JPH07283400A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH07283400A
JPH07283400A JP9564794A JP9564794A JPH07283400A JP H07283400 A JPH07283400 A JP H07283400A JP 9564794 A JP9564794 A JP 9564794A JP 9564794 A JP9564794 A JP 9564794A JP H07283400 A JPH07283400 A JP H07283400A
Authority
JP
Japan
Prior art keywords
film
semiconductor substrate
gate electrode
impurity
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9564794A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yasuda
広安 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9564794A priority Critical patent/JPH07283400A/en
Publication of JPH07283400A publication Critical patent/JPH07283400A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To provide a semiconductor device whose reliability is high by a method wherein impurities are introduced into a semiconductor substrate by a thermal diffusion operation and a low concentration diffused layer is formed. CONSTITUTION:A gate electrode 4 is formed on a semiconductor substrate 1, fluorine ions are implanted into a gate oxide film other than the lower part of the gate electrode 4, and a conductive gate sidewall 6 which contains impurities is formed so as to come into contact with the gate electrode 4. Then, the impurities are diffused into the semiconductor substrate 1 from the sidewall 6 by a heat treatment. Thereby, the impurities are introduced into the semiconductor substrate 1 by a thermal diffusion operation, and a low concentration diffused layer is formed. Thereby, it is possible to obtain a semiconductor device in which a junction depth is shallow, in which a defect is small in a junction part and whose reliability is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method.

【0002】[0002]

【従来の技術】図6及び図7を用いて従来のLDD構造
を有するMOSトランジスタの製造方法を説明する。図
6(a)〜図6(g)は第1の従来方法に係わるMOS
トランジスタの製造工程図である。
2. Description of the Related Art A conventional method for manufacturing a MOS transistor having an LDD structure will be described with reference to FIGS. 6A to 6G show a MOS according to the first conventional method.
It is a manufacturing process figure of a transistor.

【0003】まず、半導体基板41上に酸化膜42と不
純物を含む多結晶シリコン膜43とをこの順番に形成す
る(図6(a))。次に、多結晶シリコン膜43をゲー
ト電極44形状に加工し(図6(b))、このゲート電
極44をマスクにして半導体基板41中に不純物Dをイ
オン注入し、低濃度不純物拡散層45を形成する(図6
(c))。そして、半導体基板41の全面に不純物を含
む多結晶シリコン膜46を堆積させた後(図6
(d))、この多結晶シリコン膜46のゲート電極44
の周囲のみ残るように異方性エッチングを行い(図6
(e))、ゲート側壁47を形成する。次にイオン注入
により不純物D′を半導体基板41内に注入し(図6
(f))、熱処理を行ってソース・ドレイン領域に高濃
度不純物拡散層48を形成することによりLDD構造を
備えたMOSトランジスタが完成する(図6(g))。
First, an oxide film 42 and a polycrystalline silicon film 43 containing impurities are formed in this order on a semiconductor substrate 41 (FIG. 6A). Next, the polycrystalline silicon film 43 is processed into the shape of the gate electrode 44 (FIG. 6B), the impurity D is ion-implanted into the semiconductor substrate 41 using the gate electrode 44 as a mask, and the low-concentration impurity diffusion layer 45 is formed. (Fig. 6)
(C)). Then, after depositing a polycrystalline silicon film 46 containing impurities on the entire surface of the semiconductor substrate 41 (FIG. 6).
(D)), the gate electrode 44 of the polycrystalline silicon film 46
Anisotropic etching is performed so that only the periphery of
(E)), the gate sidewall 47 is formed. Next, the impurity D ′ is implanted into the semiconductor substrate 41 by ion implantation (see FIG. 6).
(F)), heat treatment is performed to form the high-concentration impurity diffusion layers 48 in the source / drain regions, whereby the MOS transistor having the LDD structure is completed (FIG. 6 (g)).

【0004】次に、図7(a)〜図6(e)は第2の従
来方法に係わるMOSトランジスタの製造工程図であ
る。従来技術である。
Next, FIGS. 7A to 6E are manufacturing process diagrams of a MOS transistor according to the second conventional method. This is a conventional technique.

【0005】まず、半導体基板51上に酸化膜52と不
純物を含む多結晶シリコン膜53とをこの順番に形成し
た後、多結晶シリコン53をゲート電極54形状に加工
する(図7(a))。次に、ゲート電極54をマスクに
して半導体基板51中に不純物Dをイオン注入し、低濃
度不純物拡散層55を形成する(図7(b))。そし
て、半導体基板51の全面に不純物を含む多結晶シリコ
ン膜を堆積させた後、この多結晶シリコン膜のゲート電
極54の周囲のみゲート側壁57として残るように異方
性エッチングを行う(図7(c))。次に、半導体基板
51の全面に高融点金属膜58を堆積させ、イオン注入
により不純物D′を高融点金属膜58中に導入する(図
7(d))。更に、熱処理を行うことによりソース・ド
レイン領域に高融点シリサイド層59が形成され、かつ
不純物D′を含む高融点金属膜58から高濃度不純物拡
散層60が形成され(図7(e))、LDD構造を有す
るMOSトランジスタが完成する。
First, an oxide film 52 and a polycrystalline silicon film 53 containing impurities are formed in this order on a semiconductor substrate 51, and then the polycrystalline silicon 53 is processed into a gate electrode 54 shape (FIG. 7A). . Next, the impurity D is ion-implanted into the semiconductor substrate 51 using the gate electrode 54 as a mask to form a low-concentration impurity diffusion layer 55 (FIG. 7B). Then, after depositing a polycrystalline silicon film containing impurities on the entire surface of the semiconductor substrate 51, anisotropic etching is performed so that only the periphery of the gate electrode 54 of the polycrystalline silicon film remains as the gate sidewall 57 (FIG. 7 ( c)). Next, the refractory metal film 58 is deposited on the entire surface of the semiconductor substrate 51, and the impurity D ′ is introduced into the refractory metal film 58 by ion implantation (FIG. 7D). Further, heat treatment is performed to form a high melting point silicide layer 59 in the source / drain regions, and a high concentration impurity diffusion layer 60 is formed from the high melting point metal film 58 containing the impurity D ′ (FIG. 7E). A MOS transistor having an LDD structure is completed.

【0006】上記したような従来のLDD構造を備えた
半導体装置の製造方法は例えば特開昭63−12217
4号公報や特開平4−305938号公報などに開示さ
れている。
A method of manufacturing a semiconductor device having the conventional LDD structure as described above is disclosed in, for example, Japanese Patent Laid-Open No. 63-12217.
No. 4 and Japanese Patent Laid-Open No. 4-305938.

【0007】[0007]

【発明が解決しようとする課題】上記したような従来の
LDD構造を備えた半導体装置の製造方法には、半導体
素子の微細化に伴い以下のような問題があった。
The above-described conventional method of manufacturing a semiconductor device having an LDD structure has the following problems with the miniaturization of semiconductor elements.

【0008】まず、LDD構造を備えた半導体素子は、
ゲート電極側壁の下部の高電界層により発生するホット
エレクトロンが側壁内に注入されてしまい、その電界に
より低濃度拡散層の空乏化が進み、抵抗が更に高くな
る。また、従来のイオン注入装置で不純物を注入する
と、予定の接合深さよりもイオンが結晶格子間を直進
し、半導体基板中に深く進入し、浅い領域でイオンを注
入することが困難であった。そのために従来のイオン注
入法では予定の接合深さより深くなる場合もある。これ
により実際の接合深さと設計値の接合深さとが異なり、
実効的なチャンネル長が変動し、閾値電圧が変動するこ
とが懸念される。
First, the semiconductor device having the LDD structure is
Hot electrons generated by the high electric field layer below the side wall of the gate electrode are injected into the side wall, and the electric field causes depletion of the low concentration diffusion layer to further increase the resistance. Further, when impurities are implanted by a conventional ion implanter, it is difficult for the ions to go straight into the semiconductor substrate beyond the intended junction depth, deeply penetrate into the semiconductor substrate, and implant the ions in a shallow region. Therefore, in the conventional ion implantation method, the junction depth may be deeper than expected. As a result, the actual welding depth and the welding depth of the design value differ,
There is concern that the effective channel length may fluctuate and the threshold voltage may fluctuate.

【0009】また、従来のイオン注入法で半導体基板中
にイオンを注入すると、半導体基板中に結晶欠陥が生
じ、イオン注入後に半導体基板に熱処理を施して結晶欠
陥を回復させることも困難となる。上述した半導体基板
の結晶欠陥より接合リーク電流が増大し、半導体回路の
特性の劣化を招く原因となる。特に、軽元素であり、拡
散係数の大きいホウ素をイオン注入により半導体基板中
に注入する際には重大な問題となる。
Further, when ions are implanted into the semiconductor substrate by the conventional ion implantation method, crystal defects are generated in the semiconductor substrate, and it is difficult to heat the semiconductor substrate after the ion implantation to recover the crystal defects. Junction leakage current increases due to the above-described crystal defects of the semiconductor substrate, which causes deterioration of the characteristics of the semiconductor circuit. In particular, it is a serious problem when implanting boron, which is a light element and has a large diffusion coefficient, into a semiconductor substrate by ion implantation.

【0010】そこで、本発明の目的は、信頼性の高い半
導体装置及びその製造方法を提供することにある。ま
た、本発明の第2の目的は、半導体装置のソース・ドレ
イン層の低抵抗化に寄与することにある。更に本発明の
第3の目的は、不純物拡散層の接合深さを浅くすること
ができる半導体装置を提供することにある。
Therefore, an object of the present invention is to provide a highly reliable semiconductor device and its manufacturing method. A second object of the present invention is to contribute to lowering the resistance of the source / drain layer of the semiconductor device. Further, a third object of the present invention is to provide a semiconductor device capable of reducing the junction depth of the impurity diffusion layer.

【0011】[0011]

【課題を解決するための手段】上記した目的は本発明に
よれば、半導体基板上に形成されたフッ素を含有する絶
縁膜と、前記絶縁膜上に形成された不純物を含有する不
純物含有膜と、少なくとも前記不純物含有膜と前記絶縁
膜とが接する領域との前記絶縁膜下の前記半導体基板中
に形成され、かつ前記不純物含有膜と同じ不純物を含有
する不純物拡散層とを具備することを特徴とする半導体
装置及び半導体基板中に不純物拡散層を形成する方法に
於て、半導体基板上にフッ素を含有する絶縁膜を形成す
る工程と、前記絶縁膜上に不純物を含有する不純物含有
膜を形成する工程と、前記半導体基板に熱処理を施すこ
とにより、前記不純物含有膜と前記絶縁膜とが接する領
域に於て前記不純物含有膜から前記絶縁膜を介して前記
半導体基板中に前記不純物を拡散させる不純物拡散工程
とを具備することを特徴とする半導体装置の製造方法を
提供することにより達成される。
According to the present invention, the above object is to provide an insulating film containing fluorine formed on a semiconductor substrate, and an impurity containing film containing impurities formed on the insulating film. An impurity diffusion layer formed in the semiconductor substrate below the insulating film at least in a region where the impurity containing film and the insulating film are in contact with each other, and containing the same impurity as the impurity containing film. A method of forming an impurity diffusion layer in a semiconductor device and a semiconductor substrate, the method comprising: forming an insulating film containing fluorine on the semiconductor substrate; and forming an impurity containing film containing impurities on the insulating film. And a heat treatment is performed on the semiconductor substrate so that the impurity-containing film and the insulating film contact each other in the region where the impurity-containing film and the insulating film are in contact with each other. It is achieved by providing a method of manufacturing a semiconductor device characterized by comprising an impurity diffusion step of diffusing impurities.

【0012】[0012]

【作用】このように、本発明によれば、半導体基板上に
フッ素を含有する膜と、フッ素を含有する膜上に形成さ
れた第1の不純物を含有する膜とに熱処理を施すことに
より、半導体基板中に浅い第1の不純物を含有する不純
物拡散層を形成することにより、リーク電流増大の原因
となる結晶欠陥の少ない半導体装置が得られる。更に、
ゲート電極側壁の下部に形成された不純物拡散層から生
じるホットエレクトロンがゲート電極側壁部からゲート
電極に注入されないため不純物拡散層の低抵抗化に寄与
することができる。
As described above, according to the present invention, by performing the heat treatment on the film containing fluorine on the semiconductor substrate and the film containing the first impurity formed on the film containing fluorine, By forming the shallow impurity diffusion layer containing the first impurity in the semiconductor substrate, a semiconductor device with few crystal defects causing an increase in leak current can be obtained. Furthermore,
Since hot electrons generated from the impurity diffusion layer formed under the side wall of the gate electrode are not injected into the gate electrode from the side wall of the gate electrode, the resistance of the impurity diffusion layer can be reduced.

【0013】[0013]

【実施例】以下、本発明の好適実施例を添付の図面につ
いて詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0014】図1(a)〜図1(i)は、本発明に係わ
る第1の実施例のMOSトランジスタの製造工程図であ
る。まず、半導体基板11上に厚さ10nm〜20nm
程度の酸化膜12を熱酸化法により形成し、この酸化膜
12上に化学気相成長法(CVD法)を用いて厚さ10
0nm〜300nmの多結晶シリコン膜13を堆積させ
る(図1(a))。次に、パターニング技術を用いて多
結晶シリコン膜13をゲート電極14形状に加工し、イ
オン注入法を用いて図1(b)に示す半導体基板11に
フッ素イオンを注入する。その後、エッチング法を用い
てゲート電極14直下以外の酸化膜12を膜厚が0nm
〜10nmとなるようにエッチングする。この工程で酸
化膜12の膜厚の調整を行うことにより、後工程で説明
する低濃度拡散層20の接合深さを調節することもでき
る。場合によっては、酸化膜12の膜厚を0〜10nm
以外の厚さとなるようにエッチングしても良い。
FIGS. 1A to 1I are manufacturing process diagrams of a MOS transistor according to the first embodiment of the present invention. First, the thickness of the semiconductor substrate 11 is 10 nm to 20 nm.
The oxide film 12 having a thickness of about 10 is formed by a thermal oxidation method, and a thickness of 10 is formed on the oxide film 12 by a chemical vapor deposition method (CVD method).
A polycrystalline silicon film 13 having a thickness of 0 nm to 300 nm is deposited (FIG. 1 (a)). Next, the polycrystalline silicon film 13 is processed into the shape of the gate electrode 14 using a patterning technique, and fluorine ions are implanted into the semiconductor substrate 11 shown in FIG. 1B using an ion implantation method. After that, the oxide film 12 other than immediately below the gate electrode 14 is etched to a thickness of 0 nm by using an etching method.
Etching is performed to have a thickness of 10 nm. By adjusting the film thickness of the oxide film 12 in this step, the junction depth of the low-concentration diffusion layer 20 described in a later step can be adjusted. Depending on the case, the film thickness of the oxide film 12 is 0 to 10 nm.
You may etch so that it may become thicknesses other than.

【0015】図1(b)の状態からCVD法を用いてホ
ウ素を1%〜20%含有したシリコン酸化膜(BSG
膜)15を半導体基板11上に堆積させる(図1
(c))。そして、異方性エッチング技術を用いてBS
G膜15をゲート電極14の側壁17形状に加工する。
このとき、ゲート電極14の直下とゲート電極14側壁
17の直下に形成された酸化膜12以外に形成された酸
化膜12は除去され、半導体基板11の表面が露出する
(図1(d))。
From the state of FIG. 1B, a silicon oxide film (BSG) containing 1% to 20% of boron is formed by the CVD method.
A film 15 is deposited on the semiconductor substrate 11 (FIG. 1).
(C)). Then, using anisotropic etching technology, BS
The G film 15 is processed into the shape of the sidewall 17 of the gate electrode 14.
At this time, the oxide film 12 formed except for the oxide film 12 formed immediately below the gate electrode 14 and directly below the side wall 17 of the gate electrode 14 is removed, and the surface of the semiconductor substrate 11 is exposed (FIG. 1D). .

【0016】次に、高融点金属であるチタニウム16を
公知のスパッタ法により半導体基板11上に堆積させ
(図1(e))、ホウ素がチタニウム膜16中に入るよ
うに、加速エネルギー10keV〜30keV、ドープ
量3E15cm2〜1E16cm2程度の条件で半導体基
板11にホウ素をイオン注入する(図1(f))。
Next, titanium 16 which is a refractory metal is deposited on the semiconductor substrate 11 by a known sputtering method (FIG. 1 (e)), and the acceleration energy is 10 keV to 30 keV so that boron can enter the titanium film 16. Then, boron is ion-implanted into the semiconductor substrate 11 under the condition that the doping amount is about 3E15 cm 2 to 1E16 cm 2 (FIG. 1F).

【0017】上記半導体基板11に900℃〜1200
℃で5秒間〜60秒間の熱処理を施すことにより、チタ
ニウム膜16と半導体基板11との界面及びチタニウム
膜16とゲート電極14との界面にチタンシリサイド層
18が形成される。同時にチタンシリサイド層18直下
の半導体基板11内には、チタニウム膜16に含まれて
いたホウ素が拡散して高濃度拡散層19が形成される。
また、半導体基板11のゲート電極14の側壁15直下
の領域には、該側壁15のBSG膜に含まれていたホウ
素が拡散し、低濃度拡散層20が形成される。更に、チ
タニウム膜16及びBSG膜からホウ素が拡散して、多
結晶シリコン(ゲート電極)の低抵抗化がなされる。加
えて、側壁17直下に形成された酸化膜12に含まれる
フッ素が、半導体基板11中への側壁17からのホウ素
の拡散を促進する作用を有するため、接合深さが浅い低
濃度拡散層20を形成することができる。ここで、酸化
膜12にフッ素の代わりに塩素を含有させても良い(図
1(g))。
The semiconductor substrate 11 has a temperature of 900 ° C. to 1200 ° C.
By performing heat treatment for 5 seconds to 60 seconds at a temperature, the titanium silicide layer 18 is formed at the interface between the titanium film 16 and the semiconductor substrate 11 and the interface between the titanium film 16 and the gate electrode 14. At the same time, in the semiconductor substrate 11 just below the titanium silicide layer 18, the boron contained in the titanium film 16 is diffused to form a high concentration diffusion layer 19.
Further, in the region immediately below the side wall 15 of the gate electrode 14 of the semiconductor substrate 11, the boron contained in the BSG film of the side wall 15 is diffused to form the low concentration diffusion layer 20. Further, boron diffuses from the titanium film 16 and the BSG film, and the resistance of the polycrystalline silicon (gate electrode) is reduced. In addition, since the fluorine contained in the oxide film 12 formed immediately below the side wall 17 has an action of promoting the diffusion of boron from the side wall 17 into the semiconductor substrate 11, the low concentration diffusion layer 20 having a shallow junction depth. Can be formed. Here, the oxide film 12 may contain chlorine instead of fluorine (FIG. 1G).

【0018】上記半導体基板11の側壁17上に堆積し
たシリサイド化しなかったチタニウム膜16をエッチン
グ技術により除去し(図1(h))、ホウ素を高濃度に
含んだ側壁17及び側壁17直下の酸化膜12をエッチ
ング技術により除去し、再度CVD法により不純物を含
まない酸化膜を堆積させてP型MOSトランジスタが完
成する(図示せず)。
The non-silicided titanium film 16 deposited on the side wall 17 of the semiconductor substrate 11 is removed by an etching technique (FIG. 1 (h)), and the side wall 17 containing boron at a high concentration and the oxidation immediately below the side wall 17. The film 12 is removed by an etching technique, and an oxide film containing no impurities is deposited again by the CVD method to complete a P-type MOS transistor (not shown).

【0019】上記実施例はP型MOSトランジスタの製
造方法を示したが、N型MOSトランジスタを製造する
場合は、BSG膜の代わりにリンを含んだ酸化膜(PS
G膜)を用い、図1(f)の工程でホウ素の代わりにヒ
素をチタニウム膜16に注入すればよい。
Although the above embodiment shows the method of manufacturing the P-type MOS transistor, when manufacturing the N-type MOS transistor, an oxide film (PS) containing phosphorus is used instead of the BSG film.
G film) may be used, and arsenic may be implanted into the titanium film 16 instead of boron in the step of FIG.

【0020】尚、低濃度拡散層20の不純物濃度は、熱
処理条件以外に不純物を含んだ側壁酸化膜15中の不純
物濃度、及び側壁下の酸化膜12の膜厚により制御が可
能となっている。また、上記実施例では高融点金属とし
てチタニウムを用いたが、その他タングステン、モリブ
デンを用いてもよい。
The impurity concentration of the low-concentration diffusion layer 20 can be controlled by the impurity concentration in the sidewall oxide film 15 containing impurities and the film thickness of the oxide film 12 below the sidewall, in addition to the heat treatment condition. . Further, although titanium is used as the refractory metal in the above-mentioned embodiment, tungsten or molybdenum may be used instead.

【0021】一方、図1(h)の工程を行わないで、図
1(g)の工程の後に、図2に示す工程を行ってもよ
い。図2(a)及び図2(b)は、本発明に係わる配線
層を含むMOSトランジスタ製造工程図である。
On the other hand, the step shown in FIG. 2 may be carried out after the step shown in FIG. 1G without carrying out the step shown in FIG. 2 (a) and 2 (b) are manufacturing process diagrams of a MOS transistor including a wiring layer according to the present invention.

【0022】図1(g)の工程の後に、半導体基板11
の全面にフォトレジスト22を形成し、ゲート電極14
上に形成されたフォトレジスト22のみを取り除く(図
2(a))。そして、ゲート電極14上に形成されたチ
タニウム膜16をエッチング法を用いて除去する。その
後、層間絶縁膜23を半導体基板11上に形成し、更に
ソース・ドレイン領域上に公知のエッチング法を用いて
コンタクトホール24を形成する。このコンタクトホー
ル24の底面は、チタニウム膜16に接している。次
に、コンタクトホール24内面を覆う配線25を形成す
る(図2(b))。チタニウム膜16を部分的に残すこ
とにより、拡散層の低抵抗化を行うことが可能となる。
更に、チタニウム膜16を電極の一部として用いること
によりコンタクトホールをシフトして素子分離領域21
上に形成できるため、素子の横方向の微細化が可能とな
る。
After the step of FIG. 1G, the semiconductor substrate 11
Photoresist 22 is formed on the entire surface of the gate electrode 14
Only the photoresist 22 formed above is removed (FIG. 2A). Then, the titanium film 16 formed on the gate electrode 14 is removed by using an etching method. After that, an interlayer insulating film 23 is formed on the semiconductor substrate 11, and contact holes 24 are further formed on the source / drain regions by using a known etching method. The bottom surface of the contact hole 24 is in contact with the titanium film 16. Next, the wiring 25 that covers the inner surface of the contact hole 24 is formed (FIG. 2B). By leaving the titanium film 16 partially, it is possible to reduce the resistance of the diffusion layer.
Further, by using the titanium film 16 as a part of the electrode, the contact hole is shifted and the element isolation region 21 is removed.
Since it can be formed on the upper side, the element can be miniaturized in the lateral direction.

【0023】本発明に係わる第2の実施例であるMOS
トランジスタの製造方法を図3に基づいて説明する。ま
ず、半導体基板11上に厚さ10nm〜20nm程度の
酸化膜に注入を熱酸化法によって形成し、酸化膜12上
に公知の化学気相成長法(CVD法)により厚さ100
nm〜300nmのホウ素を含んだ多結晶シリコン膜1
3を堆積させる(図3(a))。次に、多結晶シリコン
膜13をパターニング技術を用いて、ゲート電極14形
状に加工し(図3(b))、フッ素イオンをイオン注入
法によりゲート電極14直下の酸化膜12以外の領域に
形成された酸化膜27中に導入する(図3(c))。
Second embodiment of MOS according to the present invention
A method of manufacturing a transistor will be described with reference to FIG. First, implantation is formed on the semiconductor substrate 11 into an oxide film having a thickness of about 10 nm to 20 nm by a thermal oxidation method, and the oxide film 12 having a thickness of 100 is formed by a known chemical vapor deposition method (CVD method).
nm-300 nm Boron Polycrystalline Silicon Film 1
3 is deposited (FIG. 3A). Next, the polycrystalline silicon film 13 is processed into the shape of the gate electrode 14 by using a patterning technique (FIG. 3B), and fluorine ions are formed in a region other than the oxide film 12 immediately below the gate electrode 14 by an ion implantation method. It is introduced into the formed oxide film 27 (FIG. 3C).

【0024】その後、厚さ100nm〜300nmのホ
ウ素を含んだ多結晶シリコン膜28をCVD法により堆
積させ(図3(d))、異方性エッチング技術を用いて
多結晶シリコン膜28をゲート電極14の側壁29の形
状に加工する(図3(e))。このとき、ゲート電極1
4とゲート電極14側壁との直下以外に形成された酸化
膜27は除去される。
Thereafter, a polycrystalline silicon film 28 containing boron having a thickness of 100 nm to 300 nm is deposited by the CVD method (FIG. 3 (d)), and the polycrystalline silicon film 28 is gated by an anisotropic etching technique. The side wall 29 of 14 is processed (FIG. 3E). At this time, the gate electrode 1
4 and the oxide film 27 formed just below the side wall of the gate electrode 14 is removed.

【0025】次に、高融点金属であるチタニウム膜16
をスパッタリング法により半導体基板11上に堆積させ
(図3(f))、ホウ素がチタニウム膜16中に入るよ
うに、ホウ素イオンを加速エネルギー10keV〜30
keV、ドープ量3E15cm2〜1E16cm2程度の
条件でイオン注入する(図3(g))。更に、この半導
体基板11に温度900℃〜1200℃、時間5秒間〜
60秒間の熱処理を施すことにより、チタニウム膜16
と半導体基板11との界面及びチタニウム膜16とゲー
ト電極14との界面にチタンシリサイド層18が形成さ
れる。同時にチタンシリサイド層18直下の半導体基板
11中には、チタニウム膜16に含まれているホウ素が
拡散して高濃度拡散層19が形成される。更に、ゲート
電極14側壁29直下の酸化膜27に含まれるフッ素に
より拡散が促進されるため、半導体基板11のゲート電
極14の側壁29直下の領域には低濃度拡散層20が形
成される(図3(h))。ここで、ホウ素を含有するゲ
ート側壁29直下に形成された酸化膜27に含有される
フッ素により半導体基板11中へのゲート側壁29のホ
ウ素の拡散が促進されるため、半導体基板11中への接
合深さが浅い低濃度拡散層20を形成することが可能と
なる。尚、酸化膜27にフッ素に代えて塩素を含有させ
ても良い。
Next, the titanium film 16 which is a refractory metal
Is deposited on the semiconductor substrate 11 by a sputtering method (FIG. 3 (f)), and boron ions are accelerated at an energy of 10 keV to 30 so that the boron enters the titanium film 16.
Ion implantation is performed under the conditions of keV and a doping amount of 3E15 cm 2 to 1E16 cm 2 (FIG. 3G). Further, the temperature of the semiconductor substrate 11 is 900 ° C. to 1200 ° C., and the time is 5 seconds to
By performing heat treatment for 60 seconds, the titanium film 16
A titanium silicide layer 18 is formed at the interface between the semiconductor substrate 11 and the semiconductor substrate 11, and at the interface between the titanium film 16 and the gate electrode 14. At the same time, in the semiconductor substrate 11 immediately below the titanium silicide layer 18, the boron contained in the titanium film 16 is diffused to form a high concentration diffusion layer 19. Further, since the diffusion of fluorine is promoted by the fluorine contained in the oxide film 27 immediately below the side wall 29 of the gate electrode 14, the low concentration diffusion layer 20 is formed in the region immediately below the side wall 29 of the gate electrode 14 of the semiconductor substrate 11 (FIG. 3 (h)). Here, since the fluorine contained in the oxide film 27 formed immediately below the gate side wall 29 containing boron promotes the diffusion of boron in the gate side wall 29 into the semiconductor substrate 11, the bonding into the semiconductor substrate 11 is performed. It is possible to form the low concentration diffusion layer 20 having a shallow depth. The oxide film 27 may contain chlorine instead of fluorine.

【0026】続いてシリサイド化しなかったチタニウム
膜16をエッチング技術により除去する(図3
(i))。
Subsequently, the titanium film 16 which has not been silicided is removed by an etching technique (FIG. 3).
(I)).

【0027】ここで、ゲート電極14の多結晶シリコン
膜からなる側壁29は導電性を持つためゲート電極の一
部として働き、側壁の加工寸法によりゲートオーバラッ
プ幅を制御することができる。低濃度拡散層20の不純
物濃度の制御は、ゲート電極14側壁29に含まれる不
純物濃度を制御することによって可能である。
Here, since the side wall 29 of the gate electrode 14 made of a polycrystalline silicon film has conductivity, it functions as a part of the gate electrode, and the gate overlap width can be controlled by the processing size of the side wall. The impurity concentration of the low concentration diffusion layer 20 can be controlled by controlling the impurity concentration contained in the sidewall 29 of the gate electrode 14.

【0028】またソース・ドレイン領域上の高融点シリ
サイド層により、微細MOSトランジスタに於て問題と
なるソース・ドレイン抵抗の増大を防ぐことができる。
上記第2の実施例は、多結晶シリコン膜の不純物導入を
膜の堆積時に行ったが、膜の堆積後にイオン注入によっ
て不純物を導入しても良い。また、高融点金属としてチ
タニウムを用いたが、その他、タングステン、モリブデ
ンなどを用いても良い。
Further, the refractory silicide layer on the source / drain regions can prevent an increase in source / drain resistance which is a problem in a fine MOS transistor.
In the second embodiment, the impurities are introduced into the polycrystalline silicon film during the film deposition, but the impurities may be introduced by ion implantation after the film deposition. Although titanium is used as the refractory metal, tungsten, molybdenum, or the like may be used instead.

【0029】本発明に係わる第3の実施例であるMOS
トランジスタの製造方法を図4に基づいて説明する。ま
ず、半導体基板1上に厚さ10nm〜20nm程度の酸
化膜2を熱酸化法により形成し、酸化膜2上に化学気相
成長法により厚さ100nm〜300nmのホウ素を含
んだ多結晶シリコン膜3を堆積させる(図4(a))。
MOS of the third embodiment according to the present invention
A method of manufacturing a transistor will be described with reference to FIG. First, an oxide film 2 having a thickness of about 10 nm to 20 nm is formed on a semiconductor substrate 1 by a thermal oxidation method, and a polycrystalline silicon film containing boron having a thickness of 100 nm to 300 nm is formed on the oxide film 2 by a chemical vapor deposition method. 3 is deposited (FIG. 4A).

【0030】次に、多結晶シリコン膜3をパターニング
技術を用いてゲート電極4形状に加工する(図4
(b))。そして、フォトレジスト膜Aを半導体基板1
上に形成し、その後ソース領域とゲート電極4とにまた
がる領域のみ残るようにフォトレジスト膜Aを除去す
る。その後、イオン注入法を用いてドレイン領域の酸化
膜2にフッ素イオンを注入し(図4(c))、上記残っ
ているフォトレジスト膜Aを除去する。
Next, the polycrystalline silicon film 3 is processed into a shape of the gate electrode 4 by using a patterning technique (FIG. 4).
(B)). Then, the photoresist film A is applied to the semiconductor substrate 1
Then, the photoresist film A is removed so that only the region extending over the source region and the gate electrode 4 remains. After that, fluorine ions are implanted into the oxide film 2 in the drain region by the ion implantation method (FIG. 4C), and the remaining photoresist film A is removed.

【0031】次に、厚さ100nm〜300nmのホウ
素を含んだ多結晶シリコン膜6をCVD法により堆積さ
せ(図4(d))、異方性エッチング技術を用いて多結
晶シリコン膜をゲート電極4の側壁形状に加工する。こ
のとき、ゲート電極及び側壁直下以外の酸化膜2は除去
され、半導体基板1の表面が露出する(図4(e))。
その後、ホウ素を1%〜20%含むシリコン酸化膜(B
SG膜)7を公知のCVD法により半導体基板1上に堆
積させる(図4(f))。
Next, a polycrystalline silicon film 6 containing boron having a thickness of 100 nm to 300 nm is deposited by a CVD method (FIG. 4 (d)), and the polycrystalline silicon film is formed into a gate electrode by using an anisotropic etching technique. 4 side wall shape is processed. At this time, the oxide film 2 other than immediately below the gate electrode and the side wall is removed, and the surface of the semiconductor substrate 1 is exposed (FIG. 4E).
After that, a silicon oxide film containing 1% to 20% of boron (B
An SG film) 7 is deposited on the semiconductor substrate 1 by a known CVD method (FIG. 4 (f)).

【0032】上記した半導体基板1に温度900℃〜1
200℃、時間5秒間〜60秒間の熱処理を施すことに
より、基板1のBSG膜7と接した領域は、BSG膜7
よりホウ素が拡散し、高濃度拡散層8が形成される。更
にゲート側壁6直下の領域は酸化膜2に含まれるフッ素
がゲート側壁からのホウ素の拡散を促進するため、基板
1中に低濃度拡散層9が形成される(図4(g))。こ
こで、ホウ素を含有するゲート側壁6直下に形成された
フッ素を含有する酸化膜5のフッ素は、半導体基板中へ
のゲート側壁6中のホウ素の拡散を促進する作用を有す
るため、半導体基板1中への接合深さが浅い低濃度拡散
層9を形成することが可能となる。尚、酸化膜2にフッ
素を含有させる代わりに塩素を含有させても良い。
A temperature of 900 ° C. to 1 is applied to the semiconductor substrate 1 described above.
By performing heat treatment at 200 ° C. for a time of 5 seconds to 60 seconds, the region of the substrate 1 in contact with the BSG film 7 is
Boron is further diffused, and the high concentration diffusion layer 8 is formed. Further, in the region immediately below the gate side wall 6, fluorine contained in the oxide film 2 promotes the diffusion of boron from the gate side wall, so that the low concentration diffusion layer 9 is formed in the substrate 1 (FIG. 4G). Here, since the fluorine of the fluorine-containing oxide film 5 formed immediately below the gate side wall 6 containing boron has a function of promoting diffusion of boron in the gate side wall 6 into the semiconductor substrate, the semiconductor substrate 1 It is possible to form the low-concentration diffusion layer 9 having a shallow junction depth therein. It should be noted that instead of containing fluorine in the oxide film 2, chlorine may be contained.

【0033】ゲート側壁6の多結晶シリコン膜は導電性
を持つため、ゲート電極の一部として働き、側壁の加工
寸法によりゲートオーバラップ幅を制御することができ
る。また低濃度層の濃度は、ゲート側壁6に含まれる不
純物濃度によって制御することもできる。
Since the polycrystalline silicon film on the gate side wall 6 has conductivity, it functions as a part of the gate electrode, and the gate overlap width can be controlled by the processing size of the side wall. The concentration of the low concentration layer can also be controlled by the concentration of impurities contained in the gate sidewall 6.

【0034】上記実施例では、多結晶シリコン膜への不
純物導入を膜の堆積時に行ったが、膜の堆積後にイオン
注入により行っても良い。また、上記実施例では、フッ
素イオン注入後のゲート電極以外の領域の酸化膜エッチ
ングを、ゲート電極をマスクとして行ったが、ゲート電
極の形成時に用いたレジストマスクX(図5(a)参
照)をフッ素イオン注入時にも除去せずに(図5(b)
参照)その後の酸化膜エッチングのマスクに使用しても
良い(図5(c)参照)。
In the above embodiment, the impurity is introduced into the polycrystalline silicon film at the time of depositing the film, but it may be introduced by ion implantation after the film is deposited. Further, in the above-mentioned embodiment, the oxide film etching of the region other than the gate electrode after the fluorine ion implantation is performed using the gate electrode as a mask. However, the resist mask X used when forming the gate electrode (see FIG. 5A). Is not removed even during fluorine ion implantation (Fig. 5 (b)).
It may be used as a mask for subsequent oxide film etching (see FIG. 5C).

【0035】[0035]

【発明の効果】上記した説明により明らかなように、従
来のイオン注入法によりLDD構造を備えた半導体素子
は、半導体基板中に結晶欠陥が生じているため、リーク
電流の増大な原因となり、かつ接合深さが深い拡散層に
よりチャンネル長が変動し、閾値が変動する虞れがあっ
たが、本発明による半導体装置及びその製造方法によれ
ば、低濃度及び高濃度のソース・ドレイン拡散層を、共
に熱拡散により不純物を半導体基板の外部から導入して
浅い接合深さとすることができ、かつリーク電流の増大
な原因となる結晶欠陥がない拡散層を形成することがで
きる。
As is apparent from the above description, the semiconductor element having the LDD structure formed by the conventional ion implantation method causes the increase of the leak current because the crystal defects are generated in the semiconductor substrate. The diffusion layer having a deep junction depth may change the channel length and the threshold value may change. However, according to the semiconductor device and the method for manufacturing the same according to the present invention, the low concentration and high concentration source / drain diffusion layers may be formed. In both cases, impurities can be introduced from the outside of the semiconductor substrate by thermal diffusion to have a shallow junction depth, and a diffusion layer having no crystal defect that causes an increase in leak current can be formed.

【0036】尚、従来のLDD構造を備えた半導体素子
は、ゲート電極側壁の下部の高電界層により発生するホ
ストエレクトロンが側壁内に注入される虞れがあり、そ
の電界により低濃度拡散層の空乏化が進み、抵抗が更に
高くなっていたが、本発明によれば、ゲート電極側壁の
下部から生じるホットエレクトロンが側壁内から注入さ
れない。また、フッ素を含有する絶縁膜と、この絶縁膜
上に第1の不純物を含有する膜とを具備する半導体装置
を熱処理して、絶縁膜直下に接合深さの浅い第1の不純
物を含有する不純物拡散層を形成することもできるた
め、リーク電流の増大を防止でき、かつゲート電極側壁
からゲート電極にホットエレクトロンが注入されること
がない。
In the semiconductor device having the conventional LDD structure, host electrons generated by the high electric field layer below the side wall of the gate electrode may be injected into the side wall. Although the depletion proceeded and the resistance was further increased, according to the present invention, hot electrons generated from the lower portion of the side wall of the gate electrode are not injected from the side wall. Further, the semiconductor device including the insulating film containing fluorine and the film containing the first impurity on the insulating film is heat-treated to contain the first impurity having a shallow junction depth immediately below the insulating film. Since the impurity diffusion layer can also be formed, it is possible to prevent an increase in leak current and prevent hot electrons from being injected into the gate electrode from the side wall of the gate electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(h)は、本発明に係わる第1の実施
例であるMOSトランジスタの製造工程図。
1A to 1H are manufacturing process diagrams of a MOS transistor according to a first embodiment of the present invention.

【図2】(a)、(b)は、本発明に係わる配線層を含
むMOSトランジスタの製造工程図。
2A and 2B are manufacturing process diagrams of a MOS transistor including a wiring layer according to the present invention.

【図3】(a)〜(i)は、本発明に係わる第2の実施
例であるMOSトランジスタの製造工程図。
3A to 3I are manufacturing process diagrams of a MOS transistor according to a second embodiment of the present invention.

【図4】(a)〜(g)は、本発明に係わる第3の実施
例であるMOSトランジスタの製造工程図。
4A to 4G are manufacturing process diagrams of a MOS transistor according to a third embodiment of the present invention.

【図5】(a)〜(c)は、本発明の第1の実施例乃至
第3の実施例の変形実施例であるゲート電極の製造工程
図。
5A to 5C are manufacturing process diagrams of a gate electrode which is a modification of the first to third embodiments of the present invention.

【図6】(a)〜(g)は、第1の従来方法に係わるM
OSトランジスタの製造工程図。
6 (a) to 6 (g) are diagrams showing M according to the first conventional method.
FIG. 6 is a manufacturing process diagram of an OS transistor.

【図7】(a)〜(e)は、第2の従来方法に係わるM
OSトランジスタの製造工程図。
7 (a) to 7 (e) are diagrams showing M according to a second conventional method.
FIG. 6 is a manufacturing process diagram of an OS transistor.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 酸化膜 3 多結晶シリコン膜 4 ゲート電極 6 ゲート側壁 7 BSG膜 8 高濃度拡散層 9 低濃度拡散層 11 半導体基板 12 酸化膜 13 多結晶シリコン膜 14 ゲート電極 15 BSG膜 16 チタニウム膜 17 ゲート側壁 18 チタンシリサイド層 19 高濃度拡散層 20 低濃度拡散層 21 素子分離領域 22 フォトレジスト 23 層間絶縁膜 24 コンタクトホール 25 配線 27 酸化膜 28 多結晶シリコン膜 29 ゲート側壁 41 半導体基板 42 酸化膜 43 多結晶シリコン膜 44 ゲート電極 45 低濃度不純物拡散層 46 多結晶シリコン膜 47 ゲート側壁 48 高濃度不純物拡散層 51 半導体基板 52 酸化膜 53 多結晶シリコン膜 54 ゲート電極 55 低濃度不純物拡散層 57 ゲート側壁 58 高融点金属 59 高融点シリサイド層 60 高濃度不純物拡散層 1 semiconductor substrate 2 oxide film 3 polycrystalline silicon film 4 gate electrode 6 gate sidewall 7 BSG film 8 high concentration diffusion layer 9 low concentration diffusion layer 11 semiconductor substrate 12 oxide film 13 polycrystalline silicon film 14 gate electrode 15 BSG film 16 titanium film 17 Gate Side Wall 18 Titanium Silicide Layer 19 High Concentration Diffusion Layer 20 Low Concentration Diffusion Layer 21 Element Isolation Region 22 Photoresist 23 Interlayer Insulation Film 24 Contact Hole 25 Wiring 27 Oxide Film 28 Polycrystalline Silicon Film 29 Gate Sidewall 41 Semiconductor Substrate 42 Oxide Film 43 Polycrystalline Silicon Film 44 Gate Electrode 45 Low Concentration Impurity Diffusion Layer 46 Polycrystalline Silicon Film 47 Gate Sidewall 48 High Concentration Impurity Diffusion Layer 51 Semiconductor Substrate 52 Oxide Film 53 Polycrystalline Silicon Film 54 Gate Electrode 55 Low Concentration Impurity Diffusion Layer 57 Gate Side wall 58 High melting Metal 59 refractory silicide layer 60 high concentration impurity diffusion layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成されたフッ素を含
有する絶縁膜と、 前記絶縁膜上に形成された不純物を含有する不純物含有
膜と、 少なくとも前記不純物含有膜と前記絶縁膜とが接する領
域との前記絶縁膜下の前記半導体基板中に形成され、か
つ前記不純物含有膜と同じ不純物を含有する不純物拡散
層とを具備することを特徴とする半導体装置。
1. An insulating film containing fluorine formed on a semiconductor substrate, an impurity containing film containing impurities formed on the insulating film, and a region where at least the impurity containing film and the insulating film are in contact with each other. And an impurity diffusion layer formed in the semiconductor substrate below the insulating film and containing the same impurities as the impurity-containing film.
【請求項2】 半導体基板中に不純物拡散層を形成す
る方法に於て、 半導体基板上にフッ素を含有する絶縁膜を形成する工程
と、 前記絶縁膜上に不純物を含有する不純物含有膜を形成す
る工程と、 前記半導体基板に熱処理を施すことにより、前記不純物
含有膜と前記絶縁膜とが接する領域に於て前記不純物含
有膜から前記絶縁膜を介して前記半導体基板中に前記不
純物を拡散させる不純物拡散工程とを具備することを特
徴とする半導体装置の製造方法。
2. A method of forming an impurity diffusion layer in a semiconductor substrate, the method comprising: forming an insulating film containing fluorine on the semiconductor substrate; and forming an impurity containing film containing impurities on the insulating film. And diffusing the impurities into the semiconductor substrate from the impurity-containing film through the insulating film in a region where the impurity-containing film and the insulating film are in contact with each other by subjecting the semiconductor substrate to a heat treatment. A method of manufacturing a semiconductor device, comprising: an impurity diffusion step.
JP9564794A 1994-04-08 1994-04-08 Semiconductor device and its manufacture Withdrawn JPH07283400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9564794A JPH07283400A (en) 1994-04-08 1994-04-08 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9564794A JPH07283400A (en) 1994-04-08 1994-04-08 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH07283400A true JPH07283400A (en) 1995-10-27

Family

ID=14143305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9564794A Withdrawn JPH07283400A (en) 1994-04-08 1994-04-08 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH07283400A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908947A2 (en) * 1997-09-29 1999-04-14 Matsushita Electronics Corporation Method for fabricating semiconductor device with pMIS transistor
US6882018B2 (en) 1996-10-31 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device that include silicide layers
KR100549573B1 (en) * 1999-12-30 2006-02-08 주식회사 하이닉스반도체 Method For Manufacturing Of MOS - Transitor
JP2006345003A (en) * 2006-09-20 2006-12-21 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
JP2010010709A (en) * 2009-10-08 2010-01-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2010157756A (en) * 2010-02-17 2010-07-15 Semiconductor Energy Lab Co Ltd Semiconductor device
US8390065B2 (en) 2009-06-26 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8426918B2 (en) 2009-06-26 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993992B2 (en) 1996-10-31 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6882018B2 (en) 1996-10-31 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device that include silicide layers
US7223666B2 (en) 1996-10-31 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device that includes a silicide region that is not in contact with the lightly doped region
US7622740B2 (en) 1996-10-31 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
EP0908947A2 (en) * 1997-09-29 1999-04-14 Matsushita Electronics Corporation Method for fabricating semiconductor device with pMIS transistor
KR100549573B1 (en) * 1999-12-30 2006-02-08 주식회사 하이닉스반도체 Method For Manufacturing Of MOS - Transitor
JP2006345003A (en) * 2006-09-20 2006-12-21 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
US8426918B2 (en) 2009-06-26 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8390065B2 (en) 2009-06-26 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2010010709A (en) * 2009-10-08 2010-01-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP4481361B2 (en) * 2009-10-08 2010-06-16 株式会社半導体エネルギー研究所 Semiconductor device
JP4628485B2 (en) * 2010-02-17 2011-02-09 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
JP2010157756A (en) * 2010-02-17 2010-07-15 Semiconductor Energy Lab Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US5963803A (en) Method of making N-channel and P-channel IGFETs with different gate thicknesses and spacer widths
KR19990030992A (en) Semiconductor device with double spacer and method of manufacturing same
JP2001332630A (en) Method of manufacturing semiconductor device
US5849622A (en) Method of forming a source implant at a contact masking step of a process flow
JPH07283400A (en) Semiconductor device and its manufacture
JP2006202860A (en) Semiconductor device and its manufacturing method
JP2000232075A (en) Manufacture of semiconductor device
US6762468B2 (en) Semiconductor device and method of manufacturing the same
JPH10294453A (en) Manufacture of semiconductor device
JPH09199720A (en) Mos type semiconductor device and its fabrication
JPH09306862A (en) Manufacturing semiconductor device
JP3423081B2 (en) Method for manufacturing semiconductor device
JPH02153538A (en) Manufacture of semiconductor device
US6013554A (en) Method for fabricating an LDD MOS transistor
US6194298B1 (en) Method of fabricating semiconductor device
JPH0637106A (en) Manufacture of semiconductor device
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JPH06163576A (en) Manufacture of semiconductor device
KR100274979B1 (en) Method for forming contact of semiconductor device
JP3311082B2 (en) Method for manufacturing semiconductor device
JPH07249761A (en) Semiconductor device and its fabrication
JPH10261795A (en) Insulating gate-type field-effect transistor and its manufacture
JP2001085676A (en) Mos transistor and its manufacturing method
JP2000216384A (en) Method of manufacturing semiconductor device and semiconductor device manufactured by the method
KR100400305B1 (en) Method for manufacturing CMOS

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703