JPH0590492A - Semiconductor integrated circuit and manufacture thereof - Google Patents

Semiconductor integrated circuit and manufacture thereof

Info

Publication number
JPH0590492A
JPH0590492A JP3249713A JP24971391A JPH0590492A JP H0590492 A JPH0590492 A JP H0590492A JP 3249713 A JP3249713 A JP 3249713A JP 24971391 A JP24971391 A JP 24971391A JP H0590492 A JPH0590492 A JP H0590492A
Authority
JP
Japan
Prior art keywords
electrode
lower electrode
dielectric thin
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3249713A
Other languages
Japanese (ja)
Other versions
JP2840488B2 (en
Inventor
Toshiyuki Okoda
敏幸 大古田
Satoshi Kaneko
智 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3249713A priority Critical patent/JP2840488B2/en
Publication of JPH0590492A publication Critical patent/JPH0590492A/en
Application granted granted Critical
Publication of JP2840488B2 publication Critical patent/JP2840488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form a capacitive element free of breakdown strength deterioration efficiently by removing a step from a silicon nitride film. CONSTITUTION:The lower electrode 23 and the dielectric film 25 of a capacitive element are made by patterning the two layers of a polysilicon layer and a silicon nitride film at the same time. At the same time with it, a gate electrode 15 consisting of the said two layers is made. An interlayer insulating film 28 is made on the dielectric film 25, and an upper electrode 26 is made. The step of a silicon nitride film is removed by arranging the dielectric film 25 along the top of the lower electrode 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は容量素子を組み込んだ半
導体集積回路とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit incorporating a capacitive element and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、集積回路に組み込まれる容量素子
は、PN接合の接合容量を用いたもの、ゲート電極と拡
散層との間のゲート容量を用いたもの、あるいは電極配
線と電極配線との間の絶縁膜容量を用いたものが知られ
ている。絶縁膜容量を用いたものは、高誘電率の材料が
利用でき、しかも電圧依存性が無い利点を持つ。
2. Description of the Related Art Conventionally, a capacitive element incorporated in an integrated circuit has a PN junction junction capacitance, a gate capacitance between a gate electrode and a diffusion layer, or an electrode wiring and an electrode wiring. It is known to use an insulating film capacitance between them. The one using an insulating film capacitor has an advantage that a material having a high dielectric constant can be used and there is no voltage dependency.

【0003】図8に例えば特開平2−226755号公
報に記載されている構造を示す。同図において、(1)
はシリコン基板、(2)はシリコン酸化膜、(3)はポ
リシリコン層、(4)は層間絶縁膜、(5)はシリコン
窒化膜(SiN)等の誘電体薄膜、(6)はAl電極で
ある。
FIG. 8 shows a structure disclosed in, for example, Japanese Patent Laid-Open No. 2-226755. In the figure, (1)
Is a silicon substrate, (2) is a silicon oxide film, (3) is a polysilicon layer, (4) is an interlayer insulating film, (5) is a dielectric thin film such as a silicon nitride film (SiN), and (6) is an Al electrode. Is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た構造の容量素子は、誘電体薄膜(5)を層間絶縁膜
(4)の開口を覆うように形成しているので、開口の周
辺部の段差(図示A)において、誘電体薄膜(5)が段
切れ等を生じ易く、上部電極と下部電極との間で耐圧劣
化が生じ易い欠点があった。
However, in the capacitive element having the above-mentioned structure, since the dielectric thin film (5) is formed so as to cover the opening of the interlayer insulating film (4), the step around the opening is stepped. In (A in the figure), the dielectric thin film (5) is liable to cause step breakage and the like, and there is a defect that breakdown voltage is likely to occur between the upper electrode and the lower electrode.

【0005】[0005]

【課題を解決するための手段】本発明は上述した欠点に
鑑み成されたもので、MOS素子(16)のゲート電極
(15)および容量素子(24)の下部電極(23)と
なるポリシリコン層の全面に容量素子(24)の誘電体
薄膜(25)となるシリコン窒化膜(SiN)を形成
し、下部電極(23)を被覆する層間絶縁膜(28)に
開口(34)を設け、この開口(34)を覆うようにし
て容量素子(24)の上部電極(26)を形成したもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and is polysilicon which will be a gate electrode (15) of a MOS element (16) and a lower electrode (23) of a capacitor element (24). A silicon nitride film (SiN) which becomes a dielectric thin film (25) of the capacitive element (24) is formed on the entire surface of the layer, and an opening (34) is provided in an interlayer insulating film (28) covering the lower electrode (23), The upper electrode (26) of the capacitive element (24) is formed so as to cover the opening (34).

