JPH04287332A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH04287332A
JPH04287332A JP7689391A JP7689391A JPH04287332A JP H04287332 A JPH04287332 A JP H04287332A JP 7689391 A JP7689391 A JP 7689391A JP 7689391 A JP7689391 A JP 7689391A JP H04287332 A JPH04287332 A JP H04287332A
Authority
JP
Japan
Prior art keywords
layer
ion
semiconductor substrate
conductivity type
amorphous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7689391A
Other languages
Japanese (ja)
Other versions
JP2997791B2 (en
Inventor
Akira Tanaka
陽 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP3076893A priority Critical patent/JP2997791B2/en
Publication of JPH04287332A publication Critical patent/JPH04287332A/en
Application granted granted Critical
Publication of JP2997791B2 publication Critical patent/JP2997791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce crystal defect, decrease reverse bias leak current, and improve the withstand voltage of a junction, in the manufacturing method of a semiconductor device. CONSTITUTION:An amorphous layer 14 is formed on both sides of a gate 13 formed on a first conductivity type semiconductor substrate 11 via a gate insulating film 12, by ion-implanting first impurities, which are innert and exert no influence upon the electric characteristics of a semiconductor device 1, in the upper layer of a semiconductor substrate 11. After second conductivity type impurities are ion-implanted in the amorphous layer 14, second impurities composed of one or more kinds out of carbon, nitrogen, oxygen and fluorine are ion-implanted in a crystal defect layer 15 generated on the substrate 11 side from the interface of the amorphous layer 14 and the substrate 11. Then the substrate 11 is heat-treated, and the second impurities are diffused. Thus the crystal defect layer 15 is reduced. At the same time, source drain diffusion layers 17, 18 are formed by diffusing the second conductivity type impurities, and the amorphous layer 14 is single-crystallized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、MOS型トランジスタ
等の半導体素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing semiconductor devices such as MOS transistors.

【0002】0002

【従来の技術】半導体装置は半導体基板に対して横方向
の微細化されるとともに縦方向の微細化される。縦方向
に微細化して、ソース・ドレイン拡散層と半導体基板と
のP+ N接合の深さを浅く形成する方法を図3の製造
工程図により説明する。図ではPチャネル形のトランジ
スタよりなる半導体装置30の製造方法を説明する。ま
ず、N形の半導体基板31の上面にゲート絶縁膜32を
形成する。続いてゲート絶縁膜32の上面にゲート33
を形成する。次いでゲート絶縁膜32を通してゲート3
3の両側で半導体基板31の上層に、半導体基板31に
対して不活性なイオンとしてシリコン(Si+ )等の
不純物をイオン注入する。そして半導体基板31の上層
を非晶質化して、非晶質層34を形成する。このとき、
非晶質層34と半導体基板31との界面よりも半導体基
板31側に結晶欠陥層35が発生する。
2. Description of the Related Art Semiconductor devices have been miniaturized both horizontally and vertically with respect to a semiconductor substrate. A method of forming a shallow P+N junction between the source/drain diffusion layer and the semiconductor substrate by vertically miniaturizing the semiconductor substrate will be explained with reference to the manufacturing process diagram of FIG. In the figure, a method of manufacturing a semiconductor device 30 made of a P-channel transistor will be described. First, a gate insulating film 32 is formed on the upper surface of an N-type semiconductor substrate 31 . Subsequently, a gate 33 is placed on the upper surface of the gate insulating film 32.
form. Next, the gate 3 is passed through the gate insulating film 32.
Impurities such as silicon (Si+) are ion-implanted into the upper layer of the semiconductor substrate 31 on both sides of the semiconductor substrate 31 as ions inactive to the semiconductor substrate 31. Then, the upper layer of the semiconductor substrate 31 is made amorphous to form an amorphous layer 34. At this time,
A crystal defect layer 35 is generated closer to the semiconductor substrate 31 than the interface between the amorphous layer 34 and the semiconductor substrate 31.

