JPH0444432B2 - - Google Patents

Info

Publication number
JPH0444432B2
JPH0444432B2 JP58175463A JP17546383A JPH0444432B2 JP H0444432 B2 JPH0444432 B2 JP H0444432B2 JP 58175463 A JP58175463 A JP 58175463A JP 17546383 A JP17546383 A JP 17546383A JP H0444432 B2 JPH0444432 B2 JP H0444432B2
Authority
JP
Japan
Prior art keywords
region
opening
forming
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58175463A
Other languages
Japanese (ja)
Other versions
JPS6066862A (en
Inventor
Daisuke Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP58175463A priority Critical patent/JPS6066862A/en
Publication of JPS6066862A publication Critical patent/JPS6066862A/en
Publication of JPH0444432B2 publication Critical patent/JPH0444432B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は縦型MOSFETの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a vertical MOSFET.

従来例の構成とその問題点 近年、縦型MOSFETは、電力用として用いら
れ始めている。その中でも二重拡散型縦型
MOSFET(以下VDMOSFETと記す。)は、最も
多く製造されてきている。
Conventional configurations and their problems In recent years, vertical MOSFETs have begun to be used for power applications. Among them, double diffused vertical type
MOSFETs (hereinafter referred to as VDMOSFETs) are the most widely manufactured.

第1図に従来のnチヤンネルVDMOSFETの
断面構造を示す。
FIG. 1 shows the cross-sectional structure of a conventional n-channel VDMOSFET.

このnチヤンネルVDMOSFETは、n+半導体
基板1上のn-エピタキシヤル層2内に形成され、
電流は下部ドレイン1よりバツクゲート層3の横
方向拡散によつて形成されたチヤネルを通つて上
部ソース領域4へ流れる。また逆バイアス時に
は、n-バツフア層2中に空乏層が拡がり、印加
された電圧を支える。ソース電極7は、バツクゲ
ート層3と同電位になるように、上部ソース領域
4を貫通して下部バツクゲート層3に達する深さ
に基板を蝕刻し、同蝕刻部に電気的接続を行なう
場合が多い。しかしながら、蝕刻する場合、蝕刻
の制御が難しくソース領域4を完全に貫通するこ
とを目標として蝕刻すると、しばしばバツクゲー
ト層3を必要以上に蝕刻する、いわゆる、オーバ
ーエツチングになることがあり、ソース・ドレイ
ン間のリーク電流が生じるようになる場合があ
る。また、このようなオーバーエツチングの影響
を受けないように、予め深く高濃度のバツクゲー
ト層3を形成しておく場合は、マスク合わせの工
程数が増加する。尚、第1図において、5は酸化
膜、6はゲート電極である。
This n-channel VDMOSFET is formed in an n - epitaxial layer 2 on an n + semiconductor substrate 1,
Current flows from the lower drain 1 to the upper source region 4 through a channel formed by lateral diffusion of the back gate layer 3. Further, during reverse bias, a depletion layer expands in the n - buffer layer 2 to support the applied voltage. The source electrode 7 is often etched into the substrate to a depth that penetrates the upper source region 4 and reaches the lower back gate layer 3 so that it has the same potential as the back gate layer 3, and an electrical connection is made to the etched portion. . However, when etching, it is difficult to control the etching, and when etching is performed with the goal of completely penetrating the source region 4, the back gate layer 3 is often etched more than necessary, so-called over-etching. A leakage current may occur between the two. Furthermore, if a deep, highly-concentrated back gate layer 3 is formed in advance so as not to be affected by such overetching, the number of mask alignment steps increases. In FIG. 1, 5 is an oxide film and 6 is a gate electrode.

発明の目的 本発明は、上記欠点に鑑み、工程数を増すこと
なく拡散を行なう前に高濃度のバツクゲート層と
なる領域を階段状に深く形成することのできる縦
型MOSFETの製造法を提供するものである。
Purpose of the Invention In view of the above-mentioned drawbacks, the present invention provides a method for manufacturing a vertical MOSFET that can form a step-like deep region that will become a highly doped back gate layer before performing diffusion without increasing the number of steps. It is something.

発明の構成 この目的を達成するため、本発明は、単一のマ
スク工程の複数の選択的エツチング工程とを用い
ることによつて、高濃度のバツクゲート層を、二
重拡散が行なわれる前に、予め自己整合的に階段
状で深く形成する工程をそなえているものであ
る。
SUMMARY OF THE INVENTION To achieve this objective, the present invention provides a highly doped backgate layer by using multiple selective etching steps in a single mask step, before double diffusion is performed. This method includes a step of forming the step in advance in a stepwise manner in a self-aligned manner.

実施例の説明 以下、本発明の一実施例について、図面を参照
しながら説明する。第2図は本発明の縦型
MOFETの製造方法の一実施例を示す工程順の断
面図である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Figure 2 shows the vertical type of the present invention.
FIG. 2 is a cross-sectional view of the process order showing an example of a method for manufacturing a MOFET.

まず、n-/n+エピタキシヤルシリコン基板、
すなわち、n+シリコン基板11上のn-エピタキ
シヤル層12に酸化膜13を1000Åの厚さに成長
させ、ポリシリコン膜14を4000Åの厚さに減圧
CVDを用いて成長させ、リンをポリシリコン膜
14に拡散させた後、Si3N4膜15を減圧CVD法
によつて2000Åの厚さに成長させる(第2図a)。
次に、Si3N4膜15、ポリシリコン膜14、酸化
膜13の三層を連続して、例えば反応性イオンエ
ツチングを用いてエツチングして、これら三層を
貫通する第1の開孔部を設け、この開孔を通じ
て、ボロンを例えば1×1015ドーズ、100KeVで
イオン注入し、アニールおよび拡散のために熱処
理して拡散層16を形成する(第2図b)。この
後、Si3N4膜15を残したままで、ポリシリコン
膜14のみに対して、例えば約100℃のエチレン
ジアミン液でエツチングすることにより、第1の
開孔部から側面エツチを行い、第2の開孔部を形
成する(第2図c)。
First, an n - /n + epitaxial silicon substrate,
That is, the oxide film 13 is grown to a thickness of 1000 Å on the n - epitaxial layer 12 on the n + silicon substrate 11, and the polysilicon film 14 is depressurized to a thickness of 4000 Å.
After growing using CVD and diffusing phosphorus into the polysilicon film 14, a Si 3 N 4 film 15 is grown to a thickness of 2000 Å by low pressure CVD (FIG. 2a).
Next, the three layers of the Si 3 N 4 film 15, the polysilicon film 14, and the oxide film 13 are sequentially etched using, for example, reactive ion etching to form a first opening that passes through these three layers. Through this opening, boron is ion-implanted at a dose of, for example, 1×10 15 at 100 KeV, and heat treated for annealing and diffusion to form a diffusion layer 16 (FIG. 2b). Thereafter, while leaving the Si 3 N 4 film 15, only the polysilicon film 14 is etched with, for example, an ethylene diamine solution at about 100°C, so that the side surface is etched from the first opening, and the second opening is etched. (Fig. 2c).

そして、Si3N4膜15を熱リン酸等で除去した
後、例えばボロンを7×1013ドーズ、100KeVで
イオン注入することでP型バツクゲート層17を
横方向に広くし、これにより、階段状のバツクゲ
ート層を形成、ついで、ヒ素を、例えば2×
1013、40KeVでイオン注入して、所定の熱処理に
よりソース領域18を形成する。なお、この熱処
理過程で酸化膜13を基板の露出部上に1000Å程
度の厚さに成長させる(第2図d)。
After removing the Si 3 N 4 film 15 with hot phosphoric acid or the like, the P-type back gate layer 17 is widened in the lateral direction by, for example, boron ion implantation at a dose of 7×10 13 at 100 KeV. Form a back gate layer of
The source region 18 is formed by ion implantation at 10 13 and 40 KeV and by a predetermined heat treatment. Incidentally, during this heat treatment process, an oxide film 13 is grown to a thickness of about 1000 Å on the exposed portion of the substrate (FIG. 2d).

つぎに、再び、酸化膜13に開孔を設け、この
開孔を通して、反応性イオンエツチング法等を用
いてソース領域18を貫通してP+拡散層17に
達するまでエツチングして第3の開孔部を形成
し、この第3の開孔部にAlをスパツタリングに
より形成してソース電極19を設け、n+領域1
8とP+領域16との両者に同時に電気的接続を
行なう(第2図e)。
Next, an opening is formed in the oxide film 13 again, and through this opening, the source region 18 is etched using a reactive ion etching method or the like until it reaches the P + diffusion layer 17, thereby forming a third opening. A hole is formed, Al is formed in this third hole by sputtering to provide a source electrode 19, and the n + region 1
8 and P + region 16 at the same time (FIG. 2e).

これにより、n+基板11をドレイン領域とし、
n-エピタキシヤル層12をバツフア領域、n+
域18をソース領域とし、さらに、ポリシリコン
膜14をゲートとするVDMOSFETが完成され
る。
As a result, the n + substrate 11 is used as a drain region,
A VDMOSFET is completed in which the n - epitaxial layer 12 is used as a buffer region, the n + region 18 is used as a source region, and the polysilicon film 14 is used as a gate.

以上のようにして構成されたVDMOSFETは、
基板上の拡散領域そのものをエツチングすること
で、ソース領域18とバツクゲート領域17とが
同時に電気的接続されている。この場合のエツチ
ングは、多少深めにエツチングした場合でも、
P+層17に深い拡散領域16があるため、n-
ピタキシヤル層12のドレイン側と電気的短絡を
起こさない。また、ソース領域およびバツクゲー
ト層は、それぞれ、単一のマスク工程で自己整合
的に形成されているために工程数を増加させるこ
とがない。
The VDMOSFET configured as above is
By etching the diffusion region itself on the substrate, the source region 18 and back gate region 17 are electrically connected at the same time. In this case, even if the etching is slightly deeper,
Since the P + layer 17 has the deep diffusion region 16, no electrical short circuit occurs with the drain side of the n - epitaxial layer 12. Further, since the source region and the back gate layer are each formed in a self-aligned manner by a single mask process, there is no need to increase the number of process steps.

尚、本実施例はnチヤンネルVDMOSFETに
ついて述べたものであるが、縦型VMOSFETや
PチヤンネルVDMOSFETについても同様の製
造工程が適用できるのは言うまでもない。
Although this embodiment describes an n-channel VDMOSFET, it goes without saying that the same manufacturing process can be applied to vertical VMOSFETs and P-channel VDMOSFETs.

発明の効果 以上のように本発明によれば、単一のマスク工
程および複数の選択的エツチング工程とによつ
て、二重拡散を行う前に、バツクゲート層に階段
状で深い拡散領域を自己整合的に形成することが
でき、工程数を増加させることなくソースとドレ
インとの短絡の起こりにくい縦型MOSFETを製
造することができる。
Effects of the Invention As described above, according to the present invention, a step-like deep diffusion region is self-aligned in the back gate layer by a single mask process and a plurality of selective etching processes before double diffusion is performed. It is possible to manufacture a vertical MOSFET that is less prone to shorting between the source and drain without increasing the number of steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のVDMOSFETの断面図、第2
図a〜eは本発明の一実施例の工程順断面図であ
る。 11……n+層(ドレイン領域)、12……n-
ピタキシヤル層(バツフア領域)、13……酸化
膜、14……ポリシリコン膜(ゲート電極)、1
5……Si3N4膜、16……P+拡散層、17……P
型層(バツクゲート領域)、18……n+層(ソー
ス領域)、19……Al電極(ソース電極)。
Figure 1 is a cross-sectional view of a conventional VDMOSFET, Figure 2 is a cross-sectional view of a conventional VDMOSFET.
Figures a to e are cross-sectional views in the order of steps of an embodiment of the present invention. 11... n + layer (drain region), 12... n - epitaxial layer (buffer region), 13... oxide film, 14... polysilicon film (gate electrode), 1
5...Si 3 N 4 film, 16...P + diffusion layer, 17...P
Type layer (back gate region), 18...n + layer (source region), 19...Al electrode (source electrode).

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型の半導体基板上に酸化膜、導電膜お
よび絶縁膜の三層を順次形成する工程と、前記酸
化膜、導電膜および絶縁膜にこれらを貫通する第
1の開孔部を穿設する工程と、前記第1の開孔部
を通して前記半導体基板に、反対導電型の不純物
を導入して、第1の領域を形成する工程と、前記
導電膜をサイドエツチして前記導電膜の開孔径を
前記第1の領域の径よりも大きくする第2の開孔
部形成工程と、前記絶縁膜を除去する工程と、前
記第2の開孔部を通じて前記半導体基板に、反対
導電型の不純物を導入して前記第1の領域より径
大な第2の領域を形成する工程と、前記第1の領
域および前記第2の領域内に、前記半導体基板と
同一導電型の不純物を導入して、前記第2の領域
より径小な第3の領域を形成する工程と、前記第
3の領域を貫通して前記第2の領域に達する第3
の開孔部を形成する工程と、前記第3の開孔部に
金属層を設けて、前記第2および第3の各領域に
接触した電極を形成する工程とをそなえた縦型
MOSFETの製造方法。
1 Step of sequentially forming three layers of an oxide film, a conductive film, and an insulating film on a semiconductor substrate of one conductivity type, and forming a first hole penetrating the oxide film, the conductive film, and the insulating film. a step of introducing an impurity of an opposite conductivity type into the semiconductor substrate through the first opening to form a first region; and a step of side etching the conductive film to increase the diameter of the opening in the conductive film. a step of forming a second opening to make the diameter larger than the diameter of the first region; a step of removing the insulating film; and a step of introducing an impurity of an opposite conductivity type into the semiconductor substrate through the second opening. introducing an impurity having the same conductivity type as the semiconductor substrate into the first region and the second region, forming a second region having a diameter larger than the first region; forming a third region smaller in diameter than the second region; and a third region penetrating the third region to reach the second region.
and forming an electrode in contact with each of the second and third regions by providing a metal layer in the third opening.
MOSFET manufacturing method.
JP58175463A 1983-09-22 1983-09-22 Manufacture of semiconductor device Granted JPS6066862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175463A JPS6066862A (en) 1983-09-22 1983-09-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175463A JPS6066862A (en) 1983-09-22 1983-09-22 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6066862A JPS6066862A (en) 1985-04-17
JPH0444432B2 true JPH0444432B2 (en) 1992-07-21

Family

ID=15996500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175463A Granted JPS6066862A (en) 1983-09-22 1983-09-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6066862A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748103A (en) * 1986-03-21 1988-05-31 Advanced Power Technology Mask-surrogate semiconductor process employing dopant protective region
JPH0783122B2 (en) * 1988-12-01 1995-09-06 富士電機株式会社 Method for manufacturing semiconductor device
JPH0334376A (en) * 1989-06-29 1991-02-14 Nec Corp Manufacture of vertical type field effect transistor
CN112701151B (en) * 2019-10-23 2022-05-06 株洲中车时代电气股份有限公司 SiC MOSFET device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6066862A (en) 1985-04-17

Similar Documents

Publication Publication Date Title
US6043126A (en) Process for manufacture of MOS gated device with self aligned cells
US4925807A (en) Method of manufacturing a semiconductor device
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
KR100650901B1 (en) Metal oxide semiconductor transistor having buried gate
US6800528B2 (en) Method of fabricating LDMOS semiconductor devices
JPH0444432B2 (en)
KR100257074B1 (en) Mosfet and method for manufacturing the same
JPH04287332A (en) Manufacture of semiconductor element
KR100537096B1 (en) Method for fabricating vertical transistor
JP2550691B2 (en) Method for manufacturing semiconductor device
JPH0661482A (en) Mos-type transistor and its manufacture
EP0817247A1 (en) Process for the fabrication of integrated circuits with contacts self-aligned to active areas
JPH0485968A (en) Mos semiconductor device and manufacture thereof
JPS60226168A (en) Complementary mos semiconductor device
JP3253712B2 (en) Method for manufacturing semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JP2948892B2 (en) Mos field-effect transistor and its manufacture
KR100487503B1 (en) A semiconductor device and method of fabricating the same
JP3108927B2 (en) Method for manufacturing semiconductor device
KR20040082967A (en) Manufacturing method of semiconductor device
JPH06326316A (en) Manufacture of semiconductor device
JPH0335533A (en) Manufacture of semiconductor device
JPH11224945A (en) Semiconductor device
JPS63307778A (en) Manufacture of semiconductor device
JPH04354328A (en) Production of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees