JPS5852817A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5852817A
JPS5852817A JP56150741A JP15074181A JPS5852817A JP S5852817 A JPS5852817 A JP S5852817A JP 56150741 A JP56150741 A JP 56150741A JP 15074181 A JP15074181 A JP 15074181A JP S5852817 A JPS5852817 A JP S5852817A
Authority
JP
Japan
Prior art keywords
layer
oxide film
polycrystalline silicon
silicon layer
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56150741A
Other languages
Japanese (ja)
Inventor
Kenji Kaneko
金子 憲二
Yutaka Okada
豊 岡田
Takanori Nishimura
西村 孝典
Satoshi Kudo
聡 工藤
Sadao Ogura
小倉 節生
Takahiro Okabe
岡部 隆博
Minoru Nagata
永田 「穣」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56150741A priority Critical patent/JPS5852817A/en
Priority to KR8204306A priority patent/KR860000612B1/en
Priority to DE19823235467 priority patent/DE3235467A1/en
Priority to GB08227355A priority patent/GB2106319B/en
Publication of JPS5852817A publication Critical patent/JPS5852817A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42304Base electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/735Lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form an integrated circuit having analog and digital circuit co-existing therein, at a high degree of integration, by providing a metal electrode in a window by emplying a self-alignment method using as a mark a polycrystalline silicon layer and a silicon oxide film layer surrounding the former. CONSTITUTION:Nitride films, 4, 6 are formed on the whole surface. Then, windows 7 are opened therein, and polycrystalline silicon layers 8, 9 are formed on the whole surface. After N type impurities are introduced, a pattern is formed. Since a silicon layer 2 is covered with the nitride film 4, there is not possibility of growth of any oxide film due to oxidation, and only the polycrystalline silicon layers 8, 9 are selectively oxidized to form an oxide film layer 10 thicker than an oxide film 3 as a ground. During the oxidation, the N type impurities are diffused into a single crystal silicon layer to form a diffused layer 11. The nitride film 4 and the oxide film 3 on the base are removed by a self-alignment method using as a mask the polycrystalline silicon layer 9 and the oxide film layer 10 surrounding the former, to open a window 12 for leading out a base terminal. Thereby, thin oxide and nitride films 3 and 4 are left in some parts between the layer 9 and the base silicon layer 2, preventing a poor junction or short-circuit between the base and emitter. Ions are implanted to form a graft base 13, and an electrode metal 14 is deposited thereon and patterned.

Description

【発明の詳細な説明】 本発明は自己整合技術(セルフアライメント法)を用い
て製造した半導体装置及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device manufactured using a self-alignment technique (self-alignment method) and a manufacturing method thereof.

ディジタル回路分野においては、集積回路の高速化、高
集積密度化に対する要求が強い。高速化と高集積密度化
は同質の技術的内容を有しており、素子の微細化による
接合容量、拡散容量の低減に伴って速度も向上されるこ
とは周知の事実である。
In the field of digital circuits, there is a strong demand for faster integrated circuits and higher integration density. It is a well-known fact that higher speed and higher integration density have the same technical content, and that speed is also improved as junction capacitance and diffusion capacitance are reduced by miniaturization of elements.

したがって、バイポーラ、MOS)う/ジスタとも素子
構造の微細化に関する技術開発が各所で行われてきてい
る。
Therefore, technological developments regarding miniaturization of device structures such as bipolar (MOS) and transistor (MOS) devices are being carried out in various places.

素子構造の微細化に寄与する直接的な技術は素子パター
ン形成時のりソグラフィ技術であることは言うまでもな
い。しかしながら、近年の急速な累子微細化建伴い、従
来の光を用いた露光技術では超微細なパターン形成が困
難になりつつある。
It goes without saying that the direct technology that contributes to the miniaturization of device structures is the lithography technique used when forming device patterns. However, with the rapid trend toward finer patterns in recent years, it has become difficult to form ultra-fine patterns using conventional exposure techniques using light.

光に代る露光技術として提案されているのは電子線を用
いた露光技術であり、本技術により1μm以下のパター
ン形成も可能であるが、電子線露光技術は素子パターン
毎の処理技術であり、従来の光露光技術の半導体ウェハ
毎の処理技術に比べ処理速度が著しく遅い。素子パター
ン形成工程(ホトレジスト工程)は半導体形成全工程中
でエッチ/グ工程、拡散工程等に先立って毎回性われる
ために、ホトレジスト工程での処理時間が遅いことは半
導体製造における全工程完了の時間が著しく長くなるこ
とを意味する。
An exposure technology that uses electron beams has been proposed as an alternative to light exposure technology, and although this technology enables pattern formation of 1 μm or less, electron beam exposure technology is a processing technology for each element pattern. However, the processing speed is significantly slower than the conventional optical exposure technology that processes each semiconductor wafer. The element pattern formation process (photoresist process) is performed every time in the entire semiconductor manufacturing process, prior to the etching/diffusion process, etc., so the slow processing time in the photoresist process will reduce the time it takes to complete all processes in semiconductor manufacturing. This means that it becomes significantly longer.

また素子を微細化する上で重要な点としてホトレジスト
工程における前の工程とのパターン合わせがある。つま
り前の工程で゛形成したパターンに対し、次の工程では
これに合わせて次のパターンを形成する。この場合、前
の工程及び次の工程でのエツチング技術、拡散技術等の
精度に限界があるため、またパターンを合わせる精度に
限界があるために前の工程と次の工程のパターンの間に
は何らかの余裕を持たせる必要がある。この余裕は通常
、マスク合わせ余裕と呼ばれ、最低1μm以上は必要と
されている。連続した前の工程と次の工程の間のマスク
余裕は上記のような値であるが、間を置いた工程間での
マスク余裕は上記マスク余裕の累積となるために更に大
きくなる。
Another important point in miniaturizing elements is pattern alignment with the previous process in the photoresist process. In other words, in the next step, the next pattern is formed in accordance with the pattern formed in the previous step. In this case, there is a limit to the accuracy of etching technology, diffusion technology, etc. in the previous and next steps, and there is also a limit to the accuracy of pattern alignment, so there is a gap between the patterns in the previous and next steps. We need to provide some leeway. This margin is usually called a mask alignment margin, and is required to be at least 1 μm or more. The mask margin between the successive previous process and the next process has the above-mentioned value, but the mask margin between the consecutive processes becomes even larger because it becomes an accumulation of the mask margins.

このように単に従来の露光技術に依存しているだけでは
素子の微細化が困難になりつつある。上記露光技術の他
に微細化に有効な手段としては自己整合技術がある。本
技術はパターン形成をマスクを用いて行なうのではなく
、前の工程で形成された半導体ウェハ上のパターン自体
をマスクとして次の工程を行なう技術である。したがっ
て、本技術ではマスクを必要としないために前述のマス
ク余裕が不要になり、従来の光露光技術でも微細な素子
を形成することが可能となる。
As described above, it is becoming difficult to miniaturize elements simply by relying on conventional exposure techniques. In addition to the above-mentioned exposure technique, there is a self-alignment technique as an effective means for miniaturization. This technique does not form a pattern using a mask, but rather uses the pattern itself formed on the semiconductor wafer in the previous process as a mask to perform the next process. Therefore, since the present technique does not require a mask, the above-mentioned mask margin is not required, and it is possible to form fine elements using conventional light exposure techniques.

本発明は上記自己整合技術を用いた微細な素子構造、製
造方法を提供するものである。本発明の説明に先立って
、従来技術とその問題一点を説明する。なお、説明並に
図面を簡明にするため、各半導体層の導電形や各部分の
材質を規定し、かつ本発明と直接関係しない層の構成等
については記述を省略する(以下1本発明の説明におい
ても同様とする)。
The present invention provides a fine device structure and manufacturing method using the above-mentioned self-alignment technology. Prior to explaining the present invention, the prior art and one problem thereof will be explained. In order to simplify the explanation and the drawings, the conductivity type of each semiconductor layer and the material of each part are specified, and the description of the structure of the layer that is not directly related to the present invention is omitted (hereinafter, 1. The same applies to the explanation).

第1図に従来のセルファライン構造の■2L素子の断面
を示す(参考文献: IEEE、 TRANSACT−
LON8 ON ED、 VOL、 ED−27,No
、 8. August 1980.)。
Figure 1 shows a cross section of a 2L element with a conventional Selfaline structure (References: IEEE, TRANSACT-
LON8 ON ED, VOL, ED-27, No
, 8. August 1980. ).

図において、1はn形半導体(シリコン)基板、2はn
形半導体(シリコン)層、5は酸化シリコン膜(以下、
酸化膜と記す。)、9は多結晶シリコン層、10は酸化
シリコン膜層(以下、酸化膜層と記す。)、11はn形
半導体領域(拡散層)16は高濃度n形半導体層(拡散
層)、14は電極用金@(金属電極)である。
In the figure, 1 is an n-type semiconductor (silicon) substrate, 2 is an n-type semiconductor (silicon) substrate, and 2 is an n-type semiconductor (silicon) substrate.
type semiconductor (silicon) layer, 5 is a silicon oxide film (hereinafter referred to as
It is written as an oxide film. ), 9 is a polycrystalline silicon layer, 10 is a silicon oxide film layer (hereinafter referred to as an oxide film layer), 11 is an n-type semiconductor region (diffusion layer), 16 is a high concentration n-type semiconductor layer (diffusion layer), 14 is gold for electrode (metal electrode).

第1図の構造のI2Lはコレクタ電極を多結晶シリコン
層9で取り出し、ベース電極を金属14で取り出してい
る。本構造においてベース抵抗低減を目的としてベース
電極をコレクタ端子のごく近傍から取り出すためにコレ
クタ端子となる多結晶シリコン層9とこれに被着してい
る酸化膜層1゜をマスクとするセルフアライメント法で
ベース端子用の穴開けを行なって金属電極14を被着し
ている。上記のセルフアライメントによる穴開けは次に
示すような工程で行われる。
In the I2L having the structure shown in FIG. 1, the collector electrode is taken out by the polycrystalline silicon layer 9, and the base electrode is taken out by the metal 14. In this structure, in order to take out the base electrode from very close to the collector terminal for the purpose of reducing the base resistance, a self-alignment method is used using the polycrystalline silicon layer 9, which will become the collector terminal, and the oxide film layer 1° attached thereto as a mask. A hole for a base terminal is made and a metal electrode 14 is attached thereto. The self-alignment hole drilling described above is performed in the following steps.