【0006】[0006]

【作用】本発明によれば、誘電体薄膜(25)が下部電
極(23)の表面に沿って略水平に延在するので、段差
が消滅し、段切れ等の危惧が全くない。また、MOS素
子(16)のゲート電極(15)と同時的に形成するこ
とによって、ゲート電極(15)の表面にもシリコン窒
化膜を被着できる。
According to the present invention, since the dielectric thin film (25) extends substantially horizontally along the surface of the lower electrode (23), the step disappears and there is no fear of step breakage. Further, by simultaneously forming the gate electrode (15) of the MOS element (16), a silicon nitride film can be deposited on the surface of the gate electrode (15).

【0007】[0007]

【実施例】以下に本発明をBi−CMOS集積回路に適
用した例を図面を参照しながら詳細に説明する。図1に
おいて、(11)はP型シリコン半導体基板、(12)
はN+型埋め込み層、(13)は基板(11)表面に形
成したエピタキシャル層を接合分離するP+型分離領
域、(14)は素子分離用のLOCOS酸化膜、(1
5)はPチャンネル型MOS素子(16)のゲート電
極、(17)はMOS素子(16)のP型ソース・ドレ
イン領域、(18)はNPNトランジスタ(19)のP
型ベース領域、(20)はP+型ベースコンタクト領
域、(21)はNPNトランジスタ(19)のN+型エ
ミッタ領域、(22)はN+型コレクタコンタクト領
域、(23)は容量素子(24)の下部電極、(25)
は誘電体薄膜、(26)は容量素子(24)の上部電
極、(27)は下部電極(23)の取出し電極、(2
8)は層間絶縁膜、(29)はAl電極、(30)はS
iN絶縁膜、(31)はポリイミド系絶縁膜、(32)
は第2層目Al配線である。完成品は、第2層目Al配
線(32)の上に更にジャケット用のポリイミド絶縁膜
が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a Bi-CMOS integrated circuit will be described in detail below with reference to the drawings. In FIG. 1, (11) is a P-type silicon semiconductor substrate, (12)
Is an N + type buried layer, (13) is a P + type isolation region for junction isolation of the epitaxial layer formed on the surface of the substrate (11), (14) is a LOCOS oxide film for element isolation, (1
5) is the gate electrode of the P-channel type MOS device (16), (17) is the P-type source / drain region of the MOS device (16), and (18) is the P-type of the NPN transistor (19).
Type base region, (20) P + type base contact region, (21) N + type emitter region of NPN transistor (19), (22) N + type collector contact region, (23) capacitive element (24) ) Lower electrode, (25)
Is a dielectric thin film, (26) is an upper electrode of the capacitive element (24), (27) is an extraction electrode of the lower electrode (23), (2)
8) is an interlayer insulating film, (29) is an Al electrode, (30) is S
iN insulating film, (31) polyimide insulating film, (32)
Is the second layer Al wiring. In the finished product, a polyimide insulating film for a jacket is further formed on the second layer Al wiring (32).

【0008】MOS素子(16)のゲート電極(15)
と容量素子(24)の下部電極(23)はRS=10〜
20Ω・cmとなるようにリンドープされたポリシリコ
ン層から成り、LOCOS酸化膜(14)で囲まれた素
子領域のゲート酸化膜(33)上に配置してゲート電極
(15)、膜厚0.6〜1.0μ程の厚いLOCOS酸
化膜(14)上に配置して下部電極(23)となる。ポ
リシリコン層はまた、LOCOS酸化膜(14)上を延
在する電極配線の一部ともなる。
Gate electrode (15) of MOS device (16)
And the lower electrode (23) of the capacitive element (24) has R S = 10
It is composed of a polysilicon layer doped with phosphorus so as to have a resistance of 20 Ω · cm, and is arranged on the gate oxide film (33) in the element region surrounded by the LOCOS oxide film (14). It is arranged on a thick LOCOS oxide film (14) having a thickness of about 6 to 1.0 μm to form the lower electrode (23). The polysilicon layer also becomes a part of the electrode wiring extending on the LOCOS oxide film (14).

