JP3311082B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3311082B2
JP3311082B2 JP12084893A JP12084893A JP3311082B2 JP 3311082 B2 JP3311082 B2 JP 3311082B2 JP 12084893 A JP12084893 A JP 12084893A JP 12084893 A JP12084893 A JP 12084893A JP 3311082 B2 JP3311082 B2 JP 3311082B2
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
silicon film
semiconductor substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12084893A
Other languages
Japanese (ja)
Other versions
JPH06310527A (en
Inventor
有里 水尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12084893A priority Critical patent/JP3311082B2/en
Publication of JPH06310527A publication Critical patent/JPH06310527A/en
Application granted granted Critical
Publication of JP3311082B2 publication Critical patent/JP3311082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特にMOS型半導体集積回路におけるLDD構
造を備えた半導体装置の製造方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device having an LDD structure in a MOS type semiconductor integrated circuit.

【0002】[0002]

【従来の技術】MOS型半導体装置では、ドレイン電界
を緩和してホットキャリア耐性を高めるための構造とし
て、LDD(Lightly Doped Drai
n)構造が知られている。このLDD構造を形成する最
も一般的な方法は、まず、ゲート電極をマスクにして半
導体基板に低濃度に不純物をイオン注入して低濃度不純
物領域を形成し、次に、ゲート電極に側壁を形成した
後、そのゲート電極と側壁とをマスクにして半導体基板
に不純物をイオン注入して高濃度不純物領域を形成する
という方法である。
2. Description of the Related Art In a MOS type semiconductor device, an LDD (Lightly Doped Drain) is used as a structure for relaxing a drain electric field and increasing hot carrier resistance.
n) Structures are known. The most common method of forming this LDD structure is to first form a low-concentration impurity region by ion-implanting a low-concentration impurity into a semiconductor substrate using a gate electrode as a mask, and then form a side wall on the gate electrode. After that, using the gate electrode and the side wall as a mask, impurities are ion-implanted into the semiconductor substrate to form a high-concentration impurity region.

【0003】図2に、上述した従来の方法を示す。この
従来例では、まず、図2(a)に示す様に、シリコン半
導体基板1の表面にゲート絶縁膜としてのシリコン酸化
膜を熱酸化によって形成する。そして、全面に多結晶シ
リコン膜を堆積させ、この多結晶シリコン膜をゲート電
極2のパターンに加工した後、このゲート電極2をマス
クとして、イオンビーム7によって、半導体基板1の中
に低濃度の不純物をイオン注入により導入する。
FIG. 2 shows the above-mentioned conventional method. In this conventional example, first, as shown in FIG. 2A, a silicon oxide film as a gate insulating film is formed on the surface of a silicon semiconductor substrate 1 by thermal oxidation. Then, a polycrystalline silicon film is deposited on the entire surface, and the polycrystalline silicon film is processed into a pattern of the gate electrode 2. Then, using the gate electrode 2 as a mask, a low-concentration Impurities are introduced by ion implantation.

【0004】次に、図2(b)に示す様に、低濃度拡散
層8が形成された半導体基板1の全面にシリコン酸化膜
10をCVDなどの方法で堆積させる。
Next, as shown in FIG. 2B, a silicon oxide film 10 is deposited on the entire surface of the semiconductor substrate 1 on which the low concentration diffusion layer 8 is formed by a method such as CVD.

【0005】次に、図2(c)に示す様に、このシリコ
ン酸化膜10の全面をRIEなどの方法で異方性エッチ
ングして、ゲート電極2に酸化膜側壁11を形成する。
Then, as shown in FIG. 2C, the entire surface of the silicon oxide film 10 is anisotropically etched by a method such as RIE to form an oxide film sidewall 11 on the gate electrode 2.

【0006】次に、図2(d)に示す様に、ゲート電極
2及び酸化膜側壁11をマスクとして、シリコン半導体
基板1の中に高濃度の不純物をイオン注入により導入す
る。
Next, as shown in FIG. 2D, high concentration impurities are introduced into the silicon semiconductor substrate 1 by ion implantation using the gate electrode 2 and the oxide film side wall 11 as a mask.

【0007】この後、イオン注入により生じた欠陥を回
復させるため、高温中で数分間の熱処理を行う。
After that, a heat treatment is performed for several minutes at a high temperature in order to recover the defect caused by the ion implantation.

【0008】以上に説明した方法により、図2(e)に
示す様に、酸化膜側壁11が有る部分が低濃度拡散層
8、酸化膜側壁11が無い部分が高濃度拡散層9とな
り、LDD構造が形成される。
According to the above-described method, as shown in FIG. 2E, the portion having the oxide film side wall 11 becomes the low concentration diffusion layer 8 and the portion having no oxide film side wall 11 becomes the high concentration diffusion layer 9, thereby forming the LDD. A structure is formed.

【0009】[0009]

【発明が解決しようとする課題】しかし、近年、半導体
素子の微細化に伴い、ソース/ドレイン拡散層の浅接合
化が要求されており、上述した従来の方法には、現在の
イオン注入装置では浅接合化を行うための注入エネルギ
ーの制御が困難であるという問題と、ソース/ドレイン
拡散層の接合深さが拡散により深くなるのを抑えなが
ら、2回のイオン注入により生じた注入欠陥を、高温短
時間の熱処理によって十分に回復させることが困難であ
るという問題があった。
However, in recent years, with the miniaturization of semiconductor devices, the shallow junctions of the source / drain diffusion layers have been required. It is difficult to control the implantation energy for the shallow junction, and the implantation defects caused by the two ion implantations are suppressed while suppressing the junction depth of the source / drain diffusion layers from becoming deeper due to diffusion. There is a problem that it is difficult to sufficiently recover by a heat treatment at a high temperature for a short time.

【0010】そこで、本発明の目的は、LDD構造形成
工程において、イオン注入による欠陥の発生を低減さ
せ、半導体素子の微細化に対応した浅い接合を有する半
導体装置の製造方法を提供することにある。
It is an object of the present invention to provide a method of manufacturing a semiconductor device having a shallow junction corresponding to miniaturization of a semiconductor element by reducing the occurrence of defects due to ion implantation in an LDD structure forming step. .

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明の半導体装置の製造方法によれば、半導体基
板上に第1の絶縁膜及び導電体膜を順次形成し、これら
をパターンニングしてゲート電極を形成する工程と、全
面に第2の絶縁膜及び第1の多結晶シリコン膜を順次形
成する工程と、前記第1の多結晶シリコン膜を異方性エ
ッチングして、前記ゲート電極の両側に前記第2の絶縁
膜を介して多結晶シリコン膜の側壁を形成するととも
に、前記第1の多結晶シリコン膜が除去された部分の前
記第2の絶縁膜を残膜が形成される程度に所定深さまで
エッチングする工程と、全面に第2の多結晶シリコン膜
を形成する工程と、前記第2の多結晶シリコン膜及び前
記側壁に不純物を導入する工程と、前記第2の多結晶シ
リコン膜及び前記側壁に導入した不純物を熱処理により
前記半導体基板内に拡散させる工程とを備えたことを特
徴とする。
According to a method of manufacturing a semiconductor device of the present invention, a first insulating film and a conductor film are sequentially formed on a semiconductor substrate, and the first and second insulating films are patterned. Forming a second insulating film and a first polycrystalline silicon film sequentially on the entire surface; and performing anisotropic etching of the first polycrystalline silicon film to form a gate electrode. Side walls of the polycrystalline silicon film are formed on both sides of the gate electrode via the second insulating film, and a residual film is formed on a portion of the second insulating film where the first polycrystalline silicon film has been removed. Etching to a predetermined depth to such an extent that a second polycrystalline silicon film is formed on the entire surface; introducing an impurity into the second polycrystalline silicon film and the side wall; Polycrystalline silicon film and said side Characterized by comprising a step of diffusing into the semiconductor substrate by heat treatment impurities introduced.

【0012】[0012]

【作用】本発明においては、ゲート電極の側壁を形成す
るためのエッチング工程で、ゲート電極形成後の半導体
基板に堆積した第2の絶縁膜が、側壁の有る部分では厚
くなり、無い部分では薄くなる。従って、後に半導体基
板上に堆積した多結晶シリコン膜をマスクとして不純物
を注入すると、第2の絶縁膜と多結晶シリコン膜との界
面では不純物の濃度は一定となるが、その後の熱処理に
より不純物を第2の絶縁膜中に熱拡散させると、不純物
の基板表面濃度は第2の絶縁膜の膜厚に依存するので、
この不純物をさらに半導体基板中に熱拡散させることに
よって、側壁の有る部分が低濃度拡散層、側壁の無い部
分が高濃度拡散層となるLDD構造を形成できる。
According to the present invention, in the etching step for forming the side wall of the gate electrode, the second insulating film deposited on the semiconductor substrate after the formation of the gate electrode becomes thicker in the part having the side wall and thinner in the part without the side wall. Become. Therefore, when impurities are implanted later using the polycrystalline silicon film deposited on the semiconductor substrate as a mask, the impurity concentration becomes constant at the interface between the second insulating film and the polycrystalline silicon film, but the impurities are removed by a subsequent heat treatment. When thermal diffusion is performed in the second insulating film, the substrate surface concentration of impurities depends on the thickness of the second insulating film.
By further diffusing this impurity into the semiconductor substrate, an LDD structure can be formed in which a portion having a side wall becomes a low concentration diffusion layer and a portion having no side wall becomes a high concentration diffusion layer.

【0013】その結果、本発明においては、半導体基板
内にLDD構造を形成する際に、熱拡散により不純物を
導入するので、半導体基板中に注入欠陥を発生させるこ
となくリーク電流の少ない浅い接合を形成することがで
きる。
As a result, in the present invention, when forming an LDD structure in a semiconductor substrate, impurities are introduced by thermal diffusion, so that a shallow junction with a small leak current can be formed without generating an injection defect in the semiconductor substrate. Can be formed.

【0014】[0014]

【実施例】以下、MOSトランジスタの製造に適用した
本発明の一実施例を、図1を参照しながら説明する。な
お、図1の各図において図2に示した従来例と同一の構
成部分には同一の符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention applied to the manufacture of a MOS transistor will be described below with reference to FIG. 1, the same components as those of the conventional example shown in FIG. 2 are denoted by the same reference numerals.

【0015】本実施例においては、図1(a)に示す様
に、シリコン半導体基板1の表面に熱酸化によって厚さ
10〜20nm程度のシリコン酸化膜を形成する。そし
て、CVDなどの方法で厚さ150〜300nm程度の
多結晶シリコン膜を堆積させる。その後、リソグラフィ
ーなどの方法によって、シリコン半導体基板1の上に形
成したシリコン酸化膜及び多結晶シリコン膜のパターン
ニングを行い、ゲート電極2を形成する。
In this embodiment, as shown in FIG. 1A, a silicon oxide film having a thickness of about 10 to 20 nm is formed on the surface of a silicon semiconductor substrate 1 by thermal oxidation. Then, a polycrystalline silicon film having a thickness of about 150 to 300 nm is deposited by a method such as CVD. Thereafter, patterning of the silicon oxide film and the polycrystalline silicon film formed on the silicon semiconductor substrate 1 is performed by a method such as lithography to form the gate electrode 2.

【0016】次に、図1(b)に示す様に、CVDなど
の方法によって、シリコン半導体基板1の全面にシリコ
ン酸化膜やシリコンナイトライド膜などの絶縁膜3を厚
さが10〜30nm程度になるように堆積させる。
Next, as shown in FIG. 1B, an insulating film 3 such as a silicon oxide film or a silicon nitride film is formed on the entire surface of the silicon semiconductor substrate 1 to a thickness of about 10 to 30 nm by a method such as CVD. Is deposited.

【0017】次に、図1(c)に示す様に、CVDなど
の方法によって、多結晶シリコン膜4を厚さが300〜
400nm程度になるように堆積させる。
Next, as shown in FIG. 1C, the thickness of the polycrystalline silicon film 4 is reduced to 300 to 300 by a method such as CVD.
It is deposited to a thickness of about 400 nm.

【0018】次に、図1(d)に示す様に、RIEなど
の方法によって、多結晶シリコン膜4を異方性エッチン
グして、ゲート電極2の両側に多結晶シリコン側壁5を
形成する。このとき多結晶シリコン膜4が全て除去され
た部分では絶縁膜3がエッチングされ、その絶縁膜3の
エッチングによる残膜の厚さが5nm以下になるように
する。
Next, as shown in FIG. 1D, the polysilicon film 4 is anisotropically etched by a method such as RIE to form polysilicon sidewalls 5 on both sides of the gate electrode 2. At this time, the insulating film 3 is etched in a portion where the polycrystalline silicon film 4 is completely removed, and the thickness of the remaining film due to the etching of the insulating film 3 is set to 5 nm or less.

【0019】次に、図1(e)に示す様に、CVDなど
の方法によって、シリコン半導体基板1の全面に多結晶
シリコン膜6を厚さが200〜350nm程度になるよ
うに堆積させる。
Next, as shown in FIG. 1E, a polycrystalline silicon film 6 is deposited on the entire surface of the silicon semiconductor substrate 1 to a thickness of about 200 to 350 nm by a method such as CVD.

【0020】次に、図1(f)に示す様に、イオンビー
ム7によって、不純物のイオン注入を行う。不純物とし
て砒素を注入する場合は、加速エネルギー40〜70k
eV、ドーズ量5×1015〜1×1016/cm2 程度、
不純物として弗化ホウ素を注入する場合は、加速エネル
ギー30〜50keV、ドーズ量5×1015〜1×10
16/cm2 程度の条件に設定し、不純物のピーク濃度が
シリコン半導体基板1の表面にくるようにする。
Next, as shown in FIG. 1F, impurity ions are implanted by the ion beam 7. When arsenic is implanted as an impurity, the acceleration energy is 40 to 70 k.
eV, dose amount of about 5 × 10 15 to 1 × 10 16 / cm 2 ,
When boron fluoride is implanted as an impurity, the acceleration energy is 30 to 50 keV and the dose is 5 × 10 15 to 1 × 10 5
The condition is set to about 16 / cm 2 so that the peak concentration of the impurity comes to the surface of the silicon semiconductor substrate 1.

【0021】次に、図1(g)に示す様に、ランプアニ
ールで1000〜1100℃程度の温度、10〜30秒
程度の時間の熱処理を行う。この時、イオン注入された
不純物がシリコン半導体基板1の中に拡散するが、多結
晶シリコン側壁5が有る部分の絶縁膜3の方が多結晶シ
リコン側壁5が無い部分の絶縁膜3より厚く、この絶縁
膜3を介して不純物を拡散させると、絶縁膜3の厚いと
ころの方が絶縁膜3の薄いところの方よりもシリコン半
導体基板1の表面の不純物濃度が低くなるので、多結晶
シリコン側壁5が有る部分では低濃度拡散層8が、多結
晶シリコン側壁5が無い部分では高濃度拡散層9が形成
される。
Next, as shown in FIG. 1G, heat treatment is performed by lamp annealing at a temperature of about 1000 to 1100 ° C. for a time of about 10 to 30 seconds. At this time, the ion-implanted impurity diffuses into the silicon semiconductor substrate 1, but the portion of the insulating film 3 having the polycrystalline silicon sidewall 5 is thicker than the portion of the insulating film 3 having no polycrystalline silicon sidewall 5. When impurities are diffused through the insulating film 3, the impurity concentration on the surface of the silicon semiconductor substrate 1 is lower in the thicker portion of the insulating film 3 than in the thinner portion of the insulating film 3, so that the polycrystalline silicon side wall is formed. 5, the low-concentration diffusion layer 8 is formed in the portion where the polycrystalline silicon side wall 5 is not formed.

【0022】[0022]

【発明の効果】本発明によれば、熱拡散を用いたLDD
構造を有する半導体装置の製造方法において、イオン注
入による欠陥を発生させることなく、接合特性が良好な
浅い接合の形成が可能になる。
According to the present invention, an LDD using thermal diffusion is provided.
In a method of manufacturing a semiconductor device having a structure, a shallow junction having good junction characteristics can be formed without generating defects due to ion implantation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるLDD構造の製造工程
を示す概略断面図である。
FIG. 1 is a schematic sectional view showing a manufacturing process of an LDD structure according to one embodiment of the present invention.

【図2】従来のLDD構造の製造工程を示す概略断面図
である。
FIG. 2 is a schematic sectional view showing a manufacturing process of a conventional LDD structure.

【符号の説明】[Explanation of symbols]

1 シリコン半導体基板 2 ゲート電極 3 絶縁膜 4 多結晶シリコン膜 5 多結晶シリコン側壁 6 多結晶シリコン膜 7 イオンビーム 8 低濃度拡散層 9 高濃度拡散層 Reference Signs List 1 silicon semiconductor substrate 2 gate electrode 3 insulating film 4 polycrystalline silicon film 5 polycrystalline silicon sidewall 6 polycrystalline silicon film 7 ion beam 8 low concentration diffusion layer 9 high concentration diffusion layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上に第1の絶縁膜及び導電体
膜を順次形成し、これらをパターンニングしてゲート電
極を形成する工程と、 全面に第2の絶縁膜及び第1の多結晶シリコン膜を順次
形成する工程と、 前記第1の多結晶シリコン膜を異方性エッチングして、
前記ゲート電極の両側に前記第2の絶縁膜を介して多結
晶シリコン膜の側壁を形成するとともに、前記第1の多
結晶シリコン膜が除去された部分の前記第2の絶縁膜を
残膜が形成される程度に所定深さまでエッチングする工
程と、 全面に第2の多結晶シリコン膜を形成する工程と、 前記第2の多結晶シリコン膜及び前記側壁に不純物を導
入する工程と、 前記第2の多結晶シリコン膜及び前記側壁に導入した不
純物を熱処理により前記半導体基板内に拡散させる工程
とを備えたことを特徴とする半導体装置の製造方法。
A step of sequentially forming a first insulating film and a conductor film on a semiconductor substrate and patterning them to form a gate electrode; and forming a second insulating film and a first polycrystal on the entire surface. Forming a silicon film sequentially, and anisotropically etching the first polycrystalline silicon film,
Side walls of the polycrystalline silicon film are formed on both sides of the gate electrode with the second insulating film interposed therebetween, and the remaining portion of the second insulating film where the first polycrystalline silicon film has been removed has a remaining film. Etching to a predetermined depth to such an extent that it is formed; forming a second polycrystalline silicon film over the entire surface; introducing an impurity into the second polycrystalline silicon film and the side wall; Diffusing the impurities introduced into the polycrystalline silicon film and the side walls into the semiconductor substrate by heat treatment.
JP12084893A 1993-04-23 1993-04-23 Method for manufacturing semiconductor device Expired - Lifetime JP3311082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12084893A JP3311082B2 (en) 1993-04-23 1993-04-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12084893A JP3311082B2 (en) 1993-04-23 1993-04-23 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH06310527A JPH06310527A (en) 1994-11-04
JP3311082B2 true JP3311082B2 (en) 2002-08-05

Family

ID=14796452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12084893A Expired - Lifetime JP3311082B2 (en) 1993-04-23 1993-04-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3311082B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041953A (en) * 1998-12-24 2000-07-15 김영환 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH06310527A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
US5028552A (en) Method of manufacturing insulated-gate type field effect transistor
US5185279A (en) Method of manufacturing insulated-gate type field effect transistor
JP2802263B2 (en) Method for manufacturing semiconductor device
US5885874A (en) Method of making enhancement-mode and depletion-mode IGFETS using selective doping of a gate material
JP2000232075A (en) Manufacture of semiconductor device
JPH07283400A (en) Semiconductor device and its manufacture
JP3311082B2 (en) Method for manufacturing semiconductor device
JP3371875B2 (en) Method for manufacturing semiconductor device
JPH09223797A (en) Manufacture of semiconductor device
JPH04287332A (en) Manufacture of semiconductor element
KR0170436B1 (en) Method of manufacturing mosfet
JPH08316477A (en) Manufacture of semiconductor element
US6242295B1 (en) Method of fabricating a shallow doped region for a shallow junction transistor
JP2000049334A (en) Semiconductor device and fabrication thereof
JPH08186082A (en) Manufacture of semiconductor device
KR100587050B1 (en) Method for manufacturing semiconductor device
JPH088262A (en) Manufacture of semiconductor device
JP2748854B2 (en) Method for manufacturing semiconductor device
JPH11150181A (en) Manufacture of semiconductor device
JP3061892B2 (en) Method for manufacturing semiconductor device
JP3371600B2 (en) Method for manufacturing MIS transistor
KR940007663B1 (en) Manufacturing method of mosfet
US7670936B1 (en) Nitridation of gate oxide by laser processing
JP3317220B2 (en) Method for manufacturing semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

EXPY Cancellation because of completion of term