【0003】次いで、非晶質層34にP形の不純物とし
てフッ化ホウ素イオン(BF2 + )をイオン注入し
て、非晶質層34にP形のイオン注入層36を形成する
Next, boron fluoride ions (BF2 + ) are ion-implanted as P-type impurities into the amorphous layer 34 to form a P-type ion-implanted layer 36 in the amorphous layer 34 .

【0004】その後ランプアニール処理を行って、非晶
質層(2点鎖線部分)34を単結晶化する。それととも
にP形のイオン注入層(破線部分)36中のホウ素(B
)を活性化して非晶質層34よりも深く拡散し、P+ 
ソース・ドレイン拡散層37,38を形成する。このソ
ース・ドレイン拡散層37,38は結晶欠陥層35を含
む状態に形成される。
[0004] Thereafter, a lamp annealing process is performed to convert the amorphous layer (double-dashed line) 34 into a single crystal. At the same time, boron (B
) is activated and diffused deeper than the amorphous layer 34, and P+
Source/drain diffusion layers 37 and 38 are formed. The source/drain diffusion layers 37 and 38 are formed to include a crystal defect layer 35.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記半
導体装置の製造方法では、結晶欠陥層が深さ方向に幅を
有して存在するために、ソース・ドレイン拡散層中に全
ての結晶欠陥層を含ませることが困難である。このため
、結晶欠陥層の結晶欠陥が接合空乏層に掛かって逆バイ
アスリーク電流を十分に低減できない。この結果、リー
ク電流が生じて接合の耐圧は非常に低下する。本発明は
、上記課題を解決するためになされたもので、耐圧特性
に優れた半導体装置の製造方法を提供することを目的と
する。
[Problems to be Solved by the Invention] However, in the above method for manufacturing a semiconductor device, since the crystal defect layer exists with a width in the depth direction, it is difficult to completely eliminate all the crystal defect layers in the source/drain diffusion layer. Difficult to include. For this reason, crystal defects in the crystal defect layer are applied to the junction depletion layer, making it impossible to sufficiently reduce reverse bias leakage current. As a result, leakage current occurs and the breakdown voltage of the junction is significantly reduced. The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device having excellent breakdown voltage characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものである。すなわち、第1導電
形の半導体基板の上面にゲート絶縁膜を介して形成した
ゲートの両側で半導体基板の上層に半導体装置の電気的
特性に影響を与えない不活性な第1の不純物をイオン注
入して非晶質層を形成する。次いで、非晶質層の深さよ
りも浅い位置で当該非晶質層に第2導電形の不純物をイ
オン注入する。続いて非晶質層と半導体基板との界面よ
りも半導体基板側に発生する転移等の結晶欠陥層に炭素
,窒素,酸素またはフッ素等のうちの1種または複数種
の第2の不純物をイオン注入する。その後半導体基板を
熱処理し、第2の不純物を拡散して結晶欠陥層の結晶欠
陥を低減させるとともに第2導電形の不純物を拡散して
ソース・ドレイン拡散層を形成し、かつ非晶質層を単結
晶化する。
[Means for Solving the Problems] The present invention has been made to achieve the above objects. That is, an inert first impurity that does not affect the electrical characteristics of the semiconductor device is ion-implanted into the upper layer of the semiconductor substrate on both sides of the gate formed on the upper surface of the semiconductor substrate of the first conductivity type via a gate insulating film. to form an amorphous layer. Next, impurities of the second conductivity type are ion-implanted into the amorphous layer at a position shallower than the depth of the amorphous layer. Next, one or more types of second impurities such as carbon, nitrogen, oxygen, or fluorine are ionized into crystal defect layers such as dislocations that occur closer to the semiconductor substrate than the interface between the amorphous layer and the semiconductor substrate. inject. Thereafter, the semiconductor substrate is heat-treated, a second impurity is diffused to reduce crystal defects in the crystal defect layer, a second conductivity type impurity is diffused to form a source/drain diffusion layer, and an amorphous layer is formed. Become a single crystal.

【0007】[0007]

【作用】上記した半導体装置の製造方法では、結晶欠陥
層に炭素,窒素,酸素またはフッ素等のうちの1種また
は複数種の不純物をイオン注入した後に熱処理を行うこ
とによって、イオン注入した上記不純物が結晶欠陥層に
拡散し、転移等の結晶欠陥を低減する。このため、ゲー
トに負のバイアス電圧を印加した場合には逆バイアスリ
ーク電流値が小さくなる。
[Operation] In the method for manufacturing a semiconductor device described above, one or more types of impurities such as carbon, nitrogen, oxygen, or fluorine are ion-implanted into the crystal defect layer, and then heat treatment is performed to remove the ion-implanted impurities. diffuses into the crystal defect layer and reduces crystal defects such as dislocations. Therefore, when a negative bias voltage is applied to the gate, the reverse bias leak current value becomes small.

【0008】[0008]

【実施例】本発明の実施例を図1に示す製造工程図によ
り説明する。図では半導体装置1の一例としてPチャネ
ル形MOSトランジスタの製造方法を示す。まず第1工
程では、LOCOS法等により第1導電形(N形)単結
晶シリコン製の半導体基板11の上層に素子分離領域2
,3を形成する。この素子分離領域2,3は改良LOC
OS法やトレンチ素子分離法等で形成することも可能で
ある。そして素子分離領域2,3間の半導体基板11の
表面をエッチング等により露出させた後、例えば熱酸化
法等により、半導体基板11の表面を酸化して半導体基
板11の上面にシリコン酸化膜よりなるゲート絶縁膜1
2を形成する。次いでゲート絶縁膜12の上面に例えば
化学的気相成長法等により低濃度の導電形不純物を含む
poly−Si膜(図示せず)を形成する。その後ホト
リソグラフィー技術とエッチングとにより当該poly
−Si膜でゲート13を形成する。続いてゲート13の
両側で半導体基板11の上層にゲート絶縁膜12を通し
て第1の不純物としてシリコン(Si+ )をイオン注
入する。このイオン注入は、一例として、イオン注入エ
ネルギーが40keV,ドーズ量が2×1015cm−
2なる条件で行う。そして半導体基板11の上層に深さ
がおよそ90nmの非晶質層14を形成する。第1の不
純物には、Si+の他に最終的に半導体装置1の電気的
特性に影響を与えない不純物であれば何でもよく、例え
ばアルゴン(Ar),ゲルマニウム(Ge)等を用いる
ことも可能である。また非晶質層14を形成したときに
、非晶質層14と半導体基板11との界面より半導体基
板11側には深さ方向の幅がおよそ50nmの結晶欠陥
層15が生じる。
EXAMPLE An example of the present invention will be explained with reference to the manufacturing process diagram shown in FIG. The figure shows a method of manufacturing a P-channel MOS transistor as an example of the semiconductor device 1. First, in the first step, an element isolation region 2 is formed in the upper layer of a semiconductor substrate 11 made of first conductivity type (N type) single crystal silicon using a LOCOS method or the like.
, 3. These element isolation regions 2 and 3 are improved LOC
It is also possible to form by an OS method, a trench element isolation method, or the like. After exposing the surface of the semiconductor substrate 11 between the element isolation regions 2 and 3 by etching or the like, the surface of the semiconductor substrate 11 is oxidized by, for example, a thermal oxidation method, and a silicon oxide film is formed on the upper surface of the semiconductor substrate 11. Gate insulating film 1
form 2. Next, a poly-Si film (not shown) containing conductivity type impurities at a low concentration is formed on the upper surface of the gate insulating film 12 by, for example, chemical vapor deposition. After that, the poly
- Form the gate 13 with a Si film. Subsequently, silicon (Si+) is ion-implanted as a first impurity into the upper layer of the semiconductor substrate 11 on both sides of the gate 13 through the gate insulating film 12. In this ion implantation, for example, the ion implantation energy is 40 keV and the dose is 2 x 1015 cm-
This will be done under two conditions. Then, an amorphous layer 14 having a depth of approximately 90 nm is formed on the semiconductor substrate 11. In addition to Si+, the first impurity may be any impurity that does not ultimately affect the electrical characteristics of the semiconductor device 1. For example, it is also possible to use argon (Ar), germanium (Ge), etc. be. Further, when the amorphous layer 14 is formed, a crystal defect layer 15 having a width in the depth direction of approximately 50 nm is generated on the semiconductor substrate 11 side from the interface between the amorphous layer 14 and the semiconductor substrate 11.

