JPH0143468B2 - - Google Patents

Info

Publication number
JPH0143468B2
JPH0143468B2 JP54123048A JP12304879A JPH0143468B2 JP H0143468 B2 JPH0143468 B2 JP H0143468B2 JP 54123048 A JP54123048 A JP 54123048A JP 12304879 A JP12304879 A JP 12304879A JP H0143468 B2 JPH0143468 B2 JP H0143468B2
Authority
JP
Japan
Prior art keywords
type
polycrystalline silicon
silicon layer
drain
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54123048A
Other languages
Japanese (ja)
Other versions
JPS5646558A (en
Inventor
Koji Ootsu
Takashi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP12304879A priority Critical patent/JPS5646558A/en
Publication of JPS5646558A publication Critical patent/JPS5646558A/en
Publication of JPH0143468B2 publication Critical patent/JPH0143468B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Description

【発明の詳細な説明】 本発明は、半導体装置の製法特にNチヤンネル
及びPチヤンネルの絶縁ゲート型電界効果トラン
ジスを一体に有した相補性の絶縁ゲート型電界効
果トランジスタの製法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, particularly a method of manufacturing a complementary insulated gate field effect transistor having an N-channel and a P-channel insulated gate field effect transistor integrally.

従来、所謂シリコンゲートを用いて成る相補性
の絶縁ゲート型電界効果トランジスタは、第1図
に示すように、N型の半導体基体1の一主面にP
型の半導体島領域2を設け、この島領域2内にN
型のソース領域3及びドレイン領域4を拡散形成
し、SiO2等のゲート絶縁層5上のゲート電極6、
ソース電極7及びドレイン電極8をN型多結晶シ
リコン層にて形成してNチヤンネル絶縁ゲート型
電界効果トランジスタ(N―MOS)を構成し、
また基体1の表面にP型のソース領域9及びドレ
イン領域10を拡散形成し、ゲート絶縁層5上の
ゲート電極11、ソース電極12及びドレイン電
極13をP型多結晶シリコン層にて形成してPチ
ヤンネル絶縁ゲート型電界効果トランジスタ(P
―MOS)を構成し、両トランジスタの夫々互に
導電型を異にした多結晶シリコン層よりなるドレ
イン電極8及び13の接続部分をAl等の金属層
14にてオーミツク接続をして構成される。15
及び16は夫々SiO2等の絶縁層である。
Conventionally, a complementary insulated gate field effect transistor using a so-called silicon gate has a P-type transistor on one main surface of an N-type semiconductor substrate 1, as shown in FIG.
A type semiconductor island region 2 is provided, and within this island region 2, N
A gate electrode 6 is formed on a gate insulating layer 5 of SiO 2 or the like by diffusion forming a source region 3 and a drain region 4 of the mold.
A source electrode 7 and a drain electrode 8 are formed of an N-type polycrystalline silicon layer to constitute an N-channel insulated gate field effect transistor (N-MOS),
Further, a P-type source region 9 and a drain region 10 are formed by diffusion on the surface of the substrate 1, and a gate electrode 11, a source electrode 12, and a drain electrode 13 on the gate insulating layer 5 are formed of a P-type polycrystalline silicon layer. P channel insulated gate field effect transistor (P
- MOS), and is constructed by ohmicly connecting the connecting portions of the drain electrodes 8 and 13 of both transistors, which are made of polycrystalline silicon layers with mutually different conductivity types, with a metal layer 14 such as Al. . 15
and 16 are insulating layers such as SiO 2 .