表面に露出したシリコン層2の上に多結晶シリコン層を
被着し、この多結晶シリコン層に高・濃度の不純物を含
ませた上でパターン形成し、第1図に示すような多結晶
シリコン層9を形成する。この後に酸化を行うと、高濃
度の不純物を含んだ多結晶シリコン層には厚い酸化膜層
1oが形成され、低濃度のシリコン層2には薄い酸化膜
が形成される。従って、この状態から薄い酸化膜が全面
除去され、厚い酸化膜は残存する条件でエツチングを行
なえば、セルファラインでベース電極用の穴開けを達成
できる。
A polycrystalline silicon layer is deposited on the silicon layer 2 exposed on the surface, and this polycrystalline silicon layer is impregnated with a high concentration of impurities and then patterned to form a polycrystalline silicon layer as shown in FIG. Form layer 9. When oxidation is performed after this, a thick oxide film layer 1o is formed on the polycrystalline silicon layer containing high concentration impurities, and a thin oxide film is formed on the low concentration silicon layer 2. Therefore, if etching is performed under the condition that the thin oxide film is completely removed from this state and the thick oxide film remains, it is possible to form a hole for the base electrode in the self-line.

このような従来の構造では第1図に示した部分iooの
個所で次の様な問題が生じる。
In such a conventional structure, the following problem occurs at the portion ioo shown in FIG.

まず酸化膜層10を任意の厚さに形成することが困難で
ある。つまり高濃度の多結晶層と低濃度のシリコン層の
酸化において両者の酸化膜の厚さに有意な差をつげるこ
とが難しい。また酸化の後に全面エッチを行なうために
酸化膜層10はシリコン上の酸化膜と同時にエッチされ
て薄くなってしまう。このために多結晶シリコン層9と
金属電極14が短絡する可能が大きくなってしまう。
First, it is difficult to form the oxide film layer 10 to an arbitrary thickness. In other words, when oxidizing a highly-concentrated polycrystalline layer and a lightly-concentrated silicon layer, it is difficult to create a significant difference in the thickness of the oxide film between the two. Further, since the entire surface is etched after oxidation, the oxide film layer 10 is etched at the same time as the oxide film on the silicon and becomes thin. This increases the possibility that polycrystalline silicon layer 9 and metal electrode 14 will be short-circuited.

次に金属電極14と多結晶シリコン層9、あるいは拡散
層11の距離を決定しているのは酸化膜層10の厚さだ
けである。酸化膜層10の厚さは通常高々1000A〜
5000A程度であり、拡散層11は下方に伸びると共
に横方向にも拡散で伸びる(拡散層の深さを6000〜
5000A程度とすると横方向への伸びは2400〜4
000A程度)のために金属電極14と拡散層11が短
絡する危険性が非常に大きい。
Next, the distance between the metal electrode 14 and the polycrystalline silicon layer 9 or the diffusion layer 11 is determined only by the thickness of the oxide film layer 10. The thickness of the oxide film layer 10 is usually at most 1000A~
5000A, and the diffusion layer 11 extends downward and also in the lateral direction (the depth of the diffusion layer is set to 6000~
If it is about 5000A, the horizontal elongation is 2400~4
000 A), there is a very high risk that the metal electrode 14 and the diffusion layer 11 will be short-circuited.

さらに高濃度の拡散層15と11の距離も任意に設計す
ることができないために高濃度拡散同志による耐圧劣化
が生じる可能性も大きい。
Furthermore, since the distance between the high-concentration diffusion layers 15 and 11 cannot be arbitrarily designed, there is a high possibility that breakdown voltage deterioration will occur due to high-concentration diffusion.

このように従来発明では種々の問題を有しており、これ
らの問題は集積回路において致命的な不良が生じること
になる。
As described above, the conventional invention has various problems, and these problems lead to fatal defects in the integrated circuit.

本発明では、これらの問題点を無くすことが可能な構造
、製造方法を提供するものである。本発明技術によれば
、通常のバイポーラ・トランジスタと■2L素子(In
tegrated Injection Logic 
)を容易に同一基板に形成可能なため、アナログ。
The present invention provides a structure and manufacturing method that can eliminate these problems. According to the technology of the present invention, a normal bipolar transistor and a 2L element (In
integrated injection logic
) can be easily formed on the same substrate, making it analog.

ディジタル共存の集積回路を高集積密度で構成すること
が可能になる。
It becomes possible to configure digital coexistence integrated circuits with high integration density.

上記の目的を達成するために、本発明の半導体装置にお
いては、その要部を以下のような構成とした。すなわち
、シリコン層と該シリコン層を含む基板表面の所定の場
所に設けた多結晶シリコン層の間の少なくとも一部に酸
化シリコン膜(Sinりと窒化シリコン膜(si、N4
)の2層からなる絶縁膜を有し、上記多結晶シリコン層
とそれを囲む酸化シリコン膜層をマスクとするセルフア
ライメント法を用いて該多結晶シリコン層周辺にある上
記2層の絶縁、嘆の少なくとも一部に形成した窓穴に金
属電極を設けた構成とした。
In order to achieve the above object, the main parts of the semiconductor device of the present invention have the following configuration. That is, a silicon oxide film (Sin) and a silicon nitride film (Si, N4
), and the two layers surrounding the polycrystalline silicon layer are insulated using a self-alignment method using the polycrystalline silicon layer and the surrounding silicon oxide film layer as masks. A metal electrode is provided in a window hole formed in at least a portion of the window.

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第2図は本発明の第1の実施例で、主要製造工程順(a
)〜(f)に示した本発明の半導体装置の構造断面図で
ある。図と対応させ順を追って説明する。なお、本実施
例は縦形構造のnpn トランジスタに関するものであ
る。図において、前出のものと同一符号のものは、同−
又は均等部分を示すものとする。
FIG. 2 shows the first embodiment of the present invention, in order of main manufacturing steps (a
) to (f) are structural cross-sectional views of the semiconductor device of the present invention. This will be explained step by step in correspondence with the diagram. Note that this embodiment relates to an npn transistor with a vertical structure. In the figures, the same reference numerals as those above refer to the same numbers.
or equivalent parts shall be indicated.

(a):1はn形半導体(シリコン)基板、2はnpn
 )ランジスタのベース部分を形成するためのn形半導
体(シリコン)層、6は薄い(例えば厚さ500A程度
)酸化シリコン膜(以下、酸化膜と記す。)、4,6は
窒化シリコン膜(以下、窒化膜と記す。)、5は厚い(
例えば厚さ1μm程度)酸化膜である。上記n形半導体
基板1は集積回路上ではn形半導体基板(図示せず)の
上に形成され。
(a): 1 is an n-type semiconductor (silicon) substrate, 2 is npn
) An n-type semiconductor (silicon) layer for forming the base portion of the transistor, 6 is a thin (for example, about 500A thick) silicon oxide film (hereinafter referred to as oxide film), 4 and 6 are silicon nitride films (hereinafter referred to as oxide film). , nitride film), 5 is thick (
For example, it is an oxide film (with a thickness of about 1 μm). The n-type semiconductor substrate 1 is formed on an n-type semiconductor substrate (not shown) on an integrated circuit.

コレクタ抵抗を下げるための高濃度n形埋込み層や素子
分離層(いずれも図示せず)等も必要であるが、前述し
たように、図面並に説明を簡略化する都合上省略しであ
る。なお、図では窒化膜4゜6が部分的に存在する場合
を示したが、とれは厚い酸化膜5を形成するときに、マ
スク材料として用いた窒化膜を後の工程でも利用する場
合の実施例であり、窒化膜4.6の厚さを精密に制御す
る場合には、選択酸化に用いた窒化膜を一度除去した後
、新しく窒化膜を形成することも可能である。
A heavily doped n-type buried layer and an element isolation layer (none of which are shown) are also required to lower the collector resistance, but as described above, these are omitted for the sake of simplifying the drawings and explanation. Note that although the figure shows the case where the nitride film 4°6 is partially present, the case is different when the nitride film used as a mask material is also used in a later process when forming the thick oxide film 5. As an example, if the thickness of the nitride film 4.6 is to be precisely controlled, it is also possible to once remove the nitride film used for selective oxidation and then form a new nitride film.

この場合には第2図(a)における窒化膜4.6は全面
に形成されていることになる。
In this case, the nitride film 4.6 in FIG. 2(a) is formed over the entire surface.

(b)°  酸化膜3と窒化膜4,6のうち将来トラン
ジスタのエミッタ、コレクタとなる部分(窓穴)7を除
去(窓開け)する。
(b) A portion (window hole) 7 of the oxide film 3 and nitride films 4 and 6 that will become the emitter and collector of a transistor in the future is removed (opened).

(C):  上記窓開は後、全面に多結晶シリコン層を
形成し、n形不純物を該多結晶シリコン層に導入した後
パターン形成を行なう。図における8゜9が多結晶シリ
コン層であり、8が将来コレクタとなる部分であり、9
がエミッタ端子となる部分である。ここでのエミッタ端
子となる部分のパターンは、(b)でのエミッタの窓穴
7よりも大きく形成し、下地のシリコン層が表面に露出
しないようにする。
(C): After the window opening, a polycrystalline silicon layer is formed on the entire surface, and an n-type impurity is introduced into the polycrystalline silicon layer, followed by pattern formation. In the figure, 8°9 is the polycrystalline silicon layer, 8 is the part that will become the collector in the future, and 9 is the part that will become the collector in the future.
is the part that becomes the emitter terminal. The pattern of the portion that will become the emitter terminal here is formed larger than the emitter window hole 7 in (b) so that the underlying silicon layer is not exposed to the surface.

(d) :  (c)の工程の後、多結晶シリコン層8
゜9を酸化する。図の10が多結晶シリコンを酸化して
形成された酸化膜層である。本発明の第1の特徴はこの
工程である。つまり本工程ではエミッタ又はコレクタと
なる多結晶シリコン以外のシリコン層は窒化膜4に覆わ
れているので、本工程での酸化によって酸化膜が成長す
ることがなく、多結晶シリコン層8,9だけを選択的に
酸化することが可能となる。多結晶シリコン層の酸化膜
層10は、ここでは下地の酸化膜ろよりも厚く(例えば
厚さ2000〜5000λ程度)形成する。また、多。
(d): After the step (c), polycrystalline silicon layer 8
Oxidize ゜9. 10 in the figure is an oxide film layer formed by oxidizing polycrystalline silicon. The first feature of the present invention is this step. In other words, in this step, the silicon layers other than the polycrystalline silicon that will become the emitter or collector are covered with the nitride film 4, so no oxide film grows due to oxidation in this step, and only the polycrystalline silicon layers 8 and 9 are covered. can be selectively oxidized. The oxide film layer 10 of the polycrystalline silicon layer is formed here to be thicker than the underlying oxide film (for example, about 2000 to 5000 λ in thickness). Also, many.

結晶シリコンの酸化中に多結晶シリコン層からあらかじ
め導入したn形不純物が単結晶シリコン層(p形半導体
層2及びn形半導体基板1)に拡散し拡散層(n+半導
体層)11(エミッタ及びコレクタ)が形成される。
During the oxidation of crystalline silicon, n-type impurities introduced in advance from the polycrystalline silicon layer diffuse into the single-crystal silicon layer (p-type semiconductor layer 2 and n-type semiconductor substrate 1), forming a diffusion layer (n+ semiconductor layer) 11 (emitter and collector). ) is formed.

ここでは(b)の工程の穴開けの後多結晶シリコン層を
被着する製法について述べたが、(b)の工程後上記の
窓穴から拡散又はイオン注入法によってエミッタとなる
n形半導体領域を形成しくC’)の工程の多結晶シリコ
ン層被着の工程を行なってもよい。
Here, we have described a manufacturing method in which a polycrystalline silicon layer is deposited after forming a hole in step (b), but after step (b), an n-type semiconductor region that will become an emitter is formed through the window hole by diffusion or ion implantation. In order to form a polycrystalline silicon layer, step C') of depositing a polycrystalline silicon layer may be performed.

(e)二  ベース(p形半導体層2)上の窒化膜4と
酸化膜3を除去し、ベース端子取り出し用窓穴12を開
ける。本工程は本発明の第2の特徴を有している。つま
り本工程ではエミッタとなる多結晶シリコン層9とそれ
を囲む酸化膜層10をマスクとする自己整合法(セルフ
アライメント法)でベース上の窒化膜4.酸化膜3を除
去することが可能となる。ベース上の酸化膜6は多結晶
シリコン層の酸化膜層10よりも十分薄いので、酸化膜
層10が除去されることなしにベース上の窒化膜酸化膜
を除去できる。このとき多結晶シリコン層9とベースの
シリコン層(p形半導体層2)の間の一部に薄い酸化膜
6.窒化膜4が残る。この残存酸化膜と窒化膜は後に述
べるように、エミッタとベースの距離を適正に保ち、ベ
ース・エミッタ間の接合不良及び短絡不良を防止する重
要な役割を持っている。
(e) 2 The nitride film 4 and oxide film 3 on the base (p-type semiconductor layer 2) are removed, and a window hole 12 for extracting the base terminal is opened. This step has the second feature of the present invention. That is, in this step, the nitride film 4 on the base is formed using a self-alignment method using the polycrystalline silicon layer 9 that will become the emitter and the oxide film layer 10 surrounding it as a mask. It becomes possible to remove the oxide film 3. Since the oxide film 6 on the base is sufficiently thinner than the oxide film layer 10 of the polycrystalline silicon layer, the nitride film and oxide film on the base can be removed without removing the oxide film layer 10. At this time, a thin oxide film 6. A nitride film 4 remains. As will be described later, the remaining oxide film and nitride film play an important role in maintaining a proper distance between the emitter and the base and preventing base-emitter junction defects and short circuit defects.

(f):  窒化膜、酸化膜を除去した窓穴12から高
濃度ボロン拡散またはイオン打込みを行なってグラフト
・ベース(高濃度p形半導体層)1!Iを形成する。そ
の後、電極用金属14を被着し、パターン形成する。
(f): High concentration boron is diffused or ion implanted through the window hole 12 from which the nitride film and oxide film have been removed to form a graft base (high concentration p-type semiconductor layer) 1! Form I. Thereafter, electrode metal 14 is deposited and patterned.

以上の工程により、縦形構造のnpn)ランジスタ(図
では多重エミッタ・トランジスタになっている。)が完
成する。
Through the above steps, a vertically structured npn (npn) transistor (in the figure, it is a multi-emitter transistor) is completed.

本実施例の場合は、第2図(e)、  (f)を見てわ
かるようにベース端子取り出し用のコンタクト穴(窓穴
12)を開けるためのマスクを必要としない。また、ベ
ース端子はエミッタのすぐ近傍の周辺から取り出すこと
ができ、しかも金属電極14でトランジスタが全面覆わ
れている。
In the case of this embodiment, as can be seen from FIGS. 2(e) and 2(f), there is no need for a mask for opening the contact hole (window hole 12) for extracting the base terminal. Further, the base terminal can be taken out from the periphery immediately adjacent to the emitter, and the transistor is entirely covered with the metal electrode 14.

次に、第1図(f)に示した本発明のnpn )う/ジ
スタ構造についての特徴・利点を説明する。
Next, the features and advantages of the npn) transistor structure of the present invention shown in FIG. 1(f) will be explained.

本構造はベース端子とエミッタ端子が自己整合法でマス
ク余裕をとらずに引き出すことが可能である。このため
ベース電極をエミッタの電極近傍に形成できる。このベ
ース電極の引き出しはエミッタの周辺数箇所から取シ出
し、しかもこれらの引き出し箇所は金属電極で結合され
ている。これらの特徴は全てトランジスタの高速動作の
障害となっているベース直列抵抗を著しく低減させるこ
とが可能となることを意味している。特に従来の多重エ
ミッタ・トランジスタではベース端子から遠い距離にあ
るエミッタ部分はベース直列抵抗のために極端に速度が
低下していたが本発明の構造ではベース上の全面から金
属電極をとっているために多重エミッタ・トランジスタ
の場合も全て同一の速度で動作可能である。
In this structure, the base terminal and emitter terminal can be drawn out using a self-alignment method without taking mask margins. Therefore, the base electrode can be formed near the emitter electrode. The base electrode is drawn out from several points around the emitter, and these points are connected by metal electrodes. All of these features mean that it is possible to significantly reduce base series resistance, which is an impediment to high-speed operation of transistors. In particular, in conventional multi-emitter transistors, the speed of the emitter located far from the base terminal was extremely low due to the series resistance of the base, but in the structure of the present invention, the metal electrode is formed on the entire surface of the base. In addition, multiple emitter transistors can all operate at the same speed.

本構造はベースの金属電極取り出しと同様にグラフト・
ベース(16)用の高濃度のp影領域をエミッタ領域と
の間で自己整合法で形成できる。これは先に述べたと同
様にベース抵抗低減に対して顕著な効果が得られる。
This structure is similar to the extraction of metal electrodes from the base.
A highly concentrated p shadow region for the base (16) can be formed between the emitter region and the emitter region in a self-aligned manner. This has a significant effect on reducing the base resistance as described above.

上述のようにベースとエミッタを自己整合法で形成でき
るということはマスク合わせが必要ないことを意味し、
微細な素子を容易に形成できる。
As mentioned above, the fact that the base and emitter can be formed using a self-alignment method means that there is no need for mask alignment.
Fine elements can be easily formed.

本構造ではエミッタを多結晶シリコンで形成するため、
npn )ランジスタの場合は導電形はn形となる。周
知のようにn形多結晶シリコン層の層抵抗はp形のそれ
に比べて格段に抵抗値を低く形成することが可能である
。したがって本構造のようにエミッタに多結晶シリコン
層を用いるトランジスタはこの層を交叉配線のクロス・
アンダー配線として用いることができる利点がある。ベ
ースに多結晶シリコン層を用いたトランジスタでは多結
晶層の導電形がp形のため抵抗値を低くできず、交叉配
線に用いるのが困難である。このように多結晶シリコン
層を本発明のように交叉配線に用いることができるとい
うことは集積回路を構成する上で重要な意義がある。一
般に集積回路の規模が大きくなるにつれ、集積回路中の
配線面積は急速に増大し、素子面積よりはるかに大きな
面積を占める。このような場合に本発明の多結晶シリコ
ン層(しかも本多結晶シリコン層は配線のために特別に
形成したものではな(、エミッタ形成時に同時に形成可
能である。)の効果が顕著に現われ、集積回路の面積低
減に大きな役割を果し得る前述したように、従来技術の
問題点には、ベース・エミッタ間接合不良と短絡不良が
ある。これは自己整合法でベースとエミッタを形成する
ためにベースとエミッタの高濃度半導体層同志の接触に
よって接合不良が引き起こされる。またベース端子の取
シ出穴とエミツタ層が接近しすぎてエミッタの半導体層
の横方向拡散のためにベース端子用金属がエミッタに短
絡してしまうことが多かった。本発明では第1図(e)
、  (f)で示したようにエミッタとベース用電極の
距離は窒化膜4と酸化膜層によって適正に保持されるの
で従来の自己整合形トランジスタのような不良が生じる
ことがない。
In this structure, the emitter is formed of polycrystalline silicon, so
npn) In the case of a transistor, the conductivity type is n type. As is well known, the layer resistance of an n-type polycrystalline silicon layer can be made to have a much lower resistance value than that of a p-type layer. Therefore, in a transistor that uses a polycrystalline silicon layer for the emitter like this structure, this layer is
It has the advantage that it can be used as an under wiring. In a transistor using a polycrystalline silicon layer as a base, the conductivity type of the polycrystalline layer is p-type, so the resistance value cannot be lowered, and it is difficult to use it for cross wiring. The fact that a polycrystalline silicon layer can be used for cross wiring as in the present invention has an important meaning in constructing an integrated circuit. Generally, as the scale of an integrated circuit increases, the wiring area in the integrated circuit rapidly increases and occupies a much larger area than the element area. In such a case, the effect of the polycrystalline silicon layer of the present invention (furthermore, this polycrystalline silicon layer is not specially formed for wiring (it can be formed at the same time as emitter formation) becomes noticeable, As mentioned above, problems with the conventional technology include base-emitter junction defects and short-circuit defects, which can play a major role in reducing the area of integrated circuits.This is because the base and emitter are formed using a self-aligned method. Contact between the high-concentration semiconductor layers of the base and emitter causes a bonding failure.Also, if the base terminal exit hole and the emitter layer are too close together, the metal for the base terminal becomes too close to each other due to lateral diffusion of the emitter semiconductor layer. was often short-circuited to the emitter.In the present invention, as shown in Fig. 1(e)
, (f), the distance between the emitter and base electrodes is properly maintained by the nitride film 4 and the oxide film layer, so that defects unlike conventional self-aligned transistors do not occur.

また本発明では当然の事ながらエミッタ端子取り出し用
のコンタクト穴を別に設ける必要がない・。
Furthermore, in the present invention, it is of course unnecessary to provide a separate contact hole for taking out the emitter terminal.

次に工程上の特長について述べる。Next, we will discuss the process features.

本発明では第2図で示したように窒化膜4をベース上に
残しておいて、これを用いてエミッタ用多結晶シリコン
層の酸化の際にベース上の端子取り出し部分が酸化され
るのを防いでいる。
In the present invention, the nitride film 4 is left on the base as shown in FIG. 2, and is used to prevent the terminal lead-out portion on the base from being oxidized when the polycrystalline silicon layer for the emitter is oxidized. Preventing.

またエミッタ用多結晶シリコン層のパターン形・成には
マスクを用すていることである。このときエミッタの拡
散窓(第2図(b)の7の部分)よシも少し太き目にパ
ターン形成しておくことである。
Furthermore, a mask is used for patterning and forming the polycrystalline silicon layer for the emitter. At this time, the emitter diffusion window (portion 7 in FIG. 2(b)) should also be patterned to be slightly thicker.

これが後のベース・エミッタ間の拡散余裕を与えること
になる。
This provides a diffusion margin between the base and emitter later.

第6図(a)〜(d)は本発明の第2の実施例を工程順
に示した図である。本実施例は、第1の実施例(第2図
)で説明したnpn )う/ジスタと共存させる横形p
npトランジスタに関するものである。なお、第6図で
は第2図の(d)に相当する工程から示しである。
FIGS. 6(a) to 6(d) are diagrams showing the second embodiment of the present invention in order of steps. In this embodiment, the horizontal p
This relates to np transistors. Note that FIG. 6 shows the process starting from the step corresponding to (d) in FIG. 2.

まず工程順にその製法について述べる。First, the manufacturing method will be described in order of steps.

(a):  npn)ランジスタでは第2図(b)の工
程でエミッタ用の窓開けを行なったが1本工程ではそれ
を行なわず、多結晶シリコン層の下に窒化膜4、酸化膜
6を残しておいてパターン形成し、酸化して酸化膜層1
0を形成する。また窒化膜4゜酸化膜6の下にはp形半
導体層は形成しないでおく。
(a): In the npn) transistor, a window for the emitter was opened in the step shown in FIG. Leave it behind, pattern it, and oxidize it to form oxide film layer 1.
form 0. Further, no p-type semiconductor layer is formed under the nitride film 4° oxide film 6.

(b)、  この工程はnpn )う/ジスタのグラフ
ト・ベース形成と同一工程である。多結晶シリコン層9
及び酸化膜層1oを自己整合用マスクとして窒化膜4.
酸化膜6を除去し、高濃度p形半導体層(拡散層)16
を形成する。
(b) This step is the same as the graft base formation for npn). polycrystalline silicon layer 9
and a nitride film 4. using the oxide film layer 1o as a self-alignment mask.
After removing the oxide film 6, a highly concentrated p-type semiconductor layer (diffusion layer) 16 is formed.
form.

(C):  端子取り出しの金属電極14を形成する。(C): A metal electrode 14 for terminal extraction is formed.

以上の工程で横形pnp )ランジスタが構成される。Through the above steps, a horizontal pnp transistor is constructed.

横形pnp トランジスタは、多結晶シリコン層9をフ
ローティ/グにするが、特定の電位を与える。
The lateral pnp transistor leaves the polycrystalline silicon layer 9 floating/low, but provides a specific potential.

特に横形pnpトランジスタのエミッタ側となる金属電
極14と多結晶シリコン層9を接続した場合には、寄生
チャネル防止に有効となる。この場合の構成は第3図(
d)のようになる。
Particularly when the metal electrode 14 on the emitter side of the lateral pnp transistor is connected to the polycrystalline silicon layer 9, this is effective in preventing parasitic channels. The configuration in this case is shown in Figure 3 (
d).

(d):  図の16で示した部分(接続部)で金属電
極14と多結晶シリコン層9を接続した。このようにす
れば素子面積を増大することなく、容易に構成できる。
(d): The metal electrode 14 and the polycrystalline silicon layer 9 were connected at the part (connection part) shown by 16 in the figure. In this way, the structure can be easily configured without increasing the element area.

第4図(a)〜(C)は本発明の第3の実施例を工程順
に示した図である。本実施例は、第2の実施例(第3図
)と同様に横形1)np)ランジスタに関するものであ
る。以下、工程順に説明する。
FIGS. 4(a) to 4(C) are diagrams showing the third embodiment of the present invention in the order of steps. This embodiment, like the second embodiment (FIG. 3), relates to a horizontal 1)np) transistor. The steps will be explained below in order.

(a)−窒化膜4.酸化膜層の下に図の様にnpnトラ
ンジスタの真性ベースと同一のp形半導体層2を形成す
る。次に2つのp形半導体層2をまたぐように多結晶シ
リコン層9を形成し、それを酸化して酸化膜層10を形
成する。
(a) - Nitride film 4. A p-type semiconductor layer 2, which is the same as the intrinsic base of the npn transistor, is formed under the oxide film layer as shown in the figure. Next, a polycrystalline silicon layer 9 is formed so as to straddle the two p-type semiconductor layers 2, and is oxidized to form an oxide film layer 10.

(b):  npn)ランジスタのグラフト・ベース形
成の工程と同様に、多結晶シリコン層9及び酸化膜層1
0を自己整合マスクとして高濃度のp形拡散を行ない、
高濃度p形半導体層16を形成する。
(b): Similar to the step of forming the graft base of npn) transistor, polycrystalline silicon layer 9 and oxide film layer 1 are formed.
Perform high concentration p-type diffusion using 0 as a self-aligned mask,
A heavily doped p-type semiconductor layer 16 is formed.

(C):  最後に金属電極14を形成する。(C): Finally, the metal electrode 14 is formed.

本構造の特長は以下のようである。The features of this structure are as follows.

本構造では、pnp)ランジスタのベース幅を短かくで
きることである。第3図の構造においては、エミッタ、
コレクタを高濃度の深いp形半導体層で形成しているた
めに、ベース幅を短かくすることができない。また、エ
ミッタ、コレクタの金属・電極14は取り出し窓を被う
必要があるため、ベース幅は上記金属電極間距離(1)
で制限されてしまい、小さくすることができない。これ
に対して、本発明の第4図の構造では低濃度の浅いp形
半導体層2でベース幅を決めることができるため、ベー
ス幅を小さくすることが可能となる。本実施例では金属
電極間距離<1)は多結晶シリコン層9で保持すること
が可能となる。これにより本実施例のpnp )ランジ
スタは性能を格段に向上することが可能となる。
In this structure, the base width of the pnp transistor can be shortened. In the structure of Fig. 3, the emitter,
Since the collector is formed of a highly doped deep p-type semiconductor layer, the base width cannot be shortened. Also, since the metal/electrode 14 of the emitter and collector needs to cover the extraction window, the base width is the distance between the metal electrodes (1).
It cannot be made smaller. On the other hand, in the structure of FIG. 4 of the present invention, the base width can be determined by the shallow p-type semiconductor layer 2 with a low concentration, so that the base width can be made small. In this embodiment, the distance between metal electrodes <1) can be maintained by the polycrystalline silicon layer 9. As a result, the performance of the pnp (pnp) transistor of this embodiment can be significantly improved.

第5図(a)〜(C)は本発明の第4の実施例を工程順
に示した図である。本実施例も横形pnp )ランジス
タに関するものであるが、第6の実施例(第4図)のも
のより更に高性能化をはかった構造になっている。以下
、工程順に説明する。
FIGS. 5(a) to 5(C) are diagrams showing the fourth embodiment of the present invention in order of steps. Although this embodiment also relates to a horizontal pnp (pnp) transistor, it has a structure with higher performance than that of the sixth embodiment (FIG. 4). The steps will be explained below in order.

(a):  窒化膜4.酸化膜6の下にnpn )ラン
ジスタの真性ベースとなる低濃度の浅いp形半導体層2
を形成しておく。次に多結晶シリコン層9をパターン形
成した後に酸化して酸化膜層10を形成する。次にホト
レジスト17等をマスクとして。
(a): Nitride film 4. Under the oxide film 6 is a low concentration shallow p-type semiconductor layer 2 which becomes the intrinsic base of the npn) transistor.
Form it. Next, after patterning the polycrystalline silicon layer 9, it is oxidized to form an oxide film layer 10. Next, use photoresist 17 or the like as a mask.

図の18の部分(窓穴)の窒化膜4.酸化膜6を除去し
て窓穴を形成する。このとき窒化膜4.酸化膜6は多結
晶シリコン層9をマスクとした自己整合法で除去される
。この状態でn形不純物のイオン打込みを行なうか、ホ
トレジストを除去した後にn形不純物の拡散を行なう。
Nitride film at part 18 (window hole) in the figure 4. The oxide film 6 is removed to form a window hole. At this time, the nitride film 4. Oxide film 6 is removed by a self-alignment method using polycrystalline silicon layer 9 as a mask. In this state, n-type impurity ions are implanted, or after the photoresist is removed, n-type impurity is diffused.

この場合には、実際のイオン打込み、拡散のマスクとな
るのはホトレジスト膜ではなく、多結晶シリコン層9と
厚い酸化膜5であるから、使用するマスクの合わせ精度
は必要なく、自己整合法となっている。
In this case, the masks for actual ion implantation and diffusion are not the photoresist film but the polycrystalline silicon layer 9 and the thick oxide film 5, so there is no need for precision alignment of the masks used, and the self-alignment method It has become.

(b):  多結晶シリコン層9が無い他の窒化膜4゜
酸化膜3を除去して、高濃度の深いp形半導体層13.
13’を形成する。この高濃度p形半導体層15.13
’はnpn )ランジスタのグラフト・ベースと同時に
形成することも可能である。このときの窒化膜4.酸化
膜6は自己整合法で除去されるのは言うまでもない。ま
た、n形半導体層19が形成された部分のp形半導体層
16ともう1つのp形半導体層16′は同時に形成され
る。
(b): The other nitride film 4° without the polycrystalline silicon layer 9 and the oxide film 3 are removed to form a highly concentrated deep p-type semiconductor layer 13.
13' is formed. This high concentration p-type semiconductor layer 15.13
' is npn) It is also possible to form the graft base of the transistor at the same time. Nitride film 4 at this time. Needless to say, the oxide film 6 is removed by the self-alignment method. Further, the p-type semiconductor layer 16 in the portion where the n-type semiconductor layer 19 is formed and another p-type semiconductor layer 16' are formed simultaneously.

(C):  最後に金属電極14をつける。(C): Finally, attach the metal electrode 14.

本実施例の特長を以下に述べる。The features of this embodiment will be described below.

本実施例の構造においてp形半導体層13をエミッタと
し、16′をコレクタとする。この場合はn形半導体層
19とp形半導体層15が2重拡散20となっているた
め、ベース幅をサブ・ミクロンに精度良く形成すること
が可能となる。特にpnpトランジスタの場合は、ベー
ス層となるn形半導体層19にエミッタからコレクタに
向けて濃度勾配がついているために、電流増幅率の高い
、高速な高性能のトランジスタとなる。
In the structure of this embodiment, the p-type semiconductor layer 13 is used as an emitter, and 16' is used as a collector. In this case, since the n-type semiconductor layer 19 and the p-type semiconductor layer 15 are double-diffused 20, it is possible to form the base width to sub-micron precision with high accuracy. In particular, in the case of a pnp transistor, since the n-type semiconductor layer 19 serving as the base layer has a concentration gradient from the emitter to the collector, it becomes a high-speed, high-performance transistor with a high current amplification factor.

第6図(a)、  (b)は本発明の第5の実施例を工
程順に示した図である。本実施例はショットキーダイオ
ードに関するものである。以下、工程順に説明する。
FIGS. 6(a) and 6(b) are diagrams showing the fifth embodiment of the present invention in the order of steps. This embodiment relates to a Schottky diode. The steps will be explained below in order.

(a):  pnp)ランジスタのエミッタ、コレクタ
ノぐ形成するまでの工程と同一である。但し、p形半導
体層13は多結晶シリコン層9を取り囲むように形成す
る。
(a): The process is the same as that of forming the emitter and collector of a pnp transistor. However, the p-type semiconductor layer 13 is formed so as to surround the polycrystalline silicon layer 9.

(b):  酸化膜層10.多結晶ンリコン層9.窒化
膜4.酸化膜6を除去し、全面に金属電極14をつける
(b): Oxide film layer 10. Polycrystalline silicon layer9. Nitride film 4. The oxide film 6 is removed and a metal electrode 14 is attached to the entire surface.

本実施例の特長を以下に述べる。The features of this embodiment will be described below.

従来のガードリング付のショットキーダイオードでは、
ガードリングをマスクを用いて形成していたためK、シ
ョットキーダイオード−の面積が非常に大きくなってい
た。
In the conventional Schottky diode with guard ring,
Since the guard ring was formed using a mask, the area of the Schottky diode became very large.

本発明の実施例の構造を形成するには、ガードリング(
−p形半導体層13)を自己整合法で形成できるため、
細い幅のガードリングを容易に形成でき、小面積のシミ
ツトキーダイオードの形成が可能となる・ 第7図は本発明の第6の実施例を示す図である。
To form the structure of an embodiment of the invention, a guard ring (
- Since the p-type semiconductor layer 13) can be formed by a self-alignment method,
A guard ring with a narrow width can be easily formed, and a Schmittkey diode with a small area can be formed. FIG. 7 is a diagram showing a sixth embodiment of the present invention.

本実施例は抵抗に関するものである。すなわち、第7図
は本発明のnpn )ランジスタと同時に形成可能な抵
抗の構造断面図を示している。本抵抗の場合はnpn 
)ランジスタの真性ペースに用いる低濃度の浅いp形半
導体層2を抵抗として用いる。
This embodiment relates to resistance. That is, FIG. 7 shows a cross-sectional view of the structure of a resistor that can be formed simultaneously with the npn transistor of the present invention. For this resistor, npn
) A shallow, low-concentration p-type semiconductor layer 2 used as an intrinsic paste of a transistor is used as a resistor.

抵抗の長さは多結晶シリコン層9によって決められる。The length of the resistor is determined by the polycrystalline silicon layer 9.

抵抗の両端子の取り出し穴はトランジスタの場合と同様
に多結晶シリコン層9によって自己整合的に決められ、
ここに高濃度の1p形半導体層16が形成され、同時に
同一の取り出し穴から金属電極14によって端子が引き
出される。
The holes for taking out both terminals of the resistor are determined in a self-aligned manner by the polycrystalline silicon layer 9, as in the case of a transistor.
A high-concentration 1p type semiconductor layer 16 is formed here, and at the same time, a terminal is extracted from the same extraction hole by means of a metal electrode 14.

本実施例の場合には実際の抵抗値を決定するのはp形半
導体層2の部分であり、p形半導体層13は金属電極と
半導体層との間の良好な低抵抗のオーム性接触を得るた
めに用いられる。真性ペースに用いるp形半導体層2の
場合は低濃度で浅い接合を形成しているので本実施例で
は集積回路において実現し難い高抵抗を容易に得ること
が可能となる。
In the case of this embodiment, it is the p-type semiconductor layer 2 that determines the actual resistance value, and the p-type semiconductor layer 13 provides good low-resistance ohmic contact between the metal electrode and the semiconductor layer. used to obtain In the case of the p-type semiconductor layer 2 used as the intrinsic paste, a shallow junction is formed with a low concentration, so in this embodiment, it is possible to easily obtain a high resistance that is difficult to realize in an integrated circuit.

また本実施例の抵抗は従来の抵抗には見られない利点も
有している。従来の集積回路における抵抗の多くは抵抗
層となる半導体領域の形成と電極取り出しのための穴開
は工程は異なるマスクを用いていた。このため上記両マ
スク間にマスク合わせのための余裕を取る必要があり、
金属電極取り出し穴より常に半導体層の領域を大きく設
計しなげればならず、これによって金属電極取り出し穴
の周囲の半導体層からの電流の回シ込み効果によって抵
抗値が設計値とずれるのが通常であった。
The resistor of this embodiment also has advantages not found in conventional resistors. In many conventional integrated circuit resistors, different masks were used for forming a semiconductor region to serve as a resistor layer and for making holes for taking out electrodes. For this reason, it is necessary to provide a margin between the two masks above for mask alignment.
The area of the semiconductor layer must always be designed to be larger than the metal electrode extraction hole, and as a result, the resistance value usually deviates from the designed value due to the current sinking effect from the semiconductor layer surrounding the metal electrode extraction hole. Met.

本発明の実施例では電極取り出し穴は下地の半導体層1
3と自己整合法で形成されるため、上記の金属電極端部
における電流の回り込み効果を最小に抑えることが可能
となり、精密な抵抗の設計が容易になる。
In the embodiment of the present invention, the electrode extraction hole is formed in the underlying semiconductor layer 1.
3 and by a self-alignment method, it is possible to minimize the current looping effect at the end of the metal electrode, making it easy to design a precise resistor.

第8図は本発明の第7の実施例を示す図である。FIG. 8 is a diagram showing a seventh embodiment of the present invention.

本実施例は容量に関するもので、集積化容量の3つの構
造(a) 、  (b)及び(C)について述べる。
This embodiment relates to capacitance, and describes three structures (a), (b), and (C) of integrated capacitance.

第8図(a)は多結晶シリコン層9と半導体層(半導体
基板1)の間の絶縁膜(窒化膜4.酸化膜6)を介した
容量の構造である。
FIG. 8(a) shows a structure of capacitance between a polycrystalline silicon layer 9 and a semiconductor layer (semiconductor substrate 1) through an insulating film (nitride film 4, oxide film 6).

本発明では絶縁膜を介した容量も、図に示したように容
易に形成可能である。窒化膜4の誘電率は酸化膜に比べ
て倍程度大きいので、小面積で大きな容量値を得ること
が可能という利点を有している。
According to the present invention, a capacitance via an insulating film can also be easily formed as shown in the figure. Since the dielectric constant of the nitride film 4 is about twice as large as that of the oxide film, it has the advantage that a large capacitance value can be obtained with a small area.

第8図(b)は多結晶シリコン層9と半導体層(シリコ
ン層2)の間の絶縁膜(窒化膜4.酸化膜3)を介した
容量の構造である。
FIG. 8(b) shows a capacitance structure between the polycrystalline silicon layer 9 and the semiconductor layer (silicon layer 2) via an insulating film (nitride film 4, oxide film 3).

本構造の場合の特長、利点は第8図(a)の場合と同様
であるが、半導体層(シリコン層2)を用いることによ
り、一方の電極側の容量の損失抵抗を軽減している。ま
た第8図(a)の構造ではn形半導体基板1を一方の電
極としているために、多数の容量を必要とする場合には
、各々の容量を分離層によって分離する必要があり、面
積が太き(なるのと、図示されていない下地のp形基板
との間の寄生容量が大きくなる。本実施例〔第8図(b
)〕では、p形半導体層2を一方の電極としているため
に上記のような問題がなく、寄生容量はp形半導体層2
とn形半導体基板1の接合容量だけとなる。p形半導体
層2の不純物濃度は低いので、この寄生容量も低く抑え
ることができる。
The features and advantages of this structure are the same as those of FIG. 8(a), but by using a semiconductor layer (silicon layer 2), the loss resistance of the capacitance on one electrode side is reduced. In addition, in the structure of FIG. 8(a), since the n-type semiconductor substrate 1 is used as one electrode, if a large number of capacitors are required, each capacitor must be separated by a separation layer, which reduces the area. This increases the parasitic capacitance between the thick substrate and the underlying p-type substrate (not shown).
)], since the p-type semiconductor layer 2 is used as one electrode, there is no problem as described above, and the parasitic capacitance is
and only the junction capacitance of the n-type semiconductor substrate 1. Since the impurity concentration of the p-type semiconductor layer 2 is low, this parasitic capacitance can also be kept low.

第8図(C)は第8図(b)で示した構造に加えて多結
晶シリコン層9と金属電極140間の酸化膜層10を介
した容量の構造である。このようにすれば更に同一面積
でも大きな容量を得ることが可能となる。
In addition to the structure shown in FIG. 8(b), FIG. 8(C) shows a capacitance structure with an oxide film layer 10 between the polycrystalline silicon layer 9 and the metal electrode 140. In this way, it is possible to obtain a larger capacity even with the same area.

以上の実施例においては容量の絶縁膜として窒化膜4と
酸化膜5を用いた例について述べてきたが、容量の部分
の窒化膜4を除去して薄い酸化膜3だけの絶縁膜を有す
る容量を得ることも容易にできることは言うまでもない
In the above embodiment, an example was described in which the nitride film 4 and the oxide film 5 were used as the insulating film of the capacitor, but the nitride film 4 in the capacitor part was removed and the capacitor had an insulating film of only the thin oxide film 3. Needless to say, it is easy to obtain.

第9図は本発明の第8の実施例を示す図である。FIG. 9 is a diagram showing an eighth embodiment of the present invention.

本実施例はI2Lに関するもので、6つの構造(a)(
b)及び(C)について述べる。
This example concerns I2L, and includes six structures (a) (
Let us now discuss b) and (C).

第2図の実施例で示したnpn トランジスタと第3図
、第4図、第5図の実施例で示したpn9 )ランジス
タを組み合わせることにより、第9図(a)(b)、(
c)に示した■2L構造が容易に得られる。
By combining the npn transistor shown in the embodiment of FIG. 2 with the pn9) transistor shown in the embodiment of FIGS. 3, 4, and 5,
The 2L structure shown in c) can be easily obtained.

本実施例に示した■2L構造の・場合は第2図から第5
図に示した実施例で述べたupn)ランジスタpnp 
)ランジスタの利点がそσ〕まま適用されるのは言うま
でもない。その他に本実施例の■2La造では以下のよ
うな特に重要な利点を有する。
■ In the case of the 2L structure shown in this example, Figs.
upn) transistor pnp mentioned in the embodiment shown in the figure
) It goes without saying that the advantages of the transistor apply as is. In addition, the 2La structure of this embodiment has the following particularly important advantages.

■2L構造ではnpn )ランジスタは上側のn形半導
体領域11をコレクタとして用いる。このように逆モー
ドで用いるトランジスタは一般に電流増幅率が低い。こ
れはエミッタ領域(基板1)からベースのp影領域に注
入された電子のうち、コレクタ領域(11)の直下から
注入された電子だけがコレクタに到達し、コレクタ電流
となり、他の部分から注入された電子はを1とんと全て
ベース電流となってしまうためである。このため逆モー
ドで用いるトランジスタの電流増幅率を上げるにはコレ
クタ領域(11)とベース領域(p形半導体層216)
の面積比率を可能な限り1に近づける必要がある。また
コレクタ領域直下以外のベース領域の濃度を高くし、こ
の部分への電子の注入を少なくすることも必要である。
(2) In the 2L structure, the npn transistor uses the upper n-type semiconductor region 11 as a collector. In this way, transistors used in the reverse mode generally have a low current amplification factor. This means that among the electrons injected from the emitter region (substrate 1) to the p-shade region of the base, only the electrons injected from directly below the collector region (11) reach the collector and become a collector current, and are injected from other parts. This is because every single electron generated becomes base current. Therefore, in order to increase the current amplification factor of the transistor used in the reverse mode, the collector region (11) and the base region (p-type semiconductor layer 216)
It is necessary to make the area ratio as close to 1 as possible. It is also necessary to increase the concentration of the base region other than directly below the collector region to reduce the injection of electrons into this region.

本実施例の場合はベース端子を自己整合法で取り出すこ
とができるためにコレン゛り領域以外のベース領域の面
積を著しく低減することが可能である。またベース端子
取り出し部分には全て高濃度(7)p影領域を形成して
いるのでnpn トランジスタの電流増幅率を大きくす
ることが可能となる。
In the case of this embodiment, since the base terminal can be taken out by a self-alignment method, it is possible to significantly reduce the area of the base region other than the coherent region. Furthermore, since high concentration (7)p shadow regions are formed in all base terminal lead-out portions, it is possible to increase the current amplification factor of the npn transistor.

また工2Lは1人力、多出力の論理回路であり、コレク
タ端子を多数必要とする。従来の■2Lの構造において
多数のコレクタ出力を持つ場合にはベースの直列抵抗の
効果によって大電流ではpnpトランジスタから遠い距
離にあるコレクタの吸い込み電流が著しく低下し、動作
速度も極端に遅(なるということがあった。このように
特に■2Lにおいては、ベースの直列抵抗が高いという
ことは動作余裕、動作速度の上で非常に悪い影響を及ぼ
している。
Further, the construction 2L is a one-manpower, multi-output logic circuit, and requires a large number of collector terminals. ■When a conventional 2L structure has a large number of collector outputs, the effect of the series resistance of the base causes the sink current of the collector located far from the pnp transistor to drop significantly at large currents, resulting in an extremely slow operating speed. As described above, especially in the 2L, the high series resistance of the base has a very negative effect on operating margin and operating speed.

本実施例の構造の■2Lでは第9図で示しであるように
金属電極によって各コレクタのと(近傍からベース端子
を取り出しているため、ベースの直列抵抗は無視でき得
る程低くなシ、コレクタ位置の差異による特性の相違が
なくなる。この事は集積回路において従来の構造の■2
Lの速度が一番遅く動作するコレクタによって制限され
ていた事実に対し、本発明では全てのコレクタを同一の
高速度で動作させ得るために集積回路での動作速度を一
層高くすることが可能なことな意味している。
2L of the structure of this example, as shown in Fig. 9, the base terminal is taken out from the vicinity of each collector by means of metal electrodes, so the series resistance of the base is so low that it can be ignored. Differences in characteristics due to differences in position are eliminated.This eliminates the difference in characteristics due to positional differences.
In contrast to the fact that the speed of L was limited by the slowest operating collector, the present invention allows all collectors to operate at the same high speed, making it possible to further increase the operating speed of the integrated circuit. It means something.

本実施例のI2Lの場合はコレクタ端子数シ出しに多結
晶シリコンを用いているためにペース端子取抄出しに多
結晶シリコンを用いている場合に比べ、多結晶シリコン
層を隣接ゲートを越えて配線する場合の配線層として用
いることが可能である。
In the case of I2L of this embodiment, since polycrystalline silicon is used to extract the number of collector terminals, compared to the case where polycrystalline silicon is used to extract the paste terminals, the polycrystalline silicon layer can be extended beyond the adjacent gate. It can be used as a wiring layer for wiring.

このことは集積回路の配線を含めた設計を考えた場合に
はレイアウト設計での大きな自由度が得ら20れると共
にチップ面積低減の上゛で大きな効果がある。
This provides a large degree of freedom in layout design when considering the design of integrated circuits including wiring, and is also very effective in reducing chip area.

第10図は本発明の第9の実施例を示す図である。FIG. 10 is a diagram showing a ninth embodiment of the present invention.

本実施例では第2図で述べたnpn )ランジスタと第
6図で述べたショットキーダイオードの組み合わせによ
るショットキークランプ・トランジスタの構造について
述べる。
In this embodiment, the structure of a Schottky clamp transistor which is a combination of the npn (npn) transistor described in FIG. 2 and the Schottky diode described in FIG. 6 will be described.

第10図(a)はショットキークランプ・トランジスタ
の構造断面図であL(b)はその等何回路゛である。
FIG. 10(a) is a cross-sectional view of the structure of a Schottky clamp transistor, and L(b) is its circuit.

構造断面図かられかるように本トランジスタは第2図の
トランジスタと第6図のショットキーダイオードを組合
せることにより容易に形成できることがわかる。第10
図(a)において2oの接合部分が金属14とシリコン
によるショットキーダイオードの部分である。本構造に
おける利点は第2図と第6図の実施例で述べた利点がそ
のまま当てはまるのは言うまでもない。
As can be seen from the structural cross-sectional view, it can be seen that this transistor can be easily formed by combining the transistor shown in FIG. 2 and the Schottky diode shown in FIG. 6. 10th
In Figure (a), the junction 2o is a Schottky diode made of metal 14 and silicon. Needless to say, the advantages of this structure are the same as those described in the embodiments of FIGS. 2 and 6.

以上、数々の実施例に沿りて本発明の利点を述べてきた
が本発明の範囲は実施例に示された形態だけに限定され
るものではなく、本実施例の幾多の変形も本発明に含ま
れるのは言うまでもない。
Although the advantages of the present invention have been described above with reference to a number of embodiments, the scope of the present invention is not limited to only the forms shown in the embodiments, and the present invention also includes numerous modifications of the embodiments. Needless to say, it is included in

例えば実施例で示した半導体層の導電形をp形とn形で
入れ換えても本発明が適用されるのは言うまでもない。
For example, it goes without saying that the present invention can be applied even if the conductivity types of the semiconductor layers shown in the embodiments are switched between p-type and n-type.

また本発明で示した実施例の幾つかを組合せた構造も本
発明の適用範囲に含まれるのも言うまでもない。更に本
発明の実施例では集積回路として通常用いられるp形基
板、n形半導体埋込み層の図示を省略したが、これは前
述したように本発明の要点を明確に示すために省略した
ものであり、当然これらp形基板、n形半導体埋込み層
を含む構造も本発明に含まれることは言うまでもない。
Further, it goes without saying that a structure in which some of the embodiments shown in the present invention are combined is also included within the scope of the present invention. Furthermore, in the embodiments of the present invention, illustrations of the p-type substrate and the n-type semiconductor buried layer, which are commonly used in integrated circuits, are omitted; however, as mentioned above, this is done in order to clearly illustrate the main points of the present invention. It goes without saying that structures including these p-type substrates and n-type semiconductor buried layers are also included in the present invention.

まとめ: 本発明に係る半導体装置及びその製13造方
法についての実施態様を下記に示す。
Summary: Embodiments of a semiconductor device and its manufacturing method according to the present invention are shown below.

■ 縦形構造のnpn )ランジスタにおいて、ベース
領域は低濃度のn形半導体領域2と高濃度のn形半導体
領域16を有し、上記低濃度のn形半導体領域2中にエ
ミッタ領域を少なくとも1ヶ以上有し、エミッタ領域上
にはエミッタ端子取り出しのためのエミッタ領域用穴を
被う多結晶シリコン層9を有し、多結晶シリコン層9の
うちエミッタ領域用穴より大きな部分と下地のベース領
域の間には窒化膜4と薄い酸化膜6を有し、多結晶シリ
コン層9は酸化膜層10で被われ、金属電極14によっ
て上記高濃度p形半導体層13からベース端子を取り出
し、金属電極14は上記エミッタ電極用′多結晶シリコ
ン層9の上を酸化膜層10を介して配線されている構造
を有することを特徴とす゛る半導体装置(第2図参照)
■ In an npn transistor with a vertical structure, the base region has a lightly doped n-type semiconductor region 2 and a highly doped n-type semiconductor region 16, and at least one emitter region is provided in the lightly doped n-type semiconductor region 2. On the emitter region, there is a polycrystalline silicon layer 9 covering the emitter region hole for taking out the emitter terminal, and a portion of the polycrystalline silicon layer 9 that is larger than the emitter region hole and the underlying base region. There is a nitride film 4 and a thin oxide film 6 between them, the polycrystalline silicon layer 9 is covered with an oxide film layer 10, the base terminal is taken out from the high concentration p-type semiconductor layer 13 by a metal electrode 14, and the metal electrode Reference numeral 14 denotes a semiconductor device (see FIG. 2) characterized in that it has a structure in which wiring is provided on the polycrystalline silicon layer 9 for the emitter electrode via an oxide film layer 10.
.

■ 上記■記載の半導体装置において上記半導体装置と
同一工程で同一基板に形成可能な横形のpnp )ラン
ジスタとして、ベース領域のn形半導体層上に酸化膜3
と窒化膜4を有し、窒化膜4上−にはこれと同一の幅を
有する酸化膜層10に被われた多結晶シリコン層9を有
し、エミッタ、コレクタ領域はn形半導体領域(13又
は2)によって形成され、上記n形半導体領域から金属
電極14を取9出した構造を有することを特徴とする半
導体装置(第3.4.5−図参照)。
■ In the semiconductor device described in ■ above, a horizontal PNP transistor that can be formed on the same substrate in the same process as the semiconductor device described above.
and a nitride film 4, and on the nitride film 4 there is a polycrystalline silicon layer 9 covered with an oxide film layer 10 having the same width as the polycrystalline silicon layer 9, and the emitter and collector regions are n-type semiconductor regions (13 or 2), and has a structure in which the metal electrode 14 is extracted from the n-type semiconductor region (see Figure 3.4.5).

■ 上記■記載の半導体装置において、n形半導体領域
は高濃度のp形半導体層としたことを特徴とする半導体
装置(第6図参照)。
(2) A semiconductor device as described in (1) above, characterized in that the n-type semiconductor region is a highly doped p-type semiconductor layer (see FIG. 6).

■ 上記■記載の半導体装置において、n形半導体領域
を低濃度のp形半導体層(領域)と高濃度のp形半導体
層(領域)との複合構造とし、上記低濃度n形半導体領
域間の距離が高濃度n形半導体領域間の距離より短かく
、かつ多結晶シリコン層の幅よシも短かい構造を有する
ことを特徴とする半導体装置(第4図参照)。
■ In the semiconductor device described in ■ above, the n-type semiconductor region has a composite structure of a low-concentration p-type semiconductor layer (region) and a high-concentration p-type semiconductor layer (region), and between the low-concentration n-type semiconductor regions A semiconductor device (see FIG. 4) characterized in that the distance is shorter than the distance between high concentration n-type semiconductor regions and the width of the polycrystalline silicon layer is also shorter.

■ 上記■記載の半導体装置において、ベース領域とエ
ミッタ領域は、同一の窓穴から拡散またはイオン注入で
形成され、n形半導体領域のうちエミッタ領域は高濃度
のn形半導体領域とし、コレクタ領域は低濃度と高濃度
のn形半導体領域の複合構造とし、低濃度n形半導体領
域は高濃度n形半導体領域よりもエミッタに近い距離を
有する構造を特徴とする半導体装置(第5図参照)。
■ In the semiconductor device described in ■ above, the base region and the emitter region are formed by diffusion or ion implantation through the same window hole, and the emitter region of the n-type semiconductor region is a highly doped n-type semiconductor region, and the collector region is a high concentration n-type semiconductor region. A semiconductor device (see FIG. 5) characterized in that it has a composite structure of low concentration and high concentration n-type semiconductor regions, and the low concentration n-type semiconductor region is closer to the emitter than the high concentration n-type semiconductor region.

■ 上記■記載の半導体装置と同一工程、同一基板に形
成可能な抵抗素子として、抵抗部に低濃度n形半導体領
域2と高濃度n形半導体領域16を用い、低濃度n形半
導体領域2上には同一長さを有する酸化膜6と窒化膜4
、及び窒化膜4上には窒化膜と同一長さを有する酸化膜
層10で被われた多結晶シリコン層9を有し、高濃度n
形半導体領域15上の全面から金属電極14を取り出し
た構造を有することを特徴とする半導体装置(第7図参
照)。
■ As a resistance element that can be formed in the same process and on the same substrate as the semiconductor device described in ■ above, the low concentration n-type semiconductor region 2 and the high concentration n-type semiconductor region 16 are used in the resistance part, and the low concentration n-type semiconductor region 2 is formed on the low concentration n-type semiconductor region 2. The oxide film 6 and the nitride film 4 have the same length.
, and on the nitride film 4 there is a polycrystalline silicon layer 9 covered with an oxide film layer 10 having the same length as the nitride film.
A semiconductor device characterized in that it has a structure in which a metal electrode 14 is taken out from the entire surface of a shaped semiconductor region 15 (see FIG. 7).

■ 上記■記載の半導体装置と同一工程、同一基板に形
成可能な容量素子として、絶縁膜に窒化膜4と酸化膜3
あるいは酸化膜を有し、一方の電極を多結晶シリコン層
9とし、他方の電極をn形半導体領域(基板1)または
低濃度n形半導体領域2と高濃度n形半導体領域13、
あるいは金属電極14とする構造を有することを特徴と
する半導体装置(第8図参照)。
■ As a capacitive element that can be formed in the same process and on the same substrate as the semiconductor device described in ■ above, a nitride film 4 and an oxide film 3 are used as an insulating film.
Alternatively, it has an oxide film, one electrode is a polycrystalline silicon layer 9, and the other electrode is an n-type semiconductor region (substrate 1) or a low concentration n-type semiconductor region 2 and a high concentration n-type semiconductor region 13,
Alternatively, a semiconductor device characterized by having a structure in which a metal electrode 14 is used (see FIG. 8).

■ 高濃度n形半導体領域13をガードリングとし、金
属電極14とn形半導体領域(基板1)とのショットキ
ー接合をダイオードとする構造を有する半導体装置(第
6図参照)。
(2) A semiconductor device having a structure in which the high concentration n-type semiconductor region 13 is used as a guard ring and the Schottky junction between the metal electrode 14 and the n-type semiconductor region (substrate 1) is used as a diode (see FIG. 6).

■ 上記の記載の半導体装置と■記載の半導体装置を組
み合わせた構造を有する半導体装置(第10図参照)。
(2) A semiconductor device having a structure that combines the semiconductor device described above and the semiconductor device described in (2) (see FIG. 10).

[相] 上記■記載の半導体装置と■から■記載の半導
体装置を複合一体化した■2L構造を有することを特徴
とする半導体装置(第9図参照)。
[Phase] A semiconductor device characterized by having a 2L structure (see FIG. 9) in which the semiconductor device described in (1) above and the semiconductor devices described in (1) to (2) are integrated into one.

■ 上記■乃至[相]に記載の半導体装置の製造方法に
おいて、npnのトランジスタのエミッタ又はコレクタ
は薄い酸化膜とこの酸化膜上の窒化膜を窓10開けした
後に多結晶シリコン層を被着し、またpnT) )ラン
ジスタ、抵抗上は前記酸化膜と窒化膜は除去せずに多結
晶シリコン層を被着し、前記n’pn)ランジスタのエ
ミッタまたはコレクタあるいは両方の窓穴の部分を被う
ようにパターン形成を行なって多結晶シリコ/層の下地
の窒化膜を露出させた後に酸化を行ない、□多結晶シリ
コン層のみを酸化し、酸化された多結晶シリコン層をマ
スクとして自己整合法で前記薄い酸化膜と窒化膜を除去
した後、高濃度n形半導体層によるnpn)ランジスタ
の外部ベース領域、pnp)ランジスタのエミッタとコ
レクタ領域、抵抗の電極取り出し領域を形成した後に金
属を被着してパターン形成することによシ、自己整合的
にnpn)ランジスタのべ−x端子、 pnp )ラン
ジスタのエミッタとコレクタ端子、抵抗の両端子を取り
出すことを特徴とする半導体装置の製法。
■ In the method for manufacturing a semiconductor device described in (1) to [phase] above, the emitter or collector of an NPN transistor is formed by forming a thin oxide film and a nitride film on the oxide film by opening a window 10, and then depositing a polycrystalline silicon layer. , and pnT) transistor, a polycrystalline silicon layer is deposited on the resistor without removing the oxide film and nitride film, and the window hole portion of the emitter or collector or both of the n'pn) transistor is covered. After patterning is performed to expose the nitride film underlying the polycrystalline silicon/layer, oxidation is performed. After removing the thin oxide film and nitride film, the external base region of the npn transistor, the emitter and collector region of the pnp transistor, and the electrode extraction region of the resistor are formed using a high concentration n-type semiconductor layer, and then metal is deposited. 1. A method for manufacturing a semiconductor device, characterized in that the base-x terminals of an npn) transistor, the emitter and collector terminals of a pnp transistor, and both terminals of a resistor are taken out in a self-aligned manner by forming a pattern.

@ 上記0記載のpnp )ランジスタの製造方法にお
いて、高濃度n形半導体領域を形成する前にエミッタか
らコレクタまでの間に一様に低濃度の。
(PNP described in 0 above) In the method for manufacturing a transistor, a low concentration is uniformly applied between the emitter and the collector before forming the high concentration n-type semiconductor region.

形半導体領域を形成しておき、エミッタとなる部分は酸
化された多結晶シリコン層で自己整合的に決められるよ
うにコレクタ領域をマスクしておき、エミッタとなる領
域からn形半導体領域を形成し、マスク材を除去した後
に高濃度n形半導体層を形15成シてpnp)ランジス
タのエミッタ、コレクタを形成することを特徴とする半
導体装置の製造方法0 ショットキーダイオードの製造
方法において、酸化された多結晶シリコン層をマスクと
して高濃度n形半導体領域を形成した後に多結晶シリコ
ン層とその下の窒化膜、薄い酸化膜を除去して金属な被
着する工程を有する製造方法。
A type semiconductor region is formed in advance, and the collector region is masked so that the portion that will become the emitter is determined in a self-aligned manner using an oxidized polycrystalline silicon layer, and an n-type semiconductor region is formed from the region that will become the emitter. A method for manufacturing a semiconductor device 0, characterized in that after removing a mask material, a high concentration n-type semiconductor layer is formed to form an emitter and a collector of a PNP transistor. A manufacturing method comprising a step of forming a highly doped n-type semiconductor region using a polycrystalline silicon layer as a mask, then removing the polycrystalline silicon layer, a nitride film thereunder, and a thin oxide film, and depositing a metal layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のセルファライン構造の■2L素子の断面
図、第2図(a)〜(f)は本発明のnpnトランジス
タの製造工程順に示した構造断面図、第3図(a) 〜
(d) 、第4図(a) 〜(c) 、第5図(a)〜
(C)はそれぞれ本発明の横形1)n+) )ランジス
タの製造工程順に示した構造断面図、第6図(a)〜(
b)は本発明のショットキーダイオードの製造工程順に
示した構造断面図、第7図は本発明の抵抗の構造断面図
、第8図(a)、  (f))及び(C)はそれぞれ本
発明の容量の構造断面図、第9図(a)、(b)及び(
C)はそれぞれ本発明のT2I、の構造断面図、第10
図(a)は本発明のショットキークランプ・トランジス
タの構造断面図で同(b)はその等何回路である。 1・・・n形半導体基板(基板) 2・・・n形半導体層(シリコン層) 5・・・酸化シリコン膜(酸化膜) 4.6・・・窒化シリコン膜(窒化膜)5・・・酸化シ
リコン膜(酸化膜) 7.12.18・・・窓穴 8.9・・・多結晶シリコン層 10・・・酸化シリコン膜層(酸化膜層)11・・・n
形半導体領域(シリコン層、拡散層)13.13’・・
・高濃度n形半導体層(高濃度拡散層)14・・・金属
(金属電極) 15・・・トランジスタのコレクタ部分16・・・接続
部 17・・・ホトレジスト 19・・・n形半導体層 20・・・接合部分 代理人弁理士 中村紬之助 11 図 1’2図 (。)(d) 1−2図 1jZ  ll   II   Ij 才5 図 16図 (Q) 1−7図 才8図 (Q) 131 1’9図 (Q) 1ソ        Z    l;j   I   
II1−10図 (Q) (b) 供 第1頁の続き 0発 明 者 小倉節生 高崎市西横手町111番地株式会 社日立製作所高崎工場内 0発 明 者 岡部隆博 国分寺市東恋ケ窪−丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 永田穣 国分寺市東恋ケ窪−丁目280番 地株式会社日立製作所中央研究
Fig. 1 is a cross-sectional view of a conventional 2L element with a self-line structure, Fig. 2 (a) to (f) are structural cross-sectional views showing the order of manufacturing steps of the npn transistor of the present invention, and Fig. 3 (a) to (f).
(d), Figure 4 (a) to (c), Figure 5 (a) to
(C) is a structural sectional view showing the horizontal type 1)n+)) transistor of the present invention in the order of manufacturing process, and Fig. 6(a) to (
b) is a structural cross-sectional view showing the manufacturing process order of the Schottky diode of the present invention, FIG. 7 is a structural cross-sectional view of the resistor of the present invention, and FIGS. Structural sectional views of the capacitor of the invention, FIGS. 9(a), (b) and (
C) is a structural cross-sectional view of T2I of the present invention, No. 10, respectively.
Figure (a) is a cross-sectional view of the structure of the Schottky clamp transistor of the present invention, and figure (b) is its circuit. 1... N-type semiconductor substrate (substrate) 2... N-type semiconductor layer (silicon layer) 5... Silicon oxide film (oxide film) 4.6... Silicon nitride film (nitride film) 5...・Silicon oxide film (oxide film) 7.12.18...Window hole 8.9...Polycrystalline silicon layer 10...Silicon oxide film layer (oxide film layer) 11...n
shaped semiconductor region (silicon layer, diffusion layer) 13.13'...
・High concentration n-type semiconductor layer (high concentration diffusion layer) 14...Metal (metal electrode) 15...Collector portion of transistor 16...Connection portion 17...Photoresist 19...N-type semiconductor layer 20・・・Joining Part Agent Patent Attorney Tsuginosuke Nakamura 11 Figure 1'2 (.) (d) 1-2 Figure 1jZ ll II Ij 5 Figure 16 (Q) 1-7 Figure 8 (Q ) 131 1'9 figure (Q) 1 so Z l;j I
Figure II1-10 (Q) (b) Continued from page 1 0 Inventor Setsuo Ogura 111 Nishiyokotecho, Takasaki City, Hitachi, Ltd. Takasaki Factory 0 Inventor Takahiro Okabe 280 Higashi Koigakubo-chome, Kokubunji City Stock Company Hitachi, Ltd. Central Research Laboratory 0 Inventor: Jo Nagata 280 Higashikoigakubo-chome, Kokubunji City, Hitachi, Ltd. Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン層と該シリコン層を含む基板表面の所定
の場所に設けた多結晶シリコン層の間の少なくとも一部
に酸化シリコン膜と窒化シリコン膜の2層からなる絶縁
膜を有し、上記多結晶シリコン層とそれを囲むように被
った酸化シリコン膜層とをマスクとするセルフアライメ
ント法を用いて該多結晶シリコン層周辺にある上記2層
の絶縁膜の少なくとも一部を除去して形成した窓穴に金
属電極を設けたことを特徴とする半導体装置。
(1) An insulating film consisting of two layers of a silicon oxide film and a silicon nitride film is provided at least in part between the silicon layer and the polycrystalline silicon layer provided at a predetermined location on the surface of the substrate including the silicon layer, and Formed by removing at least a portion of the two layers of insulating film around the polycrystalline silicon layer using a self-alignment method using a polycrystalline silicon layer and a silicon oxide film layer surrounding the polycrystalline silicon layer as a mask. A semiconductor device characterized in that a metal electrode is provided in a window hole.
(2)基板表面に酸化シリコン膜を形成する工程と、該
酸化シリコン膜上に窒化シリコン膜を形成する工程と、
上記両工程により形成された窒化シリコン膜と酸化シリ
コン膜の2層の絶縁膜に窓穴を開ける工程と、窓開けし
た後に窓穴部分を被うように多結晶シリコン層を被着し
てパターン形成する工程と、該多結晶シリコン層を酸化
してそれを囲むように酸化シリコン膜層を形成する工程
と、上記多結晶シリコン層とそれを囲む酸化シリコン膜
層をマスクとするセルフアライメント法により周辺の上
記2層の絶縁膜に窓開けを行なう工程と、該工程で開け
られた窓穴に金属電極を設ける工程を有することを特徴
とする半導体装置の制欲方法。
(2) forming a silicon oxide film on the substrate surface; forming a silicon nitride film on the silicon oxide film;
A process of making a window hole in the two-layer insulating film of silicon nitride film and silicon oxide film formed by the above two steps, and after making the window hole, a polycrystalline silicon layer is deposited to cover the window hole part and patterned. a step of oxidizing the polycrystalline silicon layer to form a silicon oxide film layer surrounding it; and a self-alignment method using the polycrystalline silicon layer and the surrounding silicon oxide film layer as masks. A method for controlling a semiconductor device, comprising the steps of: forming a window in the two peripheral insulating films; and providing a metal electrode in the window hole formed in the step.
JP56150741A 1981-09-25 1981-09-25 Semiconductor device and manufacture thereof Pending JPS5852817A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56150741A JPS5852817A (en) 1981-09-25 1981-09-25 Semiconductor device and manufacture thereof
KR8204306A KR860000612B1 (en) 1981-09-25 1982-09-24 Semi conductor apparatus and manufacturing method
DE19823235467 DE3235467A1 (en) 1981-09-25 1982-09-24 SEMICONDUCTOR ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF
GB08227355A GB2106319B (en) 1981-09-25 1982-09-24 Semiconductor device fabricated using self alignment technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150741A JPS5852817A (en) 1981-09-25 1981-09-25 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5852817A true JPS5852817A (en) 1983-03-29

Family

ID=15503396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150741A Pending JPS5852817A (en) 1981-09-25 1981-09-25 Semiconductor device and manufacture thereof

Country Status (4)

Country Link
JP (1) JPS5852817A (en)
KR (1) KR860000612B1 (en)
DE (1) DE3235467A1 (en)
GB (1) GB2106319B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074477A (en) * 1983-09-29 1985-04-26 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS61180481A (en) * 1984-10-31 1986-08-13 テキサス インスツルメンツ インコ−ポレイテツド Transistor structure
JP2001217317A (en) * 2000-02-07 2001-08-10 Sony Corp Semiconductor device and manufacturing method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172744B (en) * 1985-03-23 1989-07-19 Stc Plc Semiconductor devices
GB2188478B (en) * 1986-03-26 1989-11-22 Stc Plc Forming doped wells in sillicon subtstrates
JP4259247B2 (en) * 2003-09-17 2009-04-30 東京エレクトロン株式会社 Deposition method
CN103021936B (en) * 2012-12-28 2014-12-10 杭州士兰集成电路有限公司 Bipolar circuit manufacture method
CN110335896A (en) * 2019-05-09 2019-10-15 中国电子科技集团公司第二十四研究所 A kind of production method of the polysilicon emitter structure of adjustable current gain

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745647A (en) * 1970-10-07 1973-07-17 Rca Corp Fabrication of semiconductor devices
DE2414520A1 (en) * 1973-07-30 1975-02-20 Hitachi Ltd Process for the production of tightly adjacent electrodes on a semiconductor substrate
JPS53132275A (en) * 1977-04-25 1978-11-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6074477A (en) * 1983-09-29 1985-04-26 Fujitsu Ltd Semiconductor device and manufacture thereof
JPS61180481A (en) * 1984-10-31 1986-08-13 テキサス インスツルメンツ インコ−ポレイテツド Transistor structure
JPH0523495B2 (en) * 1984-10-31 1993-04-02 Texas Instruments Inc
JP2001217317A (en) * 2000-02-07 2001-08-10 Sony Corp Semiconductor device and manufacturing method therefor

Also Published As

Publication number Publication date
KR840001773A (en) 1984-05-16
KR860000612B1 (en) 1986-05-22
GB2106319B (en) 1985-07-31
DE3235467A1 (en) 1983-04-14
GB2106319A (en) 1983-04-07

Similar Documents

Publication Publication Date Title
US5449637A (en) Method of producing low and high voltage MOSFETs with reduced masking steps
US4074304A (en) Semiconductor device having a miniature junction area and process for fabricating same
US4887145A (en) Semiconductor device in which electrodes are formed in a self-aligned manner
KR970004458B1 (en) Single tub transistor and method for its fabrication
US4812417A (en) Method of making self aligned external and active base regions in I.C. processing
JPS5852817A (en) Semiconductor device and manufacture thereof
JPH0557741B2 (en)
JP3113426B2 (en) Insulated gate semiconductor device and method of manufacturing the same
US4631568A (en) Bipolar transistor construction
JPH06103745B2 (en) Integrated circuit element
KR900007904B1 (en) Method of manufacturing semiconductor device
JP2852679B2 (en) Semiconductor device and manufacturing method thereof
JPH0330335A (en) Manufacture of semiconductor device
JPH05343413A (en) Bipolar transistor and manufacture thereof
JPH0618200B2 (en) Method of manufacturing lateral transistor semiconductor device
JPH0227737A (en) Manufacture of semiconductor device
KR0127266B1 (en) Manufacturing method for high power semiconductor device
JPS6037774A (en) Manufacture of semiconductor device
JP2993041B2 (en) Complementary MOS semiconductor device
JPS5984464A (en) Manufacture of semiconductor integrated circuit device
JP2764988B2 (en) Semiconductor device
JPH0475663B2 (en)
JPH056965A (en) Semiconductor integrated circuit and manufacture thereof
JPH0475346A (en) Manufacture of semiconductor device
JPH0143468B2 (en)