JP2586000B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2586000B2
JP2586000B2 JP5292733A JP29273393A JP2586000B2 JP 2586000 B2 JP2586000 B2 JP 2586000B2 JP 5292733 A JP5292733 A JP 5292733A JP 29273393 A JP29273393 A JP 29273393A JP 2586000 B2 JP2586000 B2 JP 2586000B2
Authority
JP
Japan
Prior art keywords
semiconductor device
oxide film
type
manufacturing
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5292733A
Other languages
Japanese (ja)
Other versions
JPH07130679A (en
Inventor
伸之 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5292733A priority Critical patent/JP2586000B2/en
Publication of JPH07130679A publication Critical patent/JPH07130679A/en
Application granted granted Critical
Publication of JP2586000B2 publication Critical patent/JP2586000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にゲートポリシリコンがP型である半導体装置
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which a gate polysilicon is a P-type.

【0002】[0002]

【従来の技術】半導体装置の一つとして絶縁ゲート型の
電界効果トランジスタ(いわゆるMOSトランジスタ)
が広く知られており、ドレインとソースが基板の同一面
上に存在する横型と基板の反対側に存在する縦型とがあ
る。前者はLSIなどの回路素子として用いられ、後者
は大電流がとれることからスイッチング素子などに用い
られている。
2. Description of the Related Art An insulated gate field effect transistor (so-called MOS transistor) is used as one of semiconductor devices.
Are widely known, and there are a horizontal type in which the drain and the source exist on the same surface of the substrate and a vertical type in which the drain and the source exist on the opposite side of the substrate. The former is used as a circuit element such as an LSI, and the latter is used as a switching element because a large current can be obtained.

【0003】図4は従来の半導体装置の一例として縦型
絶縁ゲート型電界効果トランジスタの製造方法の各製造
工程を示す。
FIG. 4 shows the steps of manufacturing a vertical insulated gate field effect transistor as an example of a conventional semiconductor device.

【0004】図4(a)に示すように、まずP型基板1
上にP型エピタキシャル層2を成長させる。次いで、こ
のP型エピタキシャル層2上にゲート酸化膜3を形成
し、後の工程でこのゲート酸化膜3をP型化するために
P型不純物であるボロンを注入するが、その際ボロンの
突き抜けを防止するためにこの段階で窒化および再酸化
を連続して行う。窒化はNH3 もしくはN2 Oガスをラ
ンプアニールのような高温、短時間で行っている。窒化
後、ゲート酸化膜3上に図4(b)に示すようにゲート
ポリシリコン4を形成する。フォトリソグラフィ技術を
用いて窓開けを行った後ゲートポリシリコン4をマスク
としてN型ベース層5を形成する。バックゲートコンタ
クト部6を形成した後ゲートポリシリコン4およびレジ
ストをマスクとしてP型ソース層7を形成する。その
後、図4(c)に示すように層間絶縁膜8、ソース電極
9、ドレイン電極として機能する裏面電極10を形成す
る。
[0004] As shown in FIG.
A P-type epitaxial layer 2 is grown thereon. Next, a gate oxide film 3 is formed on the P-type epitaxial layer 2, and boron, which is a P-type impurity, is implanted in a later step to make the gate oxide film 3 P-type. In this stage, nitridation and re-oxidation are continuously performed in order to prevent the occurrence. Nitriding is performed by using NH 3 or N 2 O gas at a high temperature for a short time such as lamp annealing. After nitriding, a gate polysilicon 4 is formed on the gate oxide film 3 as shown in FIG. After opening a window using a photolithography technique, an N-type base layer 5 is formed using the gate polysilicon 4 as a mask. After forming the back gate contact portion 6, a P-type source layer 7 is formed using the gate polysilicon 4 and the resist as a mask. Thereafter, as shown in FIG. 4C, an interlayer insulating film 8, a source electrode 9, and a back electrode 10 functioning as a drain electrode are formed.

【0005】[0005]

【発明が解決しようとする課題】ところで上記の製造方
法において、窒化を行う場合、NH3 で窒化を行うとゲ
ート酸化膜3中に水素が導入されるために信頼性低下の
原因になり、N2 Oで窒化を行うと窒化処理中にゲート
酸化膜3が酸化されてしまうためゲート酸化膜3の膜厚
を制御することが困難になるという問題がある。
In the above-described manufacturing method, when nitriding is performed, if nitriding is performed with NH 3 , hydrogen is introduced into the gate oxide film 3, which causes a reduction in reliability. If nitriding is performed with 2 O, the gate oxide film 3 will be oxidized during the nitriding process, so that it is difficult to control the thickness of the gate oxide film 3.

【0006】また従来の拡散炉による窒化ではゲート酸
化膜の膜質が変わって窒化膜となってしまうため、ゲー
トバイアス試験において特性変動が生じてしまうという
問題もある。
In addition, in the conventional nitriding by the diffusion furnace, the film quality of the gate oxide film is changed and the film becomes a nitride film, so that there is a problem that a characteristic variation occurs in a gate bias test.

【0007】本発明は上記の点にかんがみてなされたも
ので、窒化により信頼性を低下することなくかつゲート
酸化膜の膜厚を制御することができる半導体装置の製造
方法を提供することを目的とする。
The present invention has been made in view of the above points, and has as its object to provide a method of manufacturing a semiconductor device in which the thickness of a gate oxide film can be controlled without lowering reliability due to nitriding. And

【0008】[0008]

【課題を解決するための手段】本発明は上記の目的を達
成するために、半導体装置の半導体基板上に成長させた
同一導電型のエピタキシャル層上にゲート酸化膜を形成
し、該ゲート酸化膜に窒素をイオン打ち込みし、その後
ドライ酸化するようにした。
According to the present invention, in order to achieve the above object, a gate oxide film is formed on an epitaxial layer of the same conductivity type grown on a semiconductor substrate of a semiconductor device. Was ion-implanted, followed by dry oxidation.

【0009】[0009]

【作用】本発明は以上の構成によって、ゲート酸化膜の
表面および裏面に窒化膜が形成されてその後のゲートポ
リシリコンへのP型不純物の注入に当りP型不純物の突
き抜けを防止することができることはもちろんである
が、窒化時のゲート酸化膜の膜厚変化を低減することが
できるとともに、従来のNH3 を用いたときのようなゲ
ート酸化膜中への水素の導入がない。
According to the present invention, a nitride film is formed on the front and back surfaces of a gate oxide film to prevent the penetration of a P-type impurity in the subsequent implantation of a P-type impurity into gate polysilicon. Needless to say, the change in the thickness of the gate oxide film during nitriding can be reduced, and there is no introduction of hydrogen into the gate oxide film as in the case of using conventional NH 3 .

【0010】[0010]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0011】図1は本発明による半導体装置の製造方法
の一実施例で、半導体装置の一例としての縦型絶縁ゲー
ト型電界効果トランジスタの製造方法に適用した場合の
製造工程を示す。 まず図1(a)に示すように、P型
基板1上にP型エピタキシャル層2を成長させる。次に
このP型エピタキシャル層2上にゲート酸化膜3を形成
し、ここで窒素イオンの打ち込みを行う。イオン打ち込
みエネルギーはゲート酸化膜3が500Å程度のとき1
0〜20keVが適当である。この窒素イオンの打ち込
みにより図2に参照数字11で示すようにゲート酸化膜
3の上面と下面が窒化されて窒化酸化膜層が生成され
る。
FIG. 1 shows an embodiment of a method of manufacturing a semiconductor device according to the present invention, and shows a manufacturing process when applied to a method of manufacturing a vertical insulated gate field effect transistor as an example of a semiconductor device. First, a P-type epitaxial layer 2 is grown on a P-type substrate 1 as shown in FIG. Next, a gate oxide film 3 is formed on the P-type epitaxial layer 2, where nitrogen ions are implanted. The ion implantation energy is 1 when the gate oxide film 3 is about 500 °.
0 to 20 keV is appropriate. By the implantation of the nitrogen ions, the upper and lower surfaces of the gate oxide film 3 are nitrided as shown by reference numeral 11 in FIG. 2 to generate a nitrided oxide film layer.

【0012】その後(950±50)℃で(90±6
0)秒程度の熱処理を行ない、図1(b)に示すように
ゲートポリシリコン4を成長させる。次いでフォトリソ
グラフィ技術を用いて窓開けを行った後、ドライ酸化を
行い、ゲートポリシリコン4をマスクとしてN型ベース
層5を形成する。バックゲートコンタクト部6を形成し
た後ゲートポリシリコン4とレジストをマスクとしてP
型ソース層7を形成する。このとき同時にP型不純物を
注入してゲートポリシリコン4のP型化も行う。この実
施例においては、N型ベース層5とP型ソース層7は拡
散自己整合(DSA)により形成される。その後図1
(c)に示すように、リンガラスによる層間絶縁層8、
ソース電極層9、裏面電極10を形成する。窒化処理後
裏面電極10の形成までの間の酸化はすべてドライ酸化
で行う。
Then, at (950 ± 50) ° C., (90 ± 6)
A heat treatment of about 0) seconds is performed to grow the gate polysilicon 4 as shown in FIG. Next, after opening a window using a photolithography technique, dry oxidation is performed to form an N-type base layer 5 using the gate polysilicon 4 as a mask. After the back gate contact portion 6 is formed, the gate polysilicon 4 and the resist
A mold source layer 7 is formed. At this time, P-type impurities are simultaneously implanted to make the gate polysilicon 4 P-type. In this embodiment, the N-type base layer 5 and the P-type source layer 7 are formed by diffusion self-alignment (DSA). Then Figure 1
As shown in (c), the interlayer insulating layer 8 made of phosphorus glass,
A source electrode layer 9 and a back electrode 10 are formed. Oxidation after the nitriding treatment until the formation of the back electrode 10 is all performed by dry oxidation.

【0013】本発明者の実験によれば、従来N2 Oによ
る窒化時には平均5%、最大12%もあったゲ−ト酸化
膜の膜厚の増加が、本発明による窒素イオンの打ち込み
により平均2%、最大3%にまで低減できた。またゲー
トバイアス試験におけるしきい値電圧の変化率は従来1
0%程度あったものが3%程度にまで低減できた。
According to the experiments of the present inventors, the increase in the thickness of the gate oxide film, which was conventionally 5% on average and 12% at the maximum during nitriding by N 2 O, was increased by the implantation of nitrogen ions according to the present invention. It could be reduced to 2% and up to 3%. The rate of change of the threshold voltage in the gate bias test is
What was about 0% was reduced to about 3%.

【0014】なおイオン打ち込みエネルギー10〜20
keVでの飛程距離は209Å〜428Åとなってお
り、酸化膜(約500Å)を突き抜けることはない。
The ion implantation energy is 10 to 20.
The range at keV is 209 ° to 428 ° and does not penetrate the oxide film (about 500 °).

【0015】図3は本発明による半導体装置の製造方法
の別の実施例を示す。
FIG. 3 shows another embodiment of the method of manufacturing a semiconductor device according to the present invention.

【0016】この実施例は本発明を横型絶縁ゲート型電
界効果トランジスタの製造工程に適用したもので、図中
図1と同じ参照数字は同じ構成部分を示す。
In this embodiment, the present invention is applied to a manufacturing process of a lateral insulated gate field effect transistor. In the drawing, the same reference numerals as those in FIG. 1 indicate the same components.

【0017】この実施例においてはN型基板1aを用
い、ゲート酸化膜3に窒素イオンを打ち込み熱処理とド
ライ酸化を行っており、それにより信頼度の高い低オン
抵抗のPチャネルMOSトランジスタが提供可能とな
り、ICにおけるパワーロスの低減が可能となる。この
実施例においても、ソース領域12とドレイン領域13
とが拡散自己整合(DSA)により形成される。14は
ドレイン電極、15は素子分離膜である。
In this embodiment, an N-type substrate 1a is used, and heat treatment and dry oxidation are performed by implanting nitrogen ions into the gate oxide film 3, thereby providing a highly reliable low on-resistance P-channel MOS transistor. The power loss in the IC can be reduced. Also in this embodiment, the source region 12 and the drain region 13
Are formed by diffusion self-alignment (DSA). 14 is a drain electrode, and 15 is an element isolation film.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
ゲート酸化膜の窒化をイオン打ち込み方式とすることで
特性の不安定要因となる窒化時のゲート酸化膜の膜厚が
正確に制御できるとともに、ゲート酸化膜中への水素導
入が低減し、安定した特性の半導体装置が実現できる。
また拡散炉を用いないので窒化によるゲート酸化膜の膜
質変化もなく、特性変動のない半導体製品が得られる。
As described above, according to the present invention,
The ion implantation method for nitriding the gate oxide film enables accurate control of the thickness of the gate oxide film during nitridation, which causes instability in characteristics, and reduces the introduction of hydrogen into the gate oxide film, resulting in a stable A semiconductor device having characteristics can be realized.
Further, since a diffusion furnace is not used, there is no change in the film quality of the gate oxide film due to nitriding, and a semiconductor product having no characteristic change can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)、(b)、(c)は本発明による半導体
装置の製造方法を縦型絶縁ゲート型電界効果トランジス
タに適用した場合の主要製造工程を示す。
FIGS. 1A, 1B, and 1C show main manufacturing steps when a semiconductor device manufacturing method according to the present invention is applied to a vertical insulated gate field effect transistor.

【図2】本発明による製造方法において形成される窒化
酸化膜の模式的拡大図である。
FIG. 2 is a schematic enlarged view of a nitrided oxide film formed in a manufacturing method according to the present invention.

【図3】本発明による半導体装置の製造方法を横型絶縁
ゲート型電界効果トランジスタに適用した場合の半導体
装置の断面図である。
FIG. 3 is a cross-sectional view of a semiconductor device when the method of manufacturing a semiconductor device according to the present invention is applied to a lateral insulated gate field effect transistor.

【図4】(a)、(b)、(c)は従来の縦型絶縁ゲー
ト型電界効果トランジスタの製造方法の主要製造工程を
示す。
FIGS. 4A, 4B, and 4C show main manufacturing steps of a method for manufacturing a conventional vertical insulated gate field effect transistor.

【符号の説明】[Explanation of symbols]

1 P型基板 2 P型エピタキシャル層 3 ゲート酸化膜 4 ゲートポリシリコン 5 N型ベース層 6 バックゲートコンタクト部 7 P型ソース層 8 層間絶縁膜 9 ソース電極 DESCRIPTION OF SYMBOLS 1 P-type substrate 2 P-type epitaxial layer 3 Gate oxide film 4 Gate polysilicon 5 N-type base layer 6 Back gate contact part 7 P-type source layer 8 Interlayer insulating film 9 Source electrode

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ゲートポリシリコンがP型である半導体
装置の製造方法において、前記半導体装置の半導体基板
上に成長させた該半導体基板と同一導電型のエピタキシ
ャル層の上にゲート酸化膜を形成し、該ゲート酸化膜に
窒素をイオン打ち込みし、その後ドライ酸化することを
特徴とする半導体装置の製造方法。
In a method of manufacturing a semiconductor device in which a gate polysilicon is a P-type, a gate oxide film is formed on an epitaxial layer of the same conductivity type as the semiconductor substrate grown on the semiconductor substrate of the semiconductor device. A method of manufacturing a semiconductor device, wherein nitrogen is ion-implanted into the gate oxide film, followed by dry oxidation.
【請求項2】 前記半導体基板がP型であり、半導体装
置が縦型絶縁ゲート型電界効果トランジスタである請求
項1に記載の半導体装置の製造方法。
2. The method according to claim 1, wherein the semiconductor substrate is a P-type, and the semiconductor device is a vertical insulated gate field-effect transistor.
【請求項3】 前記半導体基板がN型であり、半導体装
置が横型絶縁ゲート型電界効果トランジスタである請求
項1に記載の半導体装置の製造方法。
3. The method according to claim 1, wherein the semiconductor substrate is N-type, and the semiconductor device is a lateral insulated gate field effect transistor.
【請求項4】 半導体装置の表面にMOS構造を有し、
該装置の表面にベース、ソースが拡散自己整合(DS
A)により形成される請求項2に記載の半導体装置の製
造方法。
4. A semiconductor device having a MOS structure on a surface thereof,
The base and source are diffusion self-aligned (DS
3. The method for manufacturing a semiconductor device according to claim 2, wherein the method is performed according to A).
【請求項5】 半導体装置の表面にMOS構造を有し、
該装置の表面にソース領域およびドレイン領域が拡散自
己整合(DSA)により形成される請求項3に記載の半
導体装置の製造方法。
5. A semiconductor device having a MOS structure on a surface thereof,
4. The method according to claim 3, wherein a source region and a drain region are formed on the surface of the device by diffusion self-alignment (DSA).
JP5292733A 1993-10-28 1993-10-28 Method for manufacturing semiconductor device Expired - Fee Related JP2586000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5292733A JP2586000B2 (en) 1993-10-28 1993-10-28 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5292733A JP2586000B2 (en) 1993-10-28 1993-10-28 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH07130679A JPH07130679A (en) 1995-05-19
JP2586000B2 true JP2586000B2 (en) 1997-02-26

Family

ID=17785626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5292733A Expired - Fee Related JP2586000B2 (en) 1993-10-28 1993-10-28 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2586000B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3976374B2 (en) 1997-07-11 2007-09-19 三菱電機株式会社 Semiconductor device having trench MOS gate structure and manufacturing method thereof
JP3705919B2 (en) * 1998-03-05 2005-10-12 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP6218423B2 (en) * 2013-04-25 2017-10-25 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07130679A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US5382533A (en) Method of manufacturing small geometry MOS field-effect transistors having improved barrier layer to hot electron injection
US5607884A (en) Method for fabricating MOS transistor having source/drain region of shallow junction and silicide film
US5552332A (en) Process for fabricating a MOSFET device having reduced reverse short channel effects
KR100440263B1 (en) Transistor in a semiconductor device and a method of manufacturing the same
US5254490A (en) Self-aligned method of fabricating an LDD MOSFET device
KR100304083B1 (en) Method of manufacturing semiconductor device having MIS structure
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
JPH0716000B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH06342914A (en) Manufacture of semiconductor device
JP2586000B2 (en) Method for manufacturing semiconductor device
KR20030049441A (en) method for manufacturing of semiconductor device
US6656780B2 (en) Method of manufacturing a semiconductor device having nitrogen ions by twice RTA processes
KR940005736B1 (en) Manufacturing method of semiconductor device
JPH05206454A (en) Manufacture of mis-type semiconductor device
JPH06310666A (en) Manufacture of cmos semiconductor device of dual gate structure
US5646057A (en) Method for a MOS device manufacturing
JP3033528B2 (en) Semiconductor device and manufacturing method thereof
JP2647611B2 (en) Semiconductor device
JPS6112390B2 (en)
JPH09306862A (en) Manufacturing semiconductor device
KR100334965B1 (en) Formation method of device of mos field effect transistor
KR100499954B1 (en) Method for manufacturing Field-Effect-Transistor of semiconductor device
KR100204015B1 (en) Method of manufacturing mos transistor
JPH0682668B2 (en) Method for manufacturing semiconductor device
JPH0851205A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961004

LAPS Cancellation because of no payment of annual fees