しかるに、かかる構成においては、Pチヤンネ
ル絶縁ゲート型電界効果トランジスタ(P―
MOS)におけるゲート電極11が工程的にP型
多結晶シリコン層にて形成されるので、Pチヤン
ネル絶縁ゲート型電界効果トランジスタのゲート
に不安定性が存在し、且つ、P型多結晶シリコン
層がN型多結晶シリコン層に対して低抵抗になり
にくい等によつて高性能化が阻まれること、両ド
レイン電極8及び13の接続部分上に金属層14
が存在するので、その部分及びその周辺にAl等
による配線が出来ず高密度化しにくいこと等の欠
点があつた。さらに、N型多結晶シリコン層とP
型多結晶シリコン層を同時にエツチング(プラズ
マエツチング)する場合、P型多結晶シリコン層
とN型多結晶シリコン層のボテンシヤル差のた
め、両者間にエツチング速度差ができる。このた
めかかる多結晶シリコン層のパターニングに際し
て、第2図に示すようにP型多結晶シリコン層1
8とN型多結晶シリコン層19が連続して形成さ
れて成る領域部即ち両ドレイン電極13及び8の
接続部分においては、マスク巾をd1としてP型多
結晶シリコン層18がエツチオフする間にN型多
結晶シリコン層19のサイドエツチングが進行
し、最終的に両多結晶シリコン層18及び19の
巾が夫々d1及びd2と異なつてしまう欠点があつ
た。
However, in such a configuration, a P-channel insulated gate field effect transistor (P-
Since the gate electrode 11 in the MOS) is formed from a P-type polycrystalline silicon layer in the process, there is instability in the gate of the P-channel insulated gate field effect transistor, and the P-type polycrystalline silicon layer is High performance is hindered by the fact that it is difficult to achieve low resistance with respect to the type polycrystalline silicon layer, and the metal layer 14 is formed on the connecting portion of both drain electrodes 8 and 13.
Because of the presence of aluminum, wiring using Al or the like cannot be done in and around that area, making it difficult to achieve high density. Furthermore, an N-type polycrystalline silicon layer and a P
When the polycrystalline silicon layers are simultaneously etched (plasma etched), there is a difference in etching speed between the P-type polycrystalline silicon layer and the N-type polycrystalline silicon layer due to the potential difference between them. Therefore, when patterning such a polycrystalline silicon layer, as shown in FIG.
8 and N-type polycrystalline silicon layer 19, that is, the connection portion between both drain electrodes 13 and 8, while the P-type polycrystalline silicon layer 18 is etched off with a mask width of d1. There was a drawback that side etching of the N-type polycrystalline silicon layer 19 progressed, and the widths of both polycrystalline silicon layers 18 and 19 eventually became different from d 1 and d 2 , respectively.

本発明は、上述の欠点を改善して高性能化及び
高密度化を可能なしめた斯種の相補性絶縁ゲート
型電界効果トランジスタの製法を提供するもので
ある。
The present invention provides a method for manufacturing such a complementary insulated gate field effect transistor, which improves the above-mentioned drawbacks and enables higher performance and higher density.

以下、第3図を用いて、本発明による相補性の
絶縁ゲート型電界効果トランジスタの製法を詳述
しよう。
Hereinafter, a method for manufacturing a complementary insulated gate field effect transistor according to the present invention will be described in detail with reference to FIG.

先ず、第3図Aに示すように第1導電型の半導
体基体、例えばN型のシリコン半導体基体1の一
主面に第2導電型即ちP型の半導体島領域2を形
成して後、この島領域2の表面にN型のソース領
域3及びドレイン領域4を拡散形成し、また基体
1の表面にP型のソース領域9及びドレイン領域
10を拡散形成し、さらに夫々のソース及びドレ
イン領域3及び4、9及び10間に跨つてSiO2
等によるゲート絶縁層5を形成する。16は
SiO2等の絶縁層である。ここで、P型のソース
領域9及びドレイン領域10の少くとも電極とな
る多結晶シリコン層にオーミツク接続する部分の
表面付近の不純物濃度を1018〜1019atoms/cm3
上となす。
First, as shown in FIG. 3A, a semiconductor island region 2 of a second conductivity type, that is, a P type, is formed on one main surface of a semiconductor substrate 1 of a first conductivity type, for example, a silicon semiconductor substrate 1 of an N type. An N-type source region 3 and a drain region 4 are formed by diffusion on the surface of the island region 2, a P-type source region 9 and a drain region 10 are formed on the surface of the substrate 1, and the respective source and drain regions 3 are formed by diffusion. and SiO 2 between 4, 9 and 10
A gate insulating layer 5 is formed by etching. 16 is
It is an insulating layer such as SiO 2 . Here, the impurity concentration near the surface of at least the portions of the P-type source region 9 and drain region 10 that are ohmicly connected to the polycrystalline silicon layer serving as electrodes is set to 10 18 to 10 19 atoms/cm 3 or more.

次に、絶縁層16に対してホトエツチング処理
を施して、各N型のソース領域3及びドレイン領
域4、P型のソース領域9及びドレイン領域10
に夫々電極取出用の窓孔21,22,23及び2
4を形成し、しかる後各ゲート絶縁層5及び各窓
孔21〜24を含む全面に1018〜1019atoms/cm3
程度のN型不純物(例えばリン)濃度を有した多
結晶シリコン層25を被着形成する(第3図B及
びC)。後述より明らかなようにPチヤンネル絶
縁ゲート型電界効果トランジスタのゲートにもN
型多結晶シリコン層を使用する。そこで、この場
合N型多結晶シリコン層25とゲート絶縁層
SiO25の界面近傍の不純物濃度が1018
1019atoms/cm3以下であつたり、又この濃度がば
らつく仕事凾数差の変動等によつてしきい値電圧
Vthがばらつく原因となるので、N型多結晶シリ
コン層は1018〜1019atoms/cm3の不純物を含んだ
ものである必要がある。また、このN型多結晶シ
リコン層25の被着に際してP型のソース領域9
及びドレイン領域10ではその表面のP型不純物
濃度がN型多結晶シリコン層25の不純物濃度よ
り高いために領域9及び10中にPN接合は出来
ない。
Next, the insulating layer 16 is photoetched to form each of the N-type source region 3 and drain region 4 and the P-type source region 9 and drain region 10.
window holes 21, 22, 23 and 2 for taking out the electrodes, respectively.
4 and then 10 18 to 10 19 atoms/cm 3 to the entire surface including each gate insulating layer 5 and each window hole 21 to 24.
A polycrystalline silicon layer 25 having an N-type impurity (eg, phosphorus) concentration of about 100% is deposited (FIGS. 3B and 3C). As will be clear from the discussion below, N is also present at the gate of the P channel insulated gate field effect transistor.
type using a polycrystalline silicon layer. Therefore, in this case, the N-type polycrystalline silicon layer 25 and the gate insulating layer
The impurity concentration near the interface of SiO 2 5 is 10 18 ~
The threshold voltage may be lower than 10 19 atoms/cm 3 or due to fluctuations in the work function difference due to variations in this concentration.
Since this causes variation in Vth, the N-type polycrystalline silicon layer needs to contain impurities of 10 18 to 10 19 atoms/cm 3 . Also, when depositing this N-type polycrystalline silicon layer 25, a P-type source region 9
In the drain region 10, since the P-type impurity concentration at the surface thereof is higher than the impurity concentration of the N-type polycrystalline silicon layer 25, a PN junction cannot be formed in the regions 9 and 10.

次に、N型多結晶シリコン層25上の所要位置
に、即ちP型のソース領域9及びドレイン領域1
0より電極を引出する部分に対応する位置に選択
的にP型不純物をドープしたSiO2層、例えばホ
ウ珪酸ガラス(BSG)26を形成し、之より拡
散処理してホウ珪酸ガラス26直下のN型多結晶
シリコン層25をP型多結晶シリコン層27に変
換する(第3図D)。
Next, at predetermined positions on the N-type polycrystalline silicon layer 25, that is, P-type source region 9 and drain region 1.
A SiO 2 layer selectively doped with a P-type impurity, for example, borosilicate glass (BSG) 26, is formed at a position corresponding to the part where the electrode is drawn out from zero, and then a diffusion process is performed to remove N immediately below the borosilicate glass 26. The polycrystalline silicon layer 25 is converted into a P-type polycrystalline silicon layer 27 (FIG. 3D).

次に、N型及びP型多結晶シリコン層25及び
27を含む全面にAl、Pt、Mo等の金属層28を
蒸着して後、(第3図E)、金属層28と共に多結
晶シリコン層25,27を同時に所定パターンに
選択エツチングし、夫々のゲート絶縁層5上に
夫々N型多結晶シリコンから成るゲート電極29
及び30を、N型ソース領域3にN型多結晶シリ
コン層から成るソース電極31を、P型ソース領
域9にP型多結晶シリコン層から成るソース電極
32を、また両ドレイン領域4及び10間に夫々
領域4及び10に接続する部分をN型多結晶シリ
コン層25及びP型多結晶シリコン層27で形成
して成るドレイン接続配線33を形成する。この
ドレイン接続配線33の形成に際しては、互にエ
ツチング速度の異なるN型多結晶シリコン層25
及びP型多結晶シリコン層27上に跨つて被着し
た金属層28により両層25及び27が電気的に
シヨートされてポテンシヤル差がなくなり、従つ
て金属層28とともに両層25及び27を同時に
プラズマエツチングすることにより両層25及び
27共に同じ巾でエツチングされる。そして、エ
ツチング後も金属層28を残すことにより両層2
5及び27間のオーミツク接続が自動的に行なわ
れる。しかる後、全面をSiO2等の絶縁層34に
て被覆する。
Next, after depositing a metal layer 28 such as Al, Pt, Mo, etc. on the entire surface including the N-type and P-type polycrystalline silicon layers 25 and 27 (FIG. 3E), a polycrystalline silicon layer is formed together with the metal layer 28. 25 and 27 are simultaneously selectively etched into a predetermined pattern, and a gate electrode 29 made of N-type polycrystalline silicon is formed on each gate insulating layer 5.
and 30, a source electrode 31 made of an N-type polycrystalline silicon layer in the N-type source region 3, a source electrode 32 made of a P-type polycrystalline silicon layer in the P-type source region 9, and between both drain regions 4 and 10. A drain connection wiring 33 is formed by forming the N-type polycrystalline silicon layer 25 and the P-type polycrystalline silicon layer 27 at the portions connected to the regions 4 and 10, respectively. When forming this drain connection wiring 33, N-type polycrystalline silicon layers 25 having different etching speeds are used.
The metal layer 28 deposited over the P-type polycrystalline silicon layer 27 electrically shoots both layers 25 and 27, eliminating the potential difference. By etching, both layers 25 and 27 are etched to the same width. By leaving the metal layer 28 even after etching, both layers 2
The ohmic connection between 5 and 27 is automatically made. Thereafter, the entire surface is covered with an insulating layer 34 of SiO 2 or the like.

斯くして、第3図Fに示す如く、N型のソース
領域3及びドレイン領域4を有するNチヤンネル
絶縁ゲート型電界効果トランジスタ(N―MOS)
と、P型のソース領域9及びドレイン領域10を
有するPチヤンネル絶縁ゲート型電界効果トラン
ジスタ(P―MOS)とを有し、両トランジスタ
のゲート電極29及び30がともにN型多結晶シ
リコン層にて形成され、しかもPチヤンネルのト
ランジスタ(P―MOS)のソース及びドレイン
領域9及び10のオーミツク接続にはP型多結晶
シリコン層が用いられ、またNチヤンネルのトラ
ンジスタ(N―MOS)のソース及びドレイン領
域3及び4のオーミツク接続にはN型多結晶シリ
コン層が用いられ、且つ、両トランジスタの夫々
のドレイン領域4及び10間を接続する多結晶シ
リコン層からなるドレイン接続配線33において
そのドレイン領域4及び10の夫々と接触すると
ころではN型及びP型を呈し、その配線33のシ
リコン層の少くともPN接合端上に金属層28が
形成されて成る目的とする相補性の絶縁ゲート型
電界効果トランジスが得られる。
Thus, as shown in FIG. 3F, an N-channel insulated gate field effect transistor (N-MOS) having an N type source region 3 and drain region 4 is formed
and a P-channel insulated gate field effect transistor (P-MOS) having a P-type source region 9 and a drain region 10, and gate electrodes 29 and 30 of both transistors are both made of an N-type polycrystalline silicon layer. Furthermore, a P-type polycrystalline silicon layer is used for the ohmic connection between the source and drain regions 9 and 10 of the P-channel transistor (P-MOS), and the source and drain of the N-channel transistor (N-MOS). An N-type polycrystalline silicon layer is used for the ohmic connection between the regions 3 and 4, and the drain region 4 is connected to the drain region 4 in the drain connection wiring 33 made of the polycrystalline silicon layer that connects the drain regions 4 and 10 of both transistors. and 10, exhibiting N-type and P-type, and forming a metal layer 28 on at least the PN junction end of the silicon layer of the wiring 33 to achieve the desired complementary insulated gate field effect. Transis is obtained.

尚、第3図Dの工程ではN型多結晶シリコン層
25上選択的にホウ珪酸ガラス26を被着してP
型のソース領域9及びドレイン領域10上の多結
晶シリコン層をP型に変換するようにしたが、そ
の他第3図G又は第3図Hのようになすこともで
きる。第3図Gの場合はN型多結晶シリコン層2
5上にそのソース及びドレイン領域9及び10に
対応する部分のみを除く全面にSiO2層40を被
着形成し、このSiO2層40をマスクとして窓孔
41及び42を通してP型不純物を拡散し、ソー
ス及びドレイン領域9及び10に対応する部分の
N型多結晶シリコン層25をP型多結晶シリコン
層27に変換するものである。第3図Hの場合は
不純物ドープされない純粋な多結晶シリコン層4
3を被着形成して後、この多結晶シリコン層43
上にそのソース及びドレイン領域9及び10に対
応する部分を除く全面にリン珪酸ガラス層を被着
形成し、このリン珪酸ガラス層44を拡散源とし
てその直下の多結晶シリコン層をN型になし、且
つリン珪酸ガラス層44の窓孔45及び46を通
してP型不純物を拡散してソース及びドレイン領
域9及び10に対応する部分をP型多結晶シリコ
ン層となすものである。
In the process shown in FIG. 3D, borosilicate glass 26 is selectively deposited on the N-type polycrystalline silicon layer 25 and P
Although the polycrystalline silicon layer on the type source region 9 and drain region 10 is converted to P type, other methods as shown in FIG. 3G or FIG. 3H may also be used. In the case of Fig. 3G, N-type polycrystalline silicon layer 2
A SiO 2 layer 40 is deposited on the entire surface of the SiO 2 layer 40 except for the portions corresponding to the source and drain regions 9 and 10, and P-type impurities are diffused through the window holes 41 and 42 using the SiO 2 layer 40 as a mask. , the N-type polycrystalline silicon layer 25 in the portions corresponding to the source and drain regions 9 and 10 is converted into a P-type polycrystalline silicon layer 27. In the case of FIG. 3H, a pure polycrystalline silicon layer 4 that is not doped with impurities
3, this polycrystalline silicon layer 43 is deposited.
A phosphosilicate glass layer is formed on the entire surface except for the portions corresponding to the source and drain regions 9 and 10, and the polycrystalline silicon layer immediately below it is made into an N type by using this phosphosilicate glass layer 44 as a diffusion source. , and P-type impurities are diffused through the window holes 45 and 46 of the phosphosilicate glass layer 44 to form a P-type polycrystalline silicon layer in the portions corresponding to the source and drain regions 9 and 10.

なお又、P型のソース領域9及びドレイン領域
10は多結晶シリコン層とオーミツク接続する部
分のみ別に作ることも出来る。第4図はその一例
であり(説明の都合上ソース領域9のみを示す)、
予め形成したP型のソース領域9に隣接した位置
にSiO2等の絶縁層51の窓孔52を形成し、こ
の窓孔52を含んで不純物ドープされない多結晶
シリコン層44を形成し、しかる後、その窓孔5
2に対応する部分の多結晶シリコン層44に上記
と同様に選択的にP型不純物を拡散してP型多結
晶シリコン層27に変換すると共に、このP型不
純物を一部多結晶シリコン層27を通して基体1
に拡散し、ソース領域9と接する位置に同導電型
の高濃度領域53を形成するようになす。他部の
多結晶シリコン層はN型に変換される。
Furthermore, the P-type source region 9 and drain region 10 can be formed separately only at the portions that are ohmicly connected to the polycrystalline silicon layer. FIG. 4 is an example (only the source region 9 is shown for convenience of explanation),
A window hole 52 of an insulating layer 51 such as SiO 2 is formed at a position adjacent to the P-type source region 9 formed in advance, and a polycrystalline silicon layer 44 that is not doped with impurities is formed including this window hole 52. , its window hole 5
In the same manner as described above, P-type impurities are selectively diffused into the polycrystalline silicon layer 44 in the portion corresponding to 2 to convert it into a P-type polycrystalline silicon layer 27. through the base 1
The high concentration region 53 of the same conductivity type is formed at a position in contact with the source region 9. The other portion of the polycrystalline silicon layer is converted to N type.

上述せる本発明によれば、Pチヤンネル絶縁ゲ
ート型電界効果トランジスタ(P―MOS)にお
けるゲート電極30がNチヤンネル絶縁ゲート型
電界効果トランジスタと同様にN型多結晶シリコ
ン層にて形成されるので、従来に比してPチヤン
ネル絶縁ゲート型電界効果トランジスタにおいて
安定したゲートが得られる。又、Pチヤンネルの
トランジスタ(P―MOS)のソース及びドレイ
ン領域9及び10とオーミツク接続をとる一部分
を除いて殆んど電極配線がN型多結晶シリコンで
構成されるので電極配線の低抵抗が可能となる。
According to the present invention described above, since the gate electrode 30 in the P-channel insulated gate field effect transistor (P-MOS) is formed of an N-type polycrystalline silicon layer similarly to the N-channel insulated gate field effect transistor, A more stable gate can be obtained in a P-channel insulated gate field effect transistor than in the prior art. In addition, since most of the electrode wiring is made of N-type polycrystalline silicon, except for a part that makes ohmic connection with the source and drain regions 9 and 10 of the P-channel transistor (P-MOS), the resistance of the electrode wiring is low. It becomes possible.

さらに夫々のドレイン領域4及び10と接触す
るところでN型及びP型を呈する多結晶シリコン
層からなるドレイン接続配線33においては、そ
の多結晶シリコン層のPN接合端部上を覆うよう
に形成した金属層28ごとプラズマエツチングし
て形成するので、導電型を異にする多結晶シリコ
ン層が同じ巾で形成でき、且つエツチング後にこ
の後にこの金属層28をそのまま残すことにより
導電型の異なる両多結晶シリコン層25及び27
が金属層28によつて自動的にオーミツク接続さ
れる。したがつて従来のように爾後改めてAl等
の金属層にて接続する必要がなくなり、SiO2
の絶縁層34を介してPN接合端部上にも多層配
線となる。依つて、本発明においては高密度化さ
れ、且つ高性能化された相補性の絶縁ゲート型電
界効果トランジスの集積回路が得られるものであ
る。
Furthermore, in the drain connection wiring 33 made of a polycrystalline silicon layer exhibiting N-type and P-type in contact with the respective drain regions 4 and 10, a metal layer is formed to cover the PN junction end of the polycrystalline silicon layer. Since the entire layer 28 is formed by plasma etching, polycrystalline silicon layers of different conductivity types can be formed with the same width, and by leaving the metal layer 28 as it is after etching, both polycrystalline silicon layers of different conductivity types can be formed. layers 25 and 27
are automatically connected ohmicly by the metal layer 28. Therefore, there is no need to connect again using a metal layer such as Al as in the conventional case, and a multilayer wiring is formed also on the PN junction end via an insulating layer 34 such as SiO 2 . Therefore, according to the present invention, an integrated circuit of complementary insulated gate field effect transistors with high density and high performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシリコンゲートによる相補性の
絶縁ゲート型電界効果トランジスタの例を示す断
面図、第2図はドレイン接続配線部分のエツチン
グ状態を示す平面図、第3図A〜Fは本発明の相
補性の絶縁ゲート型電界効果トランジスタの製造
工程順の断面図、第3図G及びHは他の製法例を
示す断面図、第4図は本発明のさらに他の例を示
す要部の断面図である。 3及び4はN型ソース領域及びドレイン領域、
9及び10はP型ソース領域及びドレイン領域、
25はN型多結晶シリコン、27はP型多結晶シ
リコン、29,30はゲート電極、28は金属
層、33はドレイン接続配線である。
FIG. 1 is a cross-sectional view showing an example of a complementary insulated gate field effect transistor using a conventional silicon gate, FIG. 2 is a plan view showing an etched state of the drain connection wiring portion, and FIGS. 3 A to F are in accordance with the present invention. 3G and H are sectional views showing another example of the manufacturing method, and FIG. 4 is a sectional view of the main part showing still another example of the present invention. FIG. 3 and 4 are N-type source and drain regions;
9 and 10 are P-type source and drain regions;
25 is N-type polycrystalline silicon, 27 is P-type polycrystalline silicon, 29 and 30 are gate electrodes, 28 is a metal layer, and 33 is a drain connection wiring.