【0009】第2工程では、例えばイオン注入法により
、非晶質層14の深さよりも浅い位置で当該非晶質層1
4に、ソース・ドレイン拡散層を形成するための第2導
電形(P形)の不純物として例えばフッ化ホウ素(BF
2 +)をイオン注入する。このイオン注入は、一例と
してイオン注入エネルギーが15keV,ドーズ量が2
×1015cm−2なる条件で行われる。そして、ホウ
素イオン(B+ )の濃度の最も濃い位置の深さがおよ
そ20nmになるようにイオン注入層16を形成する。 なお第2導電形の不純物にはBF2 + の他にホウ素
(B+ )等のP形の不純物をを用いることが可能であ
る。
In the second step, the amorphous layer 1 is implanted at a position shallower than the depth of the amorphous layer 14 by, for example, ion implantation.
4, for example, boron fluoride (BF) is used as a second conductivity type (P type) impurity for forming source/drain diffusion layers
2 +) is ion-implanted. In this ion implantation, for example, the ion implantation energy is 15 keV and the dose is 2.
The test was carried out under the conditions of x1015 cm-2. Then, the ion implantation layer 16 is formed so that the depth of the position where the concentration of boron ions (B+) is highest is about 20 nm. Note that, in addition to BF2 + , a P-type impurity such as boron (B+) can be used as the second conductivity type impurity.

【0010】第3工程では、イオン注入法により、結晶
欠陥層15が分布する領域に第2の不純物として炭素(
C+ )をイオン注入する。このイオン注入は、一例と
して、イオン注入エネルギーが35keV,ドーズ量が
2×1013cm−2なる条件で行う。第2の不純物に
は、炭素,窒素,酸素またはフッ素のうちの1種または
複数種を用いることが可能である。
In the third step, by ion implantation, carbon (
C+) is ion-implanted. This ion implantation is performed, for example, under the conditions that the ion implantation energy is 35 keV and the dose is 2×10 13 cm −2 . As the second impurity, one or more of carbon, nitrogen, oxygen, and fluorine can be used.

【0011】第4工程では、半導体基板11に対して、
およそ1000℃で15秒間のランプアニールによる熱
処理を行う。そして、イオン注入した炭素(C+ )に
よって結晶欠陥層15を低減する。それとともに非晶質
層(14)を単結晶化し、イオン注入層16のBF2 
+ のホウ素(B)を拡散して深さ(ホウ素の濃度が1
×1017/cm3 になる位置)がおよそ120nm
のP+ ソース・ドレイン拡散層17,18を形成する
。なお熱処理は、ランプアニール以外に、レーザアニー
ル,電子線アニール等により行うことも可能でる。
In the fourth step, for the semiconductor substrate 11,
Heat treatment is performed by lamp annealing at approximately 1000° C. for 15 seconds. Then, crystal defect layer 15 is reduced by ion-implanted carbon (C+). At the same time, the amorphous layer (14) is made into a single crystal, and the BF2 of the ion implantation layer 16 is
+ Boron (B) is diffused to a depth (the concentration of boron is 1
×1017/cm3) is approximately 120 nm
P+ source/drain diffusion layers 17 and 18 are formed. Note that the heat treatment can also be performed by laser annealing, electron beam annealing, etc. in addition to lamp annealing.

【0012】次いで図2に示す如く、ゲート13側の全
面に層間絶縁膜18を形成し、各P+ ソース・ドレイ
ン拡散層17,18上の層間絶縁膜19にゲート絶縁膜
12を貫通するコンタクトホール20,21を形成する
。 同時にゲート13上に層間絶縁膜19にコンタクトホー
ル22を形成する。そしてコンタクトホール20,21
,22を含む層間絶縁膜19の上面に例えばアルミニウ
ム合金膜を形成する。その後ホトリソグラフィー技術と
エッチングとにより、アルミニウム合金膜でコンタクト
ホール20,21を介して各ソース・ドレイン拡散層1
7,18に接続するソース・ドレイン電極23,24を
形成するとともに、コンタクトホール22を介してゲー
ト13に接続するゲート電極25を形成する。
Next, as shown in FIG. 2, an interlayer insulating film 18 is formed on the entire surface on the gate 13 side, and a contact hole passing through the gate insulating film 12 is formed in the interlayer insulating film 19 on each P+ source/drain diffusion layer 17, 18. 20 and 21 are formed. At the same time, a contact hole 22 is formed in the interlayer insulating film 19 above the gate 13. and contact holes 20, 21
, 22, for example, an aluminum alloy film is formed on the upper surface of the interlayer insulating film 19 including the interlayer insulating film 19. Thereafter, by photolithography and etching, each source/drain diffusion layer 1 is formed through the contact holes 20 and 21 in the aluminum alloy film.
Source/drain electrodes 23 and 24 connected to the gate electrodes 7 and 18 are formed, and a gate electrode 25 connected to the gate 13 through the contact hole 22 is formed.

【0013】上記実施例で説明した半導体装置1のゲー
ト13に負のバイアス電圧を印加した場合の電流・電圧
特性を図3により説明する。図では、縦軸が逆バイアス
リーク電流を示し、横軸が負のバイアス電圧を示す。ま
た図中の実線は上記実施例によって形成した半導体装置
1の電流・電圧特性を示し、破線は前記従来の技術で説
明した方法によって形成した半導体装置(30)の電流
・電圧特性を示す。半導体装置(30)は、第3工程で
説明した炭素イオン注入を行わないこと以外は上記実施
例で説明した製造条件と同一条件で製造される。図に示
す如く、同一の負のバイアス電圧を印加した場合におい
て、半導体装置1の逆バイアスリーク電流値は、半導体
装置(30)の逆バイアスリーク電流値に対しておよそ
1/10になる。この結果、前記第3工程を行うことに
よって、半導体装置1の接合リーク特性は高まる。
The current/voltage characteristics when a negative bias voltage is applied to the gate 13 of the semiconductor device 1 described in the above embodiment will be explained with reference to FIG. In the figure, the vertical axis represents reverse bias leak current, and the horizontal axis represents negative bias voltage. Further, the solid line in the figure shows the current/voltage characteristics of the semiconductor device 1 formed according to the above embodiment, and the broken line shows the current/voltage characteristics of the semiconductor device (30) formed by the method described in the conventional technique. The semiconductor device (30) is manufactured under the same manufacturing conditions as described in the above example except that the carbon ion implantation described in the third step is not performed. As shown in the figure, when the same negative bias voltage is applied, the reverse bias leak current value of the semiconductor device 1 is approximately 1/10 of the reverse bias leak current value of the semiconductor device (30). As a result, by performing the third step, the junction leakage characteristics of the semiconductor device 1 are improved.

【0014】上記実施例では、Pチャネル形のMOSト
ランジスタを例にして説明したが、Nチャネル形のMO
Sトランジスタでも同様にして接合リーク特性の向上を
図ることが可能である。この場合には、半導体基板には
第2導電形(P形)単結晶シリコン基板を用い、ソース
・ドレイン拡散層を形成する不純物には第1導電形(N
形)の例えばヒ素(As+ )またはリン(P+)等の
不純物を用いる。また第2の不純物は上記説明したもの
を用いる。
In the above embodiment, a P-channel type MOS transistor has been explained as an example, but an N-channel type MOS transistor has been described.
It is also possible to improve the junction leakage characteristics of an S transistor in the same manner. In this case, a second conductivity type (P type) single crystal silicon substrate is used as the semiconductor substrate, and impurities forming the source/drain diffusion layer are of the first conductivity type (N type).
For example, impurities such as arsenic (As+) or phosphorus (P+) are used. Further, as the second impurity, the one described above is used.

【0015】[0015]

【発明の効果】以上、説明したように本発明によれば、
非晶質層と半導体基板との界面より半導体基板側に発生
する結晶欠陥層に炭素,窒素,酸素またはフッ素等のう
ちの1種または複数種の第2の不純物をイオン注入した
後に熱処理を行って、第2の不純物を結晶欠陥層に拡散
する。このため結晶欠陥層中の結晶欠陥が減少して、逆
バイアスリーク電流値は小さくなる。よって、半導体装
置における接合リークは低減されて、接合の耐圧の向上
が図れる。
[Effects of the Invention] As explained above, according to the present invention,
Heat treatment is performed after ion-implanting one or more types of second impurities such as carbon, nitrogen, oxygen, or fluorine into a crystal defect layer that occurs on the semiconductor substrate side from the interface between the amorphous layer and the semiconductor substrate. Then, the second impurity is diffused into the crystal defect layer. Therefore, crystal defects in the crystal defect layer are reduced, and the reverse bias leakage current value is reduced. Therefore, junction leakage in the semiconductor device is reduced, and the withstand voltage of the junction can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例の製造工程図である。FIG. 1 is a manufacturing process diagram of an example.

【図2】実施例の製造工程図である。FIG. 2 is a manufacturing process diagram of an example.

【図3】電流・電流特性の説明図である。FIG. 3 is an explanatory diagram of current/current characteristics.

【図4】従来例の製造工程図である。FIG. 4 is a manufacturing process diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1  半導体装置 11  半導体基板 12  ゲート絶縁膜 13  ゲート 14  非晶質層 15  結晶欠陥層 17  ソース・ドレイン拡散層 18  ソース・ドレイン拡散層 1 Semiconductor device 11 Semiconductor substrate 12 Gate insulating film 13 Gate 14 Amorphous layer 15 Crystal defect layer 17 Source/drain diffusion layer 18 Source/drain diffusion layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  第1導電形の半導体基板の上面にゲー
ト絶縁膜を介して形成したゲートの両側で当該半導体基
板の上層に半導体装置の電気的特性に影響を与えない不
活性な第1の不純物をイオン注入して非晶質層を形成す
る第1工程と、前記非晶質層に第2導電形の不純物をイ
オン注入する第2工程と、前記非晶質層と前記半導体基
板との界面より当該半導体基板側に発生する結晶欠陥層
に炭素,窒素,酸素またはフッ素のうちの1種または複
数種よりなる第2の不純物をイオン注入する第3工程と
、前記半導体基板を熱処理して、前記第2の不純物を拡
散して前記結晶欠陥層の結晶欠陥を低減するとともに前
記第2導電形の不純物を拡散してソース・ドレイン拡散
層を形成し、かつ前記非晶質層を単結晶化する第4工程
とを順に行うことを特徴とする半導体素子の製造方法。
Claim 1: An inert first layer that does not affect the electrical characteristics of the semiconductor device is formed in the upper layer of the semiconductor substrate on both sides of the gate formed on the upper surface of the semiconductor substrate of the first conductivity type with a gate insulating film interposed therebetween. a first step of ion-implanting an impurity to form an amorphous layer; a second step of ion-implanting a second conductivity type impurity into the amorphous layer; and a step of ion-implanting an impurity of a second conductivity type into the amorphous layer; a third step of ion-implanting a second impurity made of one or more of carbon, nitrogen, oxygen, or fluorine into a crystal defect layer generated on the side of the semiconductor substrate from the interface; and heat-treating the semiconductor substrate. , diffusing the second impurity to reduce crystal defects in the crystal defect layer, diffusing the second conductivity type impurity to form a source/drain diffusion layer, and forming the amorphous layer into a single crystal layer; A method for manufacturing a semiconductor device, characterized in that a fourth step of converting into a semiconductor device is performed in order.
JP3076893A 1991-03-15 1991-03-15 Method for manufacturing semiconductor device Expired - Fee Related JP2997791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076893A JP2997791B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076893A JP2997791B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04287332A true JPH04287332A (en) 1992-10-12
JP2997791B2 JP2997791B2 (en) 2000-01-11

Family

ID=13618326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076893A Expired - Fee Related JP2997791B2 (en) 1991-03-15 1991-03-15 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2997791B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514902A (en) * 1993-09-16 1996-05-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having MOS transistor
JPH11284149A (en) * 1998-03-02 1999-10-15 Samsung Electronics Co Ltd Manufacture equipment of semiconductor element and manufacture for capacitor of semiconductor element utilizing the same
JP2006093658A (en) * 2004-08-25 2006-04-06 Toshiba Corp Semiconductor apparatus and manufacturing method thereof
JP2008091876A (en) * 2006-08-04 2008-04-17 Interuniv Micro Electronica Centrum Vzw Method for junction formation in semiconductor device, and semiconductor device produced thereby
JP2008524840A (en) * 2004-12-17 2008-07-10 アプライド マテリアルズ インコーポレイテッド Ion implantation method to reduce transient enhanced diffusion
US7605043B2 (en) 2004-08-25 2009-10-20 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method for the same
JP2012134460A (en) * 2010-12-03 2012-07-12 Toshiba Corp Semiconductor device manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514902A (en) * 1993-09-16 1996-05-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having MOS transistor
US6475887B1 (en) 1993-09-16 2002-11-05 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device
JPH11284149A (en) * 1998-03-02 1999-10-15 Samsung Electronics Co Ltd Manufacture equipment of semiconductor element and manufacture for capacitor of semiconductor element utilizing the same
JP2006093658A (en) * 2004-08-25 2006-04-06 Toshiba Corp Semiconductor apparatus and manufacturing method thereof
US7605043B2 (en) 2004-08-25 2009-10-20 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method for the same
JP2008524840A (en) * 2004-12-17 2008-07-10 アプライド マテリアルズ インコーポレイテッド Ion implantation method to reduce transient enhanced diffusion
JP2008091876A (en) * 2006-08-04 2008-04-17 Interuniv Micro Electronica Centrum Vzw Method for junction formation in semiconductor device, and semiconductor device produced thereby
JP2012134460A (en) * 2010-12-03 2012-07-12 Toshiba Corp Semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2997791B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US5015593A (en) Method of manufacturing semiconductor device
JP2002124671A (en) Semiconductor device and its manufacturing method
JPH09186245A (en) Manufacture of semiconductor device
JP2997791B2 (en) Method for manufacturing semiconductor device
JPH0346238A (en) Manufacture of semiconductor device
KR930010094B1 (en) Semiconductor device and making method of the same
JP2781989B2 (en) Method for manufacturing semiconductor device
JP3311082B2 (en) Method for manufacturing semiconductor device
JP3687776B2 (en) Manufacturing method of semiconductor device
JPH0444432B2 (en)
JPH0575045A (en) Manufacture of semiconductor device
JP2626485B2 (en) Method for manufacturing semiconductor device
JPS6410952B2 (en)
JP3253712B2 (en) Method for manufacturing semiconductor device
JP2004228528A (en) Method for manufacturing semiconductor device
JPH04354328A (en) Production of semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPH0555232A (en) Manufacture of semiconductor device
JPH01125977A (en) Mos semiconductor device
JPH0595000A (en) Manufacture of semiconductor device
JP2689966B2 (en) Method for manufacturing semiconductor device
JPH05291287A (en) Manufacture of mis type semiconductor
JPH0479216A (en) Manufacture of mis type semiconductor device
JPH0410547A (en) Manufacture of semiconductor device
KR20010017518A (en) Formation method of device of mos field effect transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees