JPH06310527A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH06310527A
JPH06310527A JP12084893A JP12084893A JPH06310527A JP H06310527 A JPH06310527 A JP H06310527A JP 12084893 A JP12084893 A JP 12084893A JP 12084893 A JP12084893 A JP 12084893A JP H06310527 A JPH06310527 A JP H06310527A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
film
gate electrode
silicon film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12084893A
Other languages
Japanese (ja)
Other versions
JP3311082B2 (en
Inventor
Yuuri Mizuo
有里 水尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12084893A priority Critical patent/JP3311082B2/en
Publication of JPH06310527A publication Critical patent/JPH06310527A/en
Application granted granted Critical
Publication of JP3311082B2 publication Critical patent/JP3311082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a shallow junction of good junction property without generating detects due to ion implantation during LDD structure formation. CONSTITUTION:After a gate electrode 2 is formed on a silicon substrate 1, an insulation film 3 and a polycrystalline silicon film 4 are deposited one by one. While side walls 5 are formed at both sides of a gate electrode 2 by etching the polycrystalline silicon film 4 anisotropically, the insulation film 3 is etched to a specified depth. A polycrystalline silicon film 6 is deposited thereon, impurities are implanted by ion implantation 7 to the polycrystalline silicon film 6 and the impurities are diffused into the silicon substrate 1 by thermal treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関し、特にMOS型半導体集積回路におけるL
DD構造を備えた半導体装置及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to an L-type MOS semiconductor integrated circuit.
The present invention relates to a semiconductor device having a DD structure and a manufacturing method thereof.

【0002】[0002]

【従来の技術】MOS型半導体装置では、ドレイン電界
を緩和してホットキャリア耐性を高めるための構造とし
て、LDD(Lightly Doped Drai
n)構造が知られている。このLDD構造を形成する最
も一般的な方法は、まず、ゲート電極をマスクにして半
導体基板に低濃度に不純物をイオン注入して低濃度不純
物領域を形成し、次に、ゲート電極に側壁を形成した
後、そのゲート電極と側壁とをマスクにして半導体基板
に不純物をイオン注入して高濃度不純物領域を形成する
という方法である。
2. Description of the Related Art In a MOS type semiconductor device, an LDD (Lightly Doped Drain) is used as a structure for relaxing a drain electric field and enhancing hot carrier resistance.
n) The structure is known. The most general method of forming this LDD structure is to first implant a low concentration impurity region into a semiconductor substrate using a gate electrode as a mask to form a low concentration impurity region, and then form a sidewall on the gate electrode. After that, using the gate electrode and the side wall as a mask, impurities are ion-implanted into the semiconductor substrate to form a high-concentration impurity region.

【0003】図2に、上述した従来の方法を示す。この
従来例では、まず、図2(a)に示す様に、シリコン半
導体基板1の表面にゲート絶縁膜としてのシリコン酸化
膜を熱酸化によって形成する。そして、全面に多結晶シ
リコン膜を堆積させ、この多結晶シリコン膜をゲート電
極2のパターンに加工した後、このゲート電極2をマス
クとして、イオンビーム7によって、半導体基板1の中
に低濃度の不純物をイオン注入により導入する。
FIG. 2 shows the conventional method described above. In this conventional example, first, as shown in FIG. 2A, a silicon oxide film as a gate insulating film is formed on the surface of the silicon semiconductor substrate 1 by thermal oxidation. Then, after depositing a polycrystalline silicon film on the entire surface and processing the polycrystalline silicon film into a pattern of the gate electrode 2, the gate electrode 2 is used as a mask and the ion beam 7 is applied to the semiconductor substrate 1 so as to have a low concentration. Impurities are introduced by ion implantation.

【0004】次に、図2(b)に示す様に、低濃度拡散
層8が形成された半導体基板1の全面にシリコン酸化膜
10をCVDなどの方法で堆積させる。
Next, as shown in FIG. 2B, a silicon oxide film 10 is deposited on the entire surface of the semiconductor substrate 1 on which the low concentration diffusion layer 8 is formed by a method such as CVD.

【0005】次に、図2(c)に示す様に、このシリコ
ン酸化膜10の全面をRIEなどの方法で異方性エッチ
ングして、ゲート電極2に酸化膜側壁11を形成する。
Next, as shown in FIG. 2C, the entire surface of the silicon oxide film 10 is anisotropically etched by a method such as RIE to form an oxide film sidewall 11 on the gate electrode 2.

【0006】次に、図2(d)に示す様に、ゲート電極
2及び酸化膜側壁11をマスクとして、シリコン半導体
基板1の中に高濃度の不純物をイオン注入により導入す
る。
Next, as shown in FIG. 2D, a high concentration impurity is ion-implanted into the silicon semiconductor substrate 1 using the gate electrode 2 and the oxide film side wall 11 as a mask.

【0007】この後、イオン注入により生じた欠陥を回
復させるため、高温中で数分間の熱処理を行う。
After that, in order to recover the defects caused by the ion implantation, heat treatment is performed for several minutes at a high temperature.

【0008】以上に説明した方法により、図2(e)に
示す様に、酸化膜側壁11が有る部分が低濃度拡散層
8、酸化膜側壁11が無い部分が高濃度拡散層9とな
り、LDD構造が形成される。
By the method described above, as shown in FIG. 2 (e), the portion having the oxide film side wall 11 becomes the low concentration diffusion layer 8, the portion not having the oxide film side wall 11 becomes the high concentration diffusion layer 9, and the LDD. The structure is formed.

【0009】[0009]

【発明が解決しようとする課題】しかし、近年、半導体
素子の微細化に伴い、ソース/ドレイン拡散層の浅接合
化が要求されており、上述した従来の方法には、現在の
イオン注入装置では浅接合化を行うための注入エネルギ
ーの制御が困難であるという問題と、ソース/ドレイン
拡散層の接合深さが拡散により深くなるのを抑えなが
ら、2回のイオン注入により生じた注入欠陥を、高温短
時間の熱処理によって十分に回復させることが困難であ
るという問題があった。
However, in recent years, with the miniaturization of semiconductor elements, it has been required to make the source / drain diffusion layers shallower junctions, and the conventional method described above is not suitable for the current ion implantation apparatus. The problem that it is difficult to control the implantation energy for making a shallow junction, and the implantation defect caused by the two ion implantations while suppressing the junction depth of the source / drain diffusion layer from becoming deeper due to diffusion, There is a problem that it is difficult to recover sufficiently by heat treatment at high temperature for a short time.

【0010】そこで、本発明の目的は、LDD構造形成
工程において、イオン注入による欠陥の発生を低減さ
せ、半導体素子の微細化に対応した浅い接合を有する半
導体装置及びその製造方法を提供することにある。
Therefore, an object of the present invention is to provide a semiconductor device having a shallow junction corresponding to the miniaturization of a semiconductor element and a method for manufacturing the same, in which the generation of defects due to ion implantation is reduced in the LDD structure forming step. is there.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明の半導体装置の製造方法によれば、半導体基
板上に第1の絶縁膜及び導電体膜を順次形成し、これら
をパターンニングしてゲート電極を形成する工程と、全
面に第2の絶縁膜及び第1の多結晶シリコン膜を順次形
成する工程と、前記第1の多結晶シリコン膜を異方性エ
ッチングして、前記ゲート電極の両側に前記第2の絶縁
膜を介して多結晶シリコン膜の側壁を形成するととも
に、前記第1の多結晶シリコン膜が除去された部分の前
記第2の絶縁膜を所定深さまでエッチングする工程と、
全面に第2の多結晶シリコン膜を形成する工程と、前記
第2の多結晶シリコン膜及び前記側壁に不純物を導入す
る工程と、前記第2の多結晶シリコン膜及び前記側壁に
導入した不純物を熱処理により前記半導体基板内に拡散
させる工程とを備えたことを特徴としている。また、上
記課題を解決するために、本発明の半導体装置によれ
ば、半導体基板上に第1の絶縁膜を介して形成されたゲ
ート電極と、前記ゲート電極を覆う第2の絶縁膜と、前
記第2の絶縁膜で覆われたゲート電極の両側に形成され
た多結晶シリコン膜からなる側壁とを備えたことを特徴
としている。
In order to solve the above problems, according to the method of manufacturing a semiconductor device of the present invention, a first insulating film and a conductor film are sequentially formed on a semiconductor substrate, and these are patterned. Forming a gate electrode, sequentially forming a second insulating film and a first polycrystalline silicon film on the entire surface, and anisotropically etching the first polycrystalline silicon film, Sidewalls of the polycrystalline silicon film are formed on both sides of the gate electrode via the second insulating film, and the portion of the second insulating film from which the first polycrystalline silicon film is removed is etched to a predetermined depth. And the process of
A step of forming a second polycrystalline silicon film on the entire surface, a step of introducing impurities into the second polycrystalline silicon film and the side wall, and a step of introducing impurities into the second polycrystalline silicon film and the side wall. And a step of diffusing into the semiconductor substrate by heat treatment. In order to solve the above problems, according to a semiconductor device of the present invention, a gate electrode formed on a semiconductor substrate via a first insulating film, a second insulating film covering the gate electrode, And a side wall made of a polycrystalline silicon film formed on both sides of the gate electrode covered with the second insulating film.

【0012】[0012]

【作用】本発明においては、ゲート電極の側壁を形成す
るためのエッチング工程で、ゲート電極形成後の半導体
基板に堆積した第2の絶縁膜が、側壁の有る部分では厚
くなり、無い部分では薄くなる。従って、後に半導体基
板上に堆積した多結晶シリコン膜をマスクとして不純物
を注入すると、第2の絶縁膜と多結晶シリコン膜との界
面では不純物の濃度は一定となるが、その後の熱処理に
より不純物を第2の絶縁膜中に熱拡散させると、不純物
の基板表面濃度は第2の絶縁膜の膜厚に依存するので、
この不純物をさらに半導体基板中に熱拡散させることに
よって、側壁の有る部分が低濃度拡散層、側壁の無い部
分が高濃度拡散層となるLDD構造を形成できる。
In the present invention, in the etching process for forming the side wall of the gate electrode, the second insulating film deposited on the semiconductor substrate after forming the gate electrode becomes thicker at the portion having the side wall and thinner at the portion not having the side wall. Become. Therefore, when impurities are injected with the polycrystalline silicon film deposited on the semiconductor substrate as a mask later, the impurity concentration becomes constant at the interface between the second insulating film and the polycrystalline silicon film, but the impurity is not removed by the subsequent heat treatment. When thermally diffusing into the second insulating film, the substrate surface concentration of impurities depends on the film thickness of the second insulating film.
By thermally diffusing these impurities into the semiconductor substrate, it is possible to form an LDD structure in which the side wall portion is a low concentration diffusion layer and the side wall portion is a high concentration diffusion layer.

【0013】その結果、本発明においては、半導体基板
内にLDD構造を形成する際に、熱拡散により不純物を
導入するので、半導体基板中に注入欠陥を発生させるこ
となくリーク電流の少ない浅い接合を形成することがで
きる。
As a result, according to the present invention, when the LDD structure is formed in the semiconductor substrate, impurities are introduced by thermal diffusion, so that a shallow junction with a small leak current can be formed in the semiconductor substrate without causing injection defects. Can be formed.

【0014】[0014]

【実施例】以下、MOSトランジスタの製造に適用した
本発明の一実施例を、図1を参照しながら説明する。な
お、図1の各図において図2に示した従来例と同一の構
成部分には同一の符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to the manufacture of MOS transistors will be described below with reference to FIG. In each figure of FIG. 1, the same components as those of the conventional example shown in FIG. 2 are designated by the same reference numerals.

【0015】本実施例においては、図1(a)に示す様
に、シリコン半導体基板1の表面に熱酸化によって厚さ
10〜20nm程度のシリコン酸化膜を形成する。そし
て、CVDなどの方法で厚さ150〜300nm程度の
多結晶シリコン膜を堆積させる。その後、リソグラフィ
ーなどの方法によって、シリコン半導体基板1の上に形
成したシリコン酸化膜及び多結晶シリコン膜のパターン
ニングを行い、ゲート電極2を形成する。
In this embodiment, as shown in FIG. 1A, a silicon oxide film having a thickness of about 10 to 20 nm is formed on the surface of the silicon semiconductor substrate 1 by thermal oxidation. Then, a polycrystalline silicon film having a thickness of about 150 to 300 nm is deposited by a method such as CVD. Thereafter, the silicon oxide film and the polycrystalline silicon film formed on the silicon semiconductor substrate 1 are patterned by a method such as lithography to form the gate electrode 2.

【0016】次に、図1(b)に示す様に、CVDなど
の方法によって、シリコン半導体基板1の全面にシリコ
ン酸化膜やシリコンナイトライド膜などの絶縁膜3を厚
さが10〜30nm程度になるように堆積させる。
Next, as shown in FIG. 1B, an insulating film 3 such as a silicon oxide film or a silicon nitride film having a thickness of about 10 to 30 nm is formed on the entire surface of the silicon semiconductor substrate 1 by a method such as CVD. To be deposited.

【0017】次に、図1(c)に示す様に、CVDなど
の方法によって、多結晶シリコン膜4を厚さが300〜
400nm程度になるように堆積させる。
Next, as shown in FIG. 1C, a polycrystalline silicon film 4 having a thickness of 300 to 300 is formed by a method such as CVD.
It is deposited so as to have a thickness of about 400 nm.

【0018】次に、図1(d)に示す様に、RIEなど
の方法によって、多結晶シリコン膜4を異方性エッチン
グして、ゲート電極2の両側に多結晶シリコン側壁5を
形成する。このとき多結晶シリコン膜4が全て除去され
た部分では絶縁膜3がエッチングされ、その絶縁膜3の
エッチングによる残膜の厚さが5nm以下になるように
する。
Next, as shown in FIG. 1D, the polycrystalline silicon film 4 is anisotropically etched by a method such as RIE to form polycrystalline silicon side walls 5 on both sides of the gate electrode 2. At this time, the insulating film 3 is etched in the portion where the polycrystalline silicon film 4 is completely removed, and the thickness of the residual film due to the etching of the insulating film 3 is set to 5 nm or less.

【0019】次に、図1(e)に示す様に、CVDなど
の方法によって、シリコン半導体基板1の全面に多結晶
シリコン膜6を厚さが200〜350nm程度になるよ
うに堆積させる。
Next, as shown in FIG. 1E, a polycrystalline silicon film 6 is deposited on the entire surface of the silicon semiconductor substrate 1 by a method such as CVD so as to have a thickness of about 200 to 350 nm.

【0020】次に、図1(f)に示す様に、イオンビー
ム7によって、不純物のイオン注入を行う。不純物とし
て砒素を注入する場合は、加速エネルギー40〜70k
eV、ドーズ量5×1015〜1×1016/cm2 程度、
不純物として弗化ホウ素を注入する場合は、加速エネル
ギー30〜50keV、ドーズ量5×1015〜1×10
16/cm2 程度の条件に設定し、不純物のピーク濃度が
シリコン半導体基板1の表面にくるようにする。
Next, as shown in FIG. 1F, ion implantation of impurities is performed by the ion beam 7. When implanting arsenic as an impurity, the acceleration energy is 40 to 70 k.
eV, dose amount about 5 × 10 15 to 1 × 10 16 / cm 2 ,
When boron fluoride is implanted as an impurity, the acceleration energy is 30 to 50 keV and the dose is 5 × 10 15 to 1 × 10.
The condition is set to about 16 / cm 2 so that the peak concentration of impurities comes to the surface of the silicon semiconductor substrate 1.

【0021】次に、図1(g)に示す様に、ランプアニ
ールで1000〜1100℃程度の温度、10〜30秒
程度の時間の熱処理を行う。この時、イオン注入された
不純物がシリコン半導体基板1の中に拡散するが、多結
晶シリコン側壁5が有る部分の絶縁膜3の方が多結晶シ
リコン側壁5が無い部分の絶縁膜3より厚く、この絶縁
膜3を介して不純物を拡散させると、絶縁膜3の厚いと
ころの方が絶縁膜3の薄いところの方よりもシリコン半
導体基板1の表面の不純物濃度が低くなるので、多結晶
シリコン側壁5が有る部分では低濃度拡散層8が、多結
晶シリコン側壁5が無い部分では高濃度拡散層9が形成
される。
Next, as shown in FIG. 1G, heat treatment is performed by lamp annealing at a temperature of about 1000 to 1100 ° C. for a time of about 10 to 30 seconds. At this time, the ion-implanted impurities diffuse into the silicon semiconductor substrate 1, but the insulating film 3 having the polycrystalline silicon side wall 5 is thicker than the insulating film 3 having no polycrystalline silicon side wall 5, When impurities are diffused through the insulating film 3, the thicker portion of the insulating film 3 has a lower impurity concentration on the surface of the silicon semiconductor substrate 1 than the thinner portion of the insulating film 3. A low-concentration diffusion layer 8 is formed where 5 exists, and a high-concentration diffusion layer 9 is formed where there is no polycrystalline silicon side wall 5.

【0022】[0022]

【発明の効果】本発明によれば、熱拡散を用いたLDD
構造を有する半導体装置の製造方法において、イオン注
入による欠陥を発生させることなく、接合特性が良好な
浅い接合の形成が可能になる。
According to the present invention, LDD using thermal diffusion
In the method of manufacturing a semiconductor device having a structure, it is possible to form a shallow junction having good junction characteristics without causing defects due to ion implantation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるLDD構造の製造工程
を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a manufacturing process of an LDD structure according to an embodiment of the present invention.

【図2】従来のLDD構造の製造工程を示す概略断面図
である。
FIG. 2 is a schematic cross-sectional view showing a manufacturing process of a conventional LDD structure.

【符号の説明】[Explanation of symbols]

1 シリコン半導体基板 2 ゲート電極 3 絶縁膜 4 多結晶シリコン膜 5 多結晶シリコン側壁 6 多結晶シリコン膜 7 イオンビーム 8 低濃度拡散層 9 高濃度拡散層 DESCRIPTION OF SYMBOLS 1 Silicon semiconductor substrate 2 Gate electrode 3 Insulating film 4 Polycrystalline silicon film 5 Polycrystalline silicon side wall 6 Polycrystalline silicon film 7 Ion beam 8 Low concentration diffusion layer 9 High concentration diffusion layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に第1の絶縁膜及び導電体
膜を順次形成し、これらをパターンニングしてゲート電
極を形成する工程と、 全面に第2の絶縁膜及び第1の多結晶シリコン膜を順次
形成する工程と、 前記第1の多結晶シリコン膜を異方性エッチングして、
前記ゲート電極の両側に前記第2の絶縁膜を介して多結
晶シリコン膜の側壁を形成するとともに、前記第1の多
結晶シリコン膜が除去された部分の前記第2の絶縁膜を
所定深さまでエッチングする工程と、 全面に第2の多結晶シリコン膜を形成する工程と、 前記第2の多結晶シリコン膜及び前記側壁に不純物を導
入する工程と、 前記第2の多結晶シリコン膜及び前記側壁に導入した不
純物を熱処理により前記半導体基板内に拡散させる工程
とを備えたことを特徴とする半導体装置の製造方法。
1. A step of sequentially forming a first insulating film and a conductor film on a semiconductor substrate and patterning them to form a gate electrode, and a second insulating film and a first polycrystalline film on the entire surface. A step of sequentially forming a silicon film, and anisotropically etching the first polycrystalline silicon film,
Sidewalls of the polycrystalline silicon film are formed on both sides of the gate electrode via the second insulating film, and the second insulating film in a portion where the first polycrystalline silicon film is removed is formed to a predetermined depth. Etching, forming a second polycrystalline silicon film on the entire surface, introducing impurities into the second polycrystalline silicon film and the side wall, the second polycrystalline silicon film and the side wall And a step of diffusing the impurities introduced into the semiconductor substrate into the semiconductor substrate by a heat treatment.
【請求項2】 半導体基板上に第1の絶縁膜を介して形
成されたゲート電極と、 前記ゲート電極を覆う第2の絶縁膜と、 前記第2の絶縁膜で覆われたゲート電極の両側に形成さ
れた多結晶シリコン膜からなる側壁とを備えたことを特
徴とする半導体装置。
2. A gate electrode formed on a semiconductor substrate via a first insulating film, a second insulating film covering the gate electrode, and both sides of the gate electrode covered with the second insulating film. And a side wall made of a polycrystalline silicon film formed on the semiconductor device.
JP12084893A 1993-04-23 1993-04-23 Method for manufacturing semiconductor device Expired - Lifetime JP3311082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12084893A JP3311082B2 (en) 1993-04-23 1993-04-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12084893A JP3311082B2 (en) 1993-04-23 1993-04-23 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH06310527A true JPH06310527A (en) 1994-11-04
JP3311082B2 JP3311082B2 (en) 2002-08-05

Family

ID=14796452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12084893A Expired - Lifetime JP3311082B2 (en) 1993-04-23 1993-04-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3311082B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041953A (en) * 1998-12-24 2000-07-15 김영환 Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041953A (en) * 1998-12-24 2000-07-15 김영환 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP3311082B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US5028552A (en) Method of manufacturing insulated-gate type field effect transistor
KR100189739B1 (en) Method of forming well for semiconductor wafer
US5185279A (en) Method of manufacturing insulated-gate type field effect transistor
JP2802263B2 (en) Method for manufacturing semiconductor device
US6245603B1 (en) Manufacturing method for semiconductor device
JP3371875B2 (en) Method for manufacturing semiconductor device
JP3311082B2 (en) Method for manufacturing semiconductor device
JPH04287332A (en) Manufacture of semiconductor element
JPH06163576A (en) Manufacture of semiconductor device
KR100422326B1 (en) Fabricating method of semiconductor device
KR100587050B1 (en) Method for manufacturing semiconductor device
JPH08316477A (en) Manufacture of semiconductor element
JPH04255233A (en) Semiconductor device and manufacture thereof
JPH08186082A (en) Manufacture of semiconductor device
KR940007663B1 (en) Manufacturing method of mosfet
JPH06291140A (en) Fabrication of semiconductor device
JPH11150181A (en) Manufacture of semiconductor device
JP3056106B2 (en) Method for manufacturing semiconductor device
US7670936B1 (en) Nitridation of gate oxide by laser processing
JP3317220B2 (en) Method for manufacturing semiconductor device
JPH04354328A (en) Production of semiconductor device
KR100281544B1 (en) Transistor manufacturing method with shallow junction of low doped drain structure
JP3108927B2 (en) Method for manufacturing semiconductor device
JPS63124574A (en) Semiconductor device and manufacture thereof
JPH05291287A (en) Manufacture of mis type semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

EXPY Cancellation because of completion of term