Claims (1)

【特許請求の範囲】 1 Nチヤンネル絶縁ゲート型電界効果トランジ
スタとPチヤンネル絶縁ゲート型電界効果トラン
ジスタを有する半導体装置の製法において、 前記両トランジスタのゲート絶縁膜上、ソース
及びドレインの電極取出部を含む全面に、該前記
Pチヤンネル絶縁ゲート型電界効果トランジスタ
のソース及びドレインの電極取出部のみをP型と
し、その他をN型とした導電性半導体層を形成す
る工程、 前記導電性半導体層の全面に金属層を形成する
工程、 前記金属層を含んで前記導電性半導体層をパタ
ーニングして前記両トランジスタのゲート電極、
ソース電極、ドレイン電極及びドレイン接続配線
を形成する工程 を有することを特徴とする半導体装置の製法。
[Scope of Claims] 1. A method for manufacturing a semiconductor device having an N-channel insulated gate field effect transistor and a P-channel insulated gate field effect transistor, including electrode extraction portions for the source and drain on the gate insulating film of both transistors. forming a conductive semiconductor layer on the entire surface of the conductive semiconductor layer, with only the source and drain electrode extraction portions of the P-channel insulated gate field effect transistor being P type and the rest being N type; forming a metal layer; patterning the conductive semiconductor layer including the metal layer to form gate electrodes of both transistors;
A method for manufacturing a semiconductor device, comprising a step of forming a source electrode, a drain electrode, and a drain connection wiring.
JP12304879A 1979-09-25 1979-09-25 Semiconductor device Granted JPS5646558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12304879A JPS5646558A (en) 1979-09-25 1979-09-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12304879A JPS5646558A (en) 1979-09-25 1979-09-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5646558A JPS5646558A (en) 1981-04-27
JPH0143468B2 true JPH0143468B2 (en) 1989-09-20

Family

ID=14850910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12304879A Granted JPS5646558A (en) 1979-09-25 1979-09-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5646558A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115350A (en) * 1984-11-10 1986-06-02 Matsushita Electronics Corp Manufacture of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192186A (en) * 1975-02-10 1976-08-12 mos shusekikairono seizohoho
JPS5413779A (en) * 1977-07-04 1979-02-01 Toshiba Corp Semiconductor integrated circuit device
JPS54112183A (en) * 1978-02-22 1979-09-01 Seiko Epson Corp Mos type integrated-circuit device and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192186A (en) * 1975-02-10 1976-08-12 mos shusekikairono seizohoho
JPS5413779A (en) * 1977-07-04 1979-02-01 Toshiba Corp Semiconductor integrated circuit device
JPS54112183A (en) * 1978-02-22 1979-09-01 Seiko Epson Corp Mos type integrated-circuit device and its manufacture

Also Published As

Publication number Publication date
JPS5646558A (en) 1981-04-27

Similar Documents

Publication Publication Date Title
US5273915A (en) Method for fabricating bipolar junction and MOS transistors on SOI
US5945712A (en) Semiconductor device having a SOI structure with substrate bias formed through the insulator and in contact with one of the active diffusion layers
US4845046A (en) Process for producing semiconductor devices by self-alignment technology
US4887145A (en) Semiconductor device in which electrodes are formed in a self-aligned manner
US4751561A (en) Dielectrically isolated PMOS, NMOS, PNP and NPN transistors on a silicon wafer
US6194261B1 (en) High yield semiconductor device and method of fabricating the same
JPH0557741B2 (en)
US4685199A (en) Method for forming dielectrically isolated PMOS, NMOS, PNP and NPN transistors on a silicon wafer
US4407059A (en) Method of producing semiconductor device
JPH02246264A (en) Semiconductor device and manufacture thereof
JPS5852817A (en) Semiconductor device and manufacture thereof
JPH0454970B2 (en)
JPH06232351A (en) Bicmos semiconductor device and manufacture thereof
JP2827246B2 (en) Method for manufacturing semiconductor device
JPH0143468B2 (en)
KR900007904B1 (en) Method of manufacturing semiconductor device
JPS643065B2 (en)
JP2950009B2 (en) BiCMOS integrated circuit device and method of manufacturing the same
JPS605067B2 (en) MOS type semiconductor device
JP3535542B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0590492A (en) Semiconductor integrated circuit and manufacture thereof
KR0147651B1 (en) Bicmos device and its manufacture
JPS5931988B2 (en) Method for manufacturing complementary MOS gate circuit device
JPH04267554A (en) Bi-mos semiconductor device and manufacture thereof
JPS59195869A (en) Manufacture of semiconductor device