【0009】下部電極(23)上の誘電体薄膜(25)
はLPCV法による膜厚100〜300Åの熱生成シリ
コン窒化膜(Si34)から成り、このシリコン窒化膜
は下部電極(23)の表面の他、MOS素子(16)の
ゲート電極(15)の表面、および前記ポリシリコン層
による電極配線の一部の表面をも被覆する。層間絶縁膜
(28)はリン(P)とボロン(B)が多量にドープさ
れたBPSG膜から成る。BPSG膜は堆積した後リフ
ローされ、表面の平坦化を行う。その上のSiN絶縁膜
(30)はプラズマCVD法による窒化膜であり、BP
SG膜の耐湿性に劣る欠点を補うために設けた。
Dielectric thin film (25) on the lower electrode (23)
Is a heat-generated silicon nitride film (Si 3 N 4 ) having a film thickness of 100 to 300 Å formed by the LPCV method. And the surface of a part of the electrode wiring made of the polysilicon layer. The interlayer insulating film (28) is made of a BPSG film heavily doped with phosphorus (P) and boron (B). The BPSG film is deposited and then reflowed to planarize the surface. The SiN insulating film (30) thereon is a nitride film formed by the plasma CVD method.
It was provided in order to compensate for the drawback of the SG film having poor moisture resistance.

【0010】容量素子(24)の誘電体薄膜(25)の
上を覆う層間絶縁膜(28)には、容量値に応じた大き
さの開口(34)と下部電極(23)用のコンタクトホ
ール(35)が設けられる。開口(34)は、誘電体薄
膜(25)の表面を露出し、コンタクトホール(35)
は誘電体薄膜(25)を貫通して下部電極(23)の表
面を露出する。
The interlayer insulating film (28) covering the dielectric thin film (25) of the capacitive element (24) has an opening (34) of a size corresponding to the capacitance value and a contact hole for the lower electrode (23). (35) is provided. The opening (34) exposes the surface of the dielectric thin film (25), and the contact hole (35).
Penetrates the dielectric thin film (25) to expose the surface of the lower electrode (23).

【0011】容量素子(24)の上部電極(26)は、
下部電極(23)の表面に沿って略水平に延在する誘電
体薄膜(25)の上に、上記開口(34)を覆うように
して設けられる。誘電体薄膜(25)が層間絶縁膜(2
8)の下に形成されるので、上部電極(26)は開口
(34)の側壁および開口(34)の周囲で層間絶縁膜
(28)と密着する。下部電極(23)の取出し電極
(27)は、コンタクトホール(35)を介して下部電
極(23)とオーミックコンタクトする。尚、MOS素
子(16)のゲート電極(15)または前記ポリシリコ
ン層による電極配線の一部と電気接続する場合も、下部
電極(23)の取出し電極(27)と同様にする。
The upper electrode (26) of the capacitive element (24) is
It is provided on the dielectric thin film (25) extending substantially horizontally along the surface of the lower electrode (23) so as to cover the opening (34). The dielectric thin film (25) is the interlayer insulating film (2
8), the upper electrode (26) adheres to the interlayer insulating film (28) around the side wall of the opening (34) and the opening (34). The extraction electrode (27) of the lower electrode (23) makes ohmic contact with the lower electrode (23) through the contact hole (35). When electrically connecting to the gate electrode (15) of the MOS element (16) or a part of the electrode wiring made of the polysilicon layer, the same procedure as for the extraction electrode (27) of the lower electrode (23) is performed.

【0012】以上の本発明の構造によれば、容量素子
(24)の誘電体薄膜(25)が下部電極(23)の表
面に沿って略水平に延在し、その上に層間絶縁膜(2
8)を設けたので、誘電体薄膜(25)に段差が無い。
従って、誘電体薄膜(25)の段切れ等による上部電極
(26)と下部電極(23)との耐圧劣化が無い。ま
た、段切れがないので、誘電体薄膜(25)を薄くする
ことができる。薄くできれば、単位面積当りの容量値を
増大できる。
According to the above-described structure of the present invention, the dielectric thin film (25) of the capacitor element (24) extends substantially horizontally along the surface of the lower electrode (23), and the interlayer insulating film (25) is formed thereon. Two
Since 8) is provided, there is no step in the dielectric thin film (25).
Therefore, there is no deterioration in breakdown voltage between the upper electrode (26) and the lower electrode (23) due to breakage of the dielectric thin film (25). Moreover, since there is no step breakage, the dielectric thin film (25) can be made thin. If the thickness can be reduced, the capacitance value per unit area can be increased.

【0013】さらに、MOS素子(16)のゲート電極
(15)の表面、および前記ポリシリコン層による電極
配線の一部もシリコン窒化膜(36)が覆うので、窒化
膜のパッシベーション効果により、ゲート電極(15)
等の信頼性が向上する。特に平坦化技術としてBPSG
膜を使用し、耐湿性を補うためにプラズマCVD法によ
るSiN絶縁膜(30)を形成した本発明の構成におい
ては、SiN絶縁膜(30)内に不可避的に存在する水
素イオン(H+)の移動によるMOS素子(16)のし
きい値(VT)の変化(スロートラッピング現象)を、
ゲート電極(15)上に設けた熱生成のシリコン窒化膜
(36)が前記水素イオンの侵入を阻止することによっ
て、防止できる。さらに、誘電体薄膜(25)を挾む対
向電極に多層配線材料(Poly−SiおよびAl)を
利用しているので、直列抵抗を低減し容量素子(24)
の特性改善ができる他、容量素子(24)をLOCOS
酸化膜(14)上に配置したので、基板(11)への漏
れ電流が全く無く、集積回路特有の寄生効果を完全に防
止できる。
Further, since the surface of the gate electrode (15) of the MOS element (16) and a part of the electrode wiring made of the polysilicon layer are also covered with the silicon nitride film (36), the gate electrode is formed by the passivation effect of the nitride film. (15)
Etc. reliability is improved. Especially as a flattening technology, BPSG
In the structure of the present invention in which the SiN insulating film (30) is formed by the plasma CVD method in order to supplement the moisture resistance, a hydrogen ion (H + ) unavoidably present in the SiN insulating film (30) is used. Of the change (slow trapping phenomenon) of the threshold value (V T ) of the MOS element (16) due to the movement of
This can be prevented by blocking the entry of the hydrogen ions by the heat-generated silicon nitride film (36) provided on the gate electrode (15). Furthermore, since the multilayer wiring material (Poly-Si and Al) is used for the counter electrode that sandwiches the dielectric thin film (25), the series resistance is reduced and the capacitive element (24).
In addition to improving the characteristics of the capacitor, the capacitive element (24) is changed to LOCOS.
Since it is arranged on the oxide film (14), there is no leakage current to the substrate (11), and the parasitic effect peculiar to the integrated circuit can be completely prevented.

【0014】以下に本発明の製造方法を図面に従って詳
細に説明する。先ずP型シリコン半導体基板(11)の
表面にN+型埋め込み層(12)、P+型分離領域(1
3)の下側部分、その他必要な領域を形成し、基板(1
1)上にN型エピタキシャル層を形成する。そして、エ
ピタキシャル層表面からP型不純物を拡散して島領域を
形成するための分離領域(13)の上側部分を形成し、
さらにエピタキシャル層表面を選択酸化して膜厚0.8
〜1.0μのLOCOS酸化膜(14)を形成して図2
の構造を得る。
The manufacturing method of the present invention will be described in detail below with reference to the drawings. First, on the surface of a P-type silicon semiconductor substrate (11), an N + -type buried layer (12) and a P + -type isolation region (1
3) Form the lower part and other necessary areas, and
1) Form an N-type epitaxial layer on top. Then, the P-type impurities are diffused from the surface of the epitaxial layer to form the upper portion of the isolation region (13) for forming the island region,
Further, the surface of the epitaxial layer is selectively oxidized to a film thickness of 0.8.
˜1.0 μ LOCOS oxide film (14) is formed, and FIG.
Get the structure of.

【0015】ゲート酸化膜(18)となる膜厚500〜
800Åのシリコン酸化膜を熱酸化で形成し、全面に膜
厚0.4〜0.8μのノンドープポリシリコンを堆積す
る。堆積したポリシリコンに不純物(リン)をドープし
て導電性を与え、さらにLPCVD法によって全面に膜
厚100〜300Åの熱生成によるシリコン窒化膜(S
34)を堆積する。ポリシリコン層とシリコン窒化膜
の2層膜をホトエッチングでパターニングし、LOCO
S酸化膜(14)で囲まれたゲート酸化膜上にMOS素
子(16)のゲート電極(15)を、LOCOS酸化膜
(14)上には容量素子(24)の下部電極(23)を
形成する(図3)。手法は、例えばCF 4+O2ガスによ
る連続異方性エッチである。
A film thickness of 500 to be the gate oxide film (18)
A 800 Å silicon oxide film is formed by thermal oxidation, and a film is formed on the entire surface.
Deposit 0.4-0.8μ thick undoped polysilicon
It Dope the deposited polysilicon with impurities (phosphorus)
To provide conductivity, and then a film is formed on the entire surface by the LPCVD method.
A silicon nitride film (S
i3NFour) Is deposited. Polysilicon layer and silicon nitride film
The two-layer film of
A MOS element is formed on the gate oxide film surrounded by the S oxide film (14).
The gate electrode (15) of the child (16) as a LOCOS oxide film
The lower electrode (23) of the capacitive element (24) is placed on (14).
Formed (FIG. 3). The method is, for example, CF Four+ O2By gas
It is a continuous anisotropic etch.

【0016】ホトレジストによる選択マスクの形成と不
純物のイオン注入とを複数回繰り返して、NPNトラン
ジスタ(19)等のバイポーラ素子の拡散領域、および
MOS素子(16)の拡散領域を全て形成する(図
4)。NPNトランジスタ(19)は、P型のベース領
域(18)、N+型のエミッタ領域(21)、P+型のベ
ースコンタクト領域(20)、およびN+型コレクタコ
ンタクト領域(22)から成り、PchMOSトランジ
スタ(16)は、先に形成したゲート電極(15)、お
よびゲート電極(15)の両脇に形成したP+型ソース
・ドレイン領域(17)から成る。PchMOSトラン
ジスタ(16)のソース・ドレイン領域(17)がNP
Nトランジスタ(19)のベースコンタクト領域(2
0)と、図示せぬNchMOSトランジスタのソース・
ドレイン領域がNPNトランジスタ(19)のエミッタ
領域(21)と夫々共用である。
The formation of the selective mask using photoresist and the ion implantation of impurities are repeated a plurality of times to form all the diffusion regions of the bipolar element such as the NPN transistor (19) and the diffusion region of the MOS element (16) (FIG. 4). ). The NPN transistor (19) comprises a P type base region (18), an N + type emitter region (21), a P + type base contact region (20), and an N + type collector contact region (22). The PchMOS transistor (16) is composed of a gate electrode (15) formed previously and P + type source / drain regions (17) formed on both sides of the gate electrode (15). The source / drain region (17) of the PchMOS transistor (16) is NP
Base contact region (2) of N-transistor (19)
0) and the source of the NchMOS transistor (not shown)
The drain region is also used as the emitter region (21) of the NPN transistor (19).

【0017】LPCVD法等により、全面に膜厚1.0
〜2.0μのBPSG(ボロン・リン・シリケート・グ
ラス)膜を堆積して層間絶縁膜(28)とし、リフロー
して表面を平坦化する。その後、第1のレジストパター
ンを形成し、弗酸緩衝液で層間絶縁膜(28)をエッチ
ングして誘電体薄膜(25)を露出する開口(34)を
形成する(図5)。
A film thickness of 1.0 is formed on the entire surface by the LPCVD method or the like.
A BPSG (boron phosphorus silicate glass) film of ˜2.0 μ is deposited to form an interlayer insulating film (28) and reflowed to flatten the surface. Then, a first resist pattern is formed, and the interlayer insulating film (28) is etched with a hydrofluoric acid buffer solution to form an opening (34) exposing the dielectric thin film (25) (FIG. 5).

【0018】前記第1のレジストパターンを除去してか
ら第2のレジストパターンを形成し、層間絶縁膜(2
8)と誘電体薄膜(25)を連続的にエッチングしてコ
ンタクトホール(35)を形成する(図6)。この時、
ポリシリコン層上のコンタクトホール(35)のみなら
ず、各素子の拡散領域上のコンタクトホールも同時に形
成する。エッチングは、例えばCF4+O2ガス雰囲気に
よる異方性ドライエッチングで行う。
After removing the first resist pattern, a second resist pattern is formed, and an interlayer insulating film (2
8) and the dielectric thin film 25 are continuously etched to form a contact hole 35 (FIG. 6). At this time,
Not only the contact hole (35) on the polysilicon layer but also the contact hole on the diffusion region of each element is formed at the same time. The etching is performed by anisotropic dry etching in a CF 4 + O 2 gas atmosphere, for example.

【0019】全面にAl又はAl−Siを堆積し、これ
をホトエッチングすることで各デバイスの電極配線(2
9)と容量素子(24)の上部電極(26)、および下
部電極取出し電極(27)を形成する(図7)。斯る製
造方法によれば、MOS素子(16)のゲート電極(1
5)形成と、同時的に容量素子(24)の下部電極(2
3)と誘電体薄膜(25)の形成を行うので、工程を簡
略化できる。
Al or Al-Si is deposited on the entire surface and photo-etched to form electrode wiring (2) of each device.
9), the upper electrode (26) of the capacitive element (24), and the lower electrode extraction electrode (27) are formed (FIG. 7). According to such a manufacturing method, the gate electrode (1) of the MOS element (16) is
5) Simultaneously with formation, the lower electrode (2) of the capacitive element (24)
Since 3) and the dielectric thin film (25) are formed, the process can be simplified.

【0020】[0020]

【発明の効果】以上に説明した通り、本発明によれば、
容量素子(24)の誘電体薄膜(25)に段差が無いの
で、段切れ等による耐圧劣化の無い容量素子(24)を
提供できる利点を有する。また、MOS素子(16)の
ゲート電極(15)にも同様にシリコン窒化膜(36)
が被覆するので、しきい値変動等が無い信頼性の高い素
子を組み込むことができる利点を有する。
As described above, according to the present invention,
Since there is no step in the dielectric thin film (25) of the capacitive element (24), there is an advantage that it is possible to provide the capacitive element (24) without deterioration in breakdown voltage due to step breakage or the like. Further, a silicon nitride film (36) is similarly formed on the gate electrode (15) of the MOS device (16).
Since it is covered with, there is an advantage that a highly reliable element free from fluctuations in threshold value can be incorporated.

【0021】さらに、MOS素子(16)のゲート電極
(15)と容量素子(24)の下部電極(23)等を同
時的に形成できるので、工程を簡素化できる利点をも有
する。
Furthermore, since the gate electrode (15) of the MOS element (16) and the lower electrode (23) of the capacitor element (24) can be formed simultaneously, there is an advantage that the process can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明するための断面図である。FIG. 1 is a cross-sectional view for explaining the present invention.

【図2】図1の製造方法を説明するための第1の断面図
である。
FIG. 2 is a first cross-sectional view for explaining the manufacturing method of FIG.

【図3】図1の製造方法を説明するための第2の断面図
である。
FIG. 3 is a second cross-sectional view for explaining the manufacturing method in FIG.

【図4】図1の製造方法を説明するための第3の断面図
である。
FIG. 4 is a third cross-sectional view for explaining the manufacturing method in FIG.

【図5】図1の製造方法を説明するための第4の断面図
である。
5 is a fourth cross-sectional view for explaining the manufacturing method in FIG.

【図6】図1の製造方法を説明するための第5の断面図
である。
FIG. 6 is a fifth cross-sectional view for explaining the manufacturing method in FIG.

【図7】図1の製造方法を説明するための第6の断面図
である。
FIG. 7 is a sixth cross-sectional view for explaining the manufacturing method in FIG.

【図8】従来例を説明するための断面図である。FIG. 8 is a cross-sectional view for explaining a conventional example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少くとも容量素子を集積化した半導体集
積回路であって、 絶縁膜上に設けた容量素子の下部電極と、 前記下部電極の全面を被覆する容量素子の誘電体薄膜
と、 前記誘電体薄膜の上を覆う層間絶縁膜と、 前記層間絶縁膜に設けた、前記誘電体薄膜の表面を露出
する開口と、 前記層間絶縁膜に設けた、前記誘電体薄膜を貫通し前記
下部電極の表面を露出するコンタクトホールと、 前記開口を覆うように設けた容量素子の上部電極と、 前記コンタクトホールを通して前記下部電極とコンタク
トする取出し電極と、 を具備することを特徴とする半導体集積回路。
1. A semiconductor integrated circuit in which at least a capacitive element is integrated, the lower electrode of the capacitive element provided on an insulating film, and the dielectric thin film of the capacitive element covering the entire surface of the lower electrode, An interlayer insulating film covering the dielectric thin film, an opening provided in the interlayer insulating film to expose the surface of the dielectric thin film, and the lower electrode penetrating the dielectric thin film provided in the interlayer insulating film. A semiconductor integrated circuit, comprising: a contact hole exposing a surface of the capacitor; an upper electrode of a capacitor provided so as to cover the opening; and an extraction electrode contacting the lower electrode through the contact hole.
【請求項2】 少くともMIS型素子と容量素子とを集
積化した半導体集積回路であって、 素子分離用のLOCOS酸化膜と、 前記LOCOS酸化膜で囲まれた素子領域に配置したM
OS素子のゲート電極、および前記LOCOS酸化膜上
に配置した前記ゲート電極材料と同じ材料から成る容量
素子の下部電極と、 前記ゲート電極と下部電極の略全表面を被覆する誘電体
薄膜と、 前記誘電体薄膜の上を被覆する層間絶縁膜と、 前記層間絶縁膜に設けた、前記下部電極上の誘電体薄膜
の表面を露出する開口と、 前記層間絶縁膜に設けた、前記誘電体薄膜を貫通して前
記下部電極の表面を露出する下部電極用コンタクトホー
ルと、 各素子を形成する拡散領域の表面を露出するコンタクト
ホールと、 前記開口を覆うように形成した容量素子の上部電極と、 前記下部電極用コンタクトホールを介して前記下部電極
にコンタクトする電極、および前記コンタクトホールを
介して前記拡散領域にコンタクトする電極とを具備する
ことを特徴とする半導体集積回路。
2. A semiconductor integrated circuit in which at least a MIS type element and a capacitive element are integrated, wherein a LOCOS oxide film for element isolation and an M arranged in an element region surrounded by the LOCOS oxide film.
A gate electrode of the OS element, a lower electrode of the capacitive element made of the same material as the gate electrode material disposed on the LOCOS oxide film, a dielectric thin film covering substantially the entire surface of the gate electrode and the lower electrode, An interlayer insulating film covering the dielectric thin film; an opening provided in the interlayer insulating film to expose a surface of the dielectric thin film on the lower electrode; and the dielectric thin film provided in the interlayer insulating film. A lower electrode contact hole penetrating to expose the surface of the lower electrode, a contact hole exposing the surface of a diffusion region forming each element, an upper electrode of a capacitive element formed to cover the opening, An electrode contacting the lower electrode through a contact hole for the lower electrode, and an electrode contacting the diffusion region through the contact hole. And a semiconductor integrated circuit.
【請求項3】 前記誘電体薄膜はシリコン窒化膜である
ことを特徴とする請求項2記載の半導体集積回路。
3. The semiconductor integrated circuit according to claim 2, wherein the dielectric thin film is a silicon nitride film.
【請求項4】 素子分離用のLOCOS酸化膜を形成す
る工程と、 全面にMOS素子のゲート電極および容量素子の下部電
極となる電極材料を堆積する工程と、 全面に容量素子の誘電体薄膜となる絶縁材料を堆積する
工程と、 前記電極材料に前記絶縁材料とを同時的にパターニング
して、MOS素子のゲート電極と、前記LOCOS酸化
膜上の容量素子の下部電極と誘電体薄膜を形成する工程
と、 全面を被覆する層間絶縁膜を堆積する工程と、 前記層間絶縁膜に、ひとつのレジストプロセスによって
前記下部電極上の誘電体薄膜の表面を露出する開口を形
成し、他のレジストプロセスによって前記誘電体薄膜を
貫通し前記下部電極の表面を露出する下部電極用コンタ
クトホールと、 電極材料を堆積、パターニングして、前記開口を覆う容
量素子の上部電極および各素子の電極配線を形成する工
程と、を具備することを特徴とする半導体集積回路の製
造方法。
4. A step of forming a LOCOS oxide film for element isolation, a step of depositing an electrode material to be a gate electrode of a MOS element and a lower electrode of a capacitor on the entire surface, and a dielectric thin film of the capacitor on the entire surface. A step of depositing an insulating material comprising: forming a gate electrode of the MOS element, a lower electrode of the capacitive element on the LOCOS oxide film, and a dielectric thin film by simultaneously patterning the insulating material on the electrode material. A step of depositing an interlayer insulating film covering the entire surface, and forming an opening in the interlayer insulating film to expose the surface of the dielectric thin film on the lower electrode by one resist process, and by another resist process. A lower electrode contact hole that penetrates the dielectric thin film and exposes the surface of the lower electrode, and a capacitor that covers the opening by depositing and patterning an electrode material. A step of forming an upper electrode of an element and an electrode wiring of each element.
【請求項5】 前記ひとつのレジストプロセスがウェッ
ト手法、前記他のレジストプロセスがドライ手法である
ことを特徴とする請求項3記載の半導体集積回路の製造
方法。
5. The method of manufacturing a semiconductor integrated circuit according to claim 3, wherein the one resist process is a wet method and the other resist process is a dry method.
JP3249713A 1991-09-27 1991-09-27 Semiconductor integrated circuit and manufacturing method thereof Expired - Fee Related JP2840488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3249713A JP2840488B2 (en) 1991-09-27 1991-09-27 Semiconductor integrated circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3249713A JP2840488B2 (en) 1991-09-27 1991-09-27 Semiconductor integrated circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0590492A true JPH0590492A (en) 1993-04-09
JP2840488B2 JP2840488B2 (en) 1998-12-24

Family

ID=17197095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3249713A Expired - Fee Related JP2840488B2 (en) 1991-09-27 1991-09-27 Semiconductor integrated circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2840488B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349301A (en) * 1999-04-01 2000-12-15 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US6808973B2 (en) 2002-01-31 2004-10-26 Renesas Technology Corp. Manufacturing method of semiconductor device
US7192826B2 (en) 2001-02-19 2007-03-20 Sony Corporation Semiconductor device and process for fabrication thereof
US8461663B2 (en) 2009-04-07 2013-06-11 Sanyo Electric Co., Ltd. Semiconductor device with silicon capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349301A (en) * 1999-04-01 2000-12-15 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
US7192826B2 (en) 2001-02-19 2007-03-20 Sony Corporation Semiconductor device and process for fabrication thereof
US6808973B2 (en) 2002-01-31 2004-10-26 Renesas Technology Corp. Manufacturing method of semiconductor device
US8461663B2 (en) 2009-04-07 2013-06-11 Sanyo Electric Co., Ltd. Semiconductor device with silicon capacitor

Also Published As

Publication number Publication date
JP2840488B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US5633181A (en) Fabrication method of semiconductor integrated circuit device having capacitors, bipolar transistors and igfets
US4449287A (en) Method of providing a narrow groove or slot in a substrate region, in particular a semiconductor substrate region
JPH1070281A (en) Semiconductor device and fabrication thereof
US6844223B2 (en) Semiconductor device having silicon on insulator and fabricating method therefor
US5061645A (en) Method of manufacturing a bipolar transistor
JPH1074921A (en) Semiconductor device and manufacturing method thereof
US7132347B2 (en) Semiconductor device with trench structure and method for manufacturing the same
US4887145A (en) Semiconductor device in which electrodes are formed in a self-aligned manner
US5066609A (en) Method of manufacturing a semiconductor device including a trench capacitor
US5395782A (en) Process for fabricating a semiconductor integrated circuit
JPH0697109A (en) Semiconductor device
JP2840488B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP3013628B2 (en) Semiconductor device
JP3932443B2 (en) Semiconductor element
JPH04348070A (en) Semiconductor device and its manufacture
US6156622A (en) Bipolar transistor having isolation regions
JP2722506B2 (en) Semiconductor device and manufacturing method thereof
JP2695812B2 (en) Semiconductor device
JPH02135770A (en) Semiconductor integrated circuit
JPS6120141B2 (en)
JPH065708B2 (en) Semiconductor integrated circuit device
JP2531680B2 (en) Semiconductor device and manufacturing method thereof
JPH0157506B2 (en)
JPS63177454A (en) Manufacture of semiconductor device
US20030160282A1 (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees