity can be prevented. However, according to the experiment, about 10 14 to 10 15 cm −2 is suitable.

【0019】これにより、ゲートポリシリコン5へP型
不純物を導入した後の工程で行なう押し込みを高温長時
間化することが可能となる。発明者らの実験によれば、
この押し込み工程をそれまでの900℃、15分から9
00℃、90分としたところ、約10%のオン抵抗(ゲ
ートにある一定電圧をかけたときのドレインとソース間
の抵抗)が改善された。また、信頼性の指標となる特性
変動についても、製造直後と1000時間後の伝達アド
ミタンス(gmまたはYFS)の変化率が従来の−25
%(平均)から−9. 2%(平均)まで改善された。
As a result, it becomes possible to increase the temperature and duration of the indentation performed in the step after introducing the P-type impurity into the gate polysilicon 5. According to the experiments by the inventors,
This pushing process is performed at 900 ℃ for 15 minutes to 9 minutes.
When the temperature was set to 00 ° C. for 90 minutes, the on-resistance (the resistance between the drain and the source when a certain voltage was applied to the gate) was improved by about 10%. Also, regarding the characteristic variation that is an index of reliability, the rate of change in transmission admittance (gm or YFS) immediately after manufacturing and after 1000 hours is -25 of the conventional level.
% (Average) to -9.2% (average).

【0020】図3は本発明による半導体装置の製造方法
の別の実施例を示す。
FIG. 3 shows another embodiment of the method of manufacturing a semiconductor device according to the present invention.

【0021】図3に示す実施例は本発明の方法を横型絶
縁ゲート型電界効果トランジスタに適用したものであ
り、3は酸化膜、5はゲートポリシリコン、9は層間絶
縁層、13はドレイン電極、14はソース電極、15は
N型基板、16はP型ソース層、17はP型ドレイン
層、19は素子分離用酸化膜である。なお、製造工程は
よく知られているので特に示さないが、酸化膜3にN型
不純物を導入することは図1に示した第1の実施例と同
じである。
In the embodiment shown in FIG. 3, the method of the present invention is applied to a lateral insulated gate field effect transistor, 3 is an oxide film, 5 is gate polysilicon, 9 is an interlayer insulating layer, and 13 is a drain electrode. , 14 is a source electrode, 15 is an N-type substrate, 16 is a P-type source layer, 17 is a P-type drain layer, and 19 is an element isolation oxide film. Although the manufacturing process is well known, it is not shown here, but the introduction of N-type impurities into the oxide film 3 is the same as in the first embodiment shown in FIG.

【0022】上記第1の実施例は、ゲートポリシリコン
5がP型である半導体装置において、P導電型を有する
半導体基板1の上に成長させたP導電型のエピタキシャ
ル層2の上にゲート酸化膜3を形成し、該ゲート酸化膜
3の表面にN型不純物層12を形成する場合について説
明したが、N型半導体基板1上のN型のエピタキシャル
層の上にゲート酸化膜を形成した後、P型のゲートポリ
シリコンを形成する半導体装置の製造方法にも同様に適
用することができる。
In the first embodiment, in the semiconductor device in which the gate polysilicon 5 is P type, gate oxidation is performed on the P conductive type epitaxial layer 2 grown on the semiconductor substrate 1 having P conductive type. The case where the film 3 is formed and the N-type impurity layer 12 is formed on the surface of the gate oxide film 3 has been described, but after the gate oxide film is formed on the N-type epitaxial layer on the N-type semiconductor substrate 1. Can be similarly applied to a method of manufacturing a semiconductor device in which P-type gate polysilicon is formed.

【0023】[0023]

【発明の効果】以上説明したように、本発明の絶縁ゲー
ト型半導体装置の製造方法によれば、ゲートポリシリコ
ンにP型不純物を導入するに先立ってゲート酸化膜にN
型不純物を導入することにより、その後の工程で導入さ
れるP型不純物の突き抜けを押さえることができ、特性
面では約10%のオン抵抗改善、信頼性面では特性変動
を従来の−25%(平均)から−9. 2%(平均)まで
改善することができるという優れた効果が得られる。
As described above, according to the method of manufacturing an insulated gate semiconductor device of the present invention, the N-type oxide film is formed on the gate oxide film before introducing the P-type impurity into the gate polysilicon.
By introducing the type impurity, it is possible to suppress the penetration of the P type impurity introduced in the subsequent process, improve the on-resistance by about 10% in terms of characteristics, and reduce the characteristic variation by -25% (compared to the conventional level) in terms of reliability. The excellent effect of being able to improve from (average) to -9.2% (average) is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の製造方法の各製造工
程を示す断面図である。
FIG. 1 is a cross-sectional view showing each manufacturing step of a method for manufacturing a semiconductor device according to the present invention.

【図2】N型不純物導入部分を拡大して示す模式断面図
である。
FIG. 2 is a schematic sectional view showing an N-type impurity introduced portion in an enlarged manner.

【図3】本発明による半導体装置の製造方法の別の実施
例を示す断面図である。
FIG. 3 is a cross-sectional view showing another embodiment of the method for manufacturing a semiconductor device according to the present invention.

【図4】従来の半導体装置の製造方法の各製造工程を示
す断面図である。
FIG. 4 is a cross-sectional view showing each manufacturing step of a conventional semiconductor device manufacturing method.

【符号の説明】[Explanation of symbols]

1 P型基板 2 P型エピタキシャル層 3 酸化膜 4 N型不純物 5 ゲートポリシリコン 6 N型ベース層 7 N+ 層 8、16 P型ソース層 9 層間絶縁膜 10 アルミ電極 11 裏面電極 12 N型不純物層 13 ドレイン電極 14 ソース電極 15 N型基板 17 P型ドレイン層1 P-type substrate 2 P-type epitaxial layer 3 Oxide film 4 N-type impurity 5 Gate polysilicon 6 N-type base layer 7 N + layer 8, 16 P-type source layer 9 Interlayer insulating film 10 Aluminum electrode 11 Backside electrode 12 N-type impurity Layer 13 Drain electrode 14 Source electrode 15 N-type substrate 17 P-type drain layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゲートポリシリコンがP型である半導体
装置の製造方法において、一導電型を有する半導体基板
の上に成長させた同一導電型のエピタキシャル層の上に
ゲート酸化膜を形成し、該ゲート酸化膜の表面にN型不
純物層を形成することを特徴とする半導体装置の製造方
法。
1. A method of manufacturing a semiconductor device in which gate polysilicon is P-type, wherein a gate oxide film is formed on an epitaxial layer of the same conductivity type grown on a semiconductor substrate having one conductivity type, A method of manufacturing a semiconductor device, comprising forming an N-type impurity layer on the surface of a gate oxide film.
【請求項2】 前記半導体基板がP型である請求項1に
記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is P-type.
JP5135435A 1993-05-13 1993-05-13 Semiconductor device Expired - Lifetime JP2647611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5135435A JP2647611B2 (en) 1993-05-13 1993-05-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5135435A JP2647611B2 (en) 1993-05-13 1993-05-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH06326316A true JPH06326316A (en) 1994-11-25
JP2647611B2 JP2647611B2 (en) 1997-08-27

Family

ID=15151659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5135435A Expired - Lifetime JP2647611B2 (en) 1993-05-13 1993-05-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2647611B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351626A (en) * 2005-06-13 2006-12-28 Toshiba Corp Semiconductor device and its manufacturing method
WO2011101955A1 (en) * 2010-02-16 2011-08-25 トヨタ自動車株式会社 Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021982A (en) * 1988-06-10 1990-01-08 Nec Corp Mis type semiconductor integrated circuit device
JPH02174168A (en) * 1988-12-26 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Mis field effect transistor
JPH02206174A (en) * 1989-02-06 1990-08-15 Fuji Electric Co Ltd P-channel insulated-gate bipolar transistor
JPH04157766A (en) * 1990-10-20 1992-05-29 Sony Corp Manufacture of silicon gate p-channel mos semiconductor device
JPH0555593A (en) * 1991-08-29 1993-03-05 Sanyo Electric Co Ltd Manufacture of insulated-gate field-effect transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021982A (en) * 1988-06-10 1990-01-08 Nec Corp Mis type semiconductor integrated circuit device
JPH02174168A (en) * 1988-12-26 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Mis field effect transistor
JPH02206174A (en) * 1989-02-06 1990-08-15 Fuji Electric Co Ltd P-channel insulated-gate bipolar transistor
JPH04157766A (en) * 1990-10-20 1992-05-29 Sony Corp Manufacture of silicon gate p-channel mos semiconductor device
JPH0555593A (en) * 1991-08-29 1993-03-05 Sanyo Electric Co Ltd Manufacture of insulated-gate field-effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351626A (en) * 2005-06-13 2006-12-28 Toshiba Corp Semiconductor device and its manufacturing method
JP4703277B2 (en) * 2005-06-13 2011-06-15 株式会社東芝 Manufacturing method of semiconductor device
WO2011101955A1 (en) * 2010-02-16 2011-08-25 トヨタ自動車株式会社 Semiconductor device
US8735974B2 (en) 2010-02-16 2014-05-27 Toyota Jidosha Kabushiki Kaisha Semiconductor devices

Also Published As

Publication number Publication date
JP2647611B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US5665646A (en) Method for manufacturing semiconductor device with low electric resistance silicide layer on silicon surface
KR100268979B1 (en) Method of fabricating semiconductor shallow junction and method of fabricating fet having shallow source and drain
JPS5932172A (en) Integrated circuit made of schottky barrier mos device and method of producing same
JPH0523055B2 (en)
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
US5015593A (en) Method of manufacturing semiconductor device
US5821172A (en) Oxynitride GTE dielectrics using NH3 gas
JPH0638496B2 (en) Semiconductor device
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
JP2006508548A (en) Field effect transistor drain / source extension structure with doped high-k sidewall spacers
KR920009372B1 (en) Manufacturing method of semiconductor device
JPH10214888A (en) Manufacture of semiconductor device
JP2647611B2 (en) Semiconductor device
JP2794594B2 (en) Semiconductor device manufacturing method
JPS62229880A (en) Semiconductor device and manufacture thereof
JPH05206454A (en) Manufacture of mis-type semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JP2586000B2 (en) Method for manufacturing semiconductor device
JPH0444432B2 (en)
JP2808945B2 (en) Method of manufacturing vertical MOS field effect transistor
JPH0682668B2 (en) Method for manufacturing semiconductor device
JPS6331944B2 (en)
JP2626485B2 (en) Method for manufacturing semiconductor device
KR100192364B1 (en) Method of manufacturing mosfet
KR20010003692A (en) Method of fabricating semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970410