JP2840488B2 - Semiconductor integrated circuit and manufacturing method thereof - Google Patents

Semiconductor integrated circuit and manufacturing method thereof

Info

Publication number
JP2840488B2
JP2840488B2 JP3249713A JP24971391A JP2840488B2 JP 2840488 B2 JP2840488 B2 JP 2840488B2 JP 3249713 A JP3249713 A JP 3249713A JP 24971391 A JP24971391 A JP 24971391A JP 2840488 B2 JP2840488 B2 JP 2840488B2
Authority
JP
Japan
Prior art keywords
electrode
lower electrode
dielectric thin
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3249713A
Other languages
Japanese (ja)
Other versions
JPH0590492A (en
Inventor
敏幸 大古田
智 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP3249713A priority Critical patent/JP2840488B2/en
Publication of JPH0590492A publication Critical patent/JPH0590492A/en
Application granted granted Critical
Publication of JP2840488B2 publication Critical patent/JP2840488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は容量素子を組み込んだ半
導体集積回路とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit incorporating a capacitor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、集積回路に組み込まれる容量素子
は、PN接合の接合容量を用いたもの、ゲート電極と拡
散層との間のゲート容量を用いたもの、あるいは電極配
線と電極配線との間の絶縁膜容量を用いたものが知られ
ている。絶縁膜容量を用いたものは、高誘電率の材料が
利用でき、しかも電圧依存性が無い利点を持つ。
2. Description of the Related Art Conventionally, a capacitance element incorporated in an integrated circuit uses a junction capacitance of a PN junction, a gate capacitance between a gate electrode and a diffusion layer, or a connection between an electrode wiring and an electrode wiring. The one using the capacitance of the insulating film between them is known. The one using the insulating film capacitance has an advantage that a material having a high dielectric constant can be used and there is no voltage dependency.

【0003】図8に例えば特開平2−226755号公
報に記載されている構造を示す。同図において、(1)
はシリコン基板、(2)はシリコン酸化膜、(3)はポ
リシリコン層、(4)は層間絶縁膜、(5)はシリコン
窒化膜(SiN)等の誘電体薄膜、(6)はAl電極で
ある。
FIG. 8 shows a structure described in, for example, JP-A-2-226755. In the figure, (1)
Is a silicon substrate, (2) is a silicon oxide film, (3) is a polysilicon layer, (4) is an interlayer insulating film, (5) is a dielectric thin film such as a silicon nitride film (SiN), and (6) is an Al electrode. It is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た構造の容量素子は、誘電体薄膜(5)を層間絶縁膜
(4)の開口を覆うように形成しているので、開口の周
辺部の段差(図示A)において、誘電体薄膜(5)が段
切れ等を生じ易く、上部電極と下部電極との間で耐圧劣
化が生じ易い欠点があった。
However, in the capacitor having the above-described structure, the dielectric thin film (5) is formed so as to cover the opening of the interlayer insulating film (4). In FIG. 1A, there is a disadvantage that the dielectric thin film (5) is apt to cause disconnection and the like, and the breakdown voltage is apt to be deteriorated between the upper electrode and the lower electrode.

【0005】[0005]

【課題を解決するための手段】本発明は上述した欠点に
鑑み成されたもので、MOS素子(16)のゲート電極
(15)および容量素子(24)の下部電極(23)と
なるポリシリコン層の全面に容量素子(24)の誘電体
薄膜(25)となるシリコン窒化膜(SiN)を形成
し、下部電極(23)を被覆する層間絶縁膜(28)に
開口(34)を設け、この開口(34)を覆うようにし
て容量素子(24)の上部電極(26)を形成したもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and has been made in view of the above-mentioned drawbacks. The present invention has been made in view of the following circumstances. Forming a silicon nitride film (SiN) to be a dielectric thin film (25) of the capacitive element (24) on the entire surface of the layer; providing an opening (34) in an interlayer insulating film (28) covering the lower electrode (23); The upper electrode (26) of the capacitive element (24) is formed so as to cover the opening (34).

【0006】[0006]

【作用】本発明によれば、誘電体薄膜(25)が下部電
極(23)の表面に沿って略水平に延在するので、段差
が消滅し、段切れ等の危惧が全くない。また、MOS素
子(16)のゲート電極(15)と同時的に形成するこ
とによって、ゲート電極(15)の表面にもシリコン窒
化膜を被着できる。
According to the present invention, since the dielectric thin film (25) extends substantially horizontally along the surface of the lower electrode (23), the step is eliminated and there is no fear of step disconnection or the like. Further, by simultaneously forming the gate electrode (15) of the MOS element (16), a silicon nitride film can be deposited on the surface of the gate electrode (15).

【0007】[0007]

【実施例】以下に本発明をBi−CMOS集積回路に適
用した例を図面を参照しながら詳細に説明する。図1に
おいて、(11)はP型シリコン半導体基板、(12)
はN+型埋め込み層、(13)は基板(11)表面に形
成したエピタキシャル層を接合分離するP+型分離領
域、(14)は素子分離用のLOCOS酸化膜、(1
5)はPチャンネル型MOS素子(16)のゲート電
極、(17)はMOS素子(16)のP型ソース・ドレ
イン領域、(18)はNPNトランジスタ(19)のP
型ベース領域、(20)はP+型ベースコンタクト領
域、(21)はNPNトランジスタ(19)のN+型エ
ミッタ領域、(22)はN+型コレクタコンタクト領
域、(23)は容量素子(24)の下部電極、(25)
は誘電体薄膜、(26)は容量素子(24)の上部電
極、(27)は下部電極(23)の取出し電極、(2
8)は層間絶縁膜、(29)はAl電極、(30)はS
iN絶縁膜、(31)はポリイミド系絶縁膜、(32)
は第2層目Al配線である。完成品は、第2層目Al配
線(32)の上に更にジャケット用のポリイミド絶縁膜
が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a Bi-CMOS integrated circuit will be described below in detail with reference to the drawings. In FIG. 1, (11) is a P-type silicon semiconductor substrate, (12)
Is an N + -type buried layer, (13) is a P + -type isolation region for junction separation of an epitaxial layer formed on the surface of the substrate (11), (14) is a LOCOS oxide film for element isolation, (1)
5) is a gate electrode of a P-channel type MOS device (16), (17) is a P-type source / drain region of the MOS device (16), and (18) is a P-type transistor of an NPN transistor (19).
Type base region, (20) is a P + type base contact region, (21) is an N + type emitter region of an NPN transistor (19), (22) is an N + type collector contact region, and (23) is a capacitive element (24). ) Lower electrode, (25)
Is a dielectric thin film, (26) is an upper electrode of the capacitive element (24), (27) is an extraction electrode of the lower electrode (23), (2)
8) is an interlayer insulating film, (29) is an Al electrode, (30) is S
iN insulating film, (31) is a polyimide-based insulating film, (32)
Is a second layer Al wiring. In the finished product, a polyimide insulating film for a jacket is further formed on the second-layer Al wiring (32).

【0008】MOS素子(16)のゲート電極(15)
と容量素子(24)の下部電極(23)はRS=10〜
20Ω・cmとなるようにリンドープされたポリシリコ
ン層から成り、LOCOS酸化膜(14)で囲まれた素
子領域のゲート酸化膜(33)上に配置してゲート電極
(15)、膜厚0.6〜1.0μ程の厚いLOCOS酸
化膜(14)上に配置して下部電極(23)となる。ポ
リシリコン層はまた、LOCOS酸化膜(14)上を延
在する電極配線の一部ともなる。
The gate electrode (15) of the MOS device (16)
Lower electrode (23) of the capacitor (24) The R S =. 10 to
The gate electrode (15) is formed of a polysilicon layer doped with phosphorus so as to have a resistance of 20 Ω · cm on the gate oxide film (33) in the element region surrounded by the LOCOS oxide film (14). The lower electrode (23) is disposed on the thick LOCOS oxide film (14) of about 6 to 1.0 μm. The polysilicon layer also becomes a part of the electrode wiring extending on the LOCOS oxide film (14).

【0009】下部電極(23)上の誘電体薄膜(25)
はLPCV法による膜厚100〜300Åの熱生成シリ
コン窒化膜(Si34)から成り、このシリコン窒化膜
は下部電極(23)の表面の他、MOS素子(16)の
ゲート電極(15)の表面、および前記ポリシリコン層
による電極配線の一部の表面をも被覆する。層間絶縁膜
(28)はリン(P)とボロン(B)が多量にドープさ
れたBPSG膜から成る。BPSG膜は堆積した後リフ
ローされ、表面の平坦化を行う。その上のSiN絶縁膜
(30)はプラズマCVD法による窒化膜であり、BP
SG膜の耐湿性に劣る欠点を補うために設けた。
The dielectric thin film (25) on the lower electrode (23)
Consists of a heat-generating silicon nitride film (Si 3 N 4 ) having a thickness of 100 to 300 ° by the LPCV method. This silicon nitride film has a surface of the lower electrode (23) and a gate electrode (15) of the MOS device (16). And a part of the surface of the electrode wiring by the polysilicon layer. The interlayer insulating film (28) is composed of a BPSG film heavily doped with phosphorus (P) and boron (B). After the BPSG film is deposited, it is reflowed to planarize the surface. The SiN insulating film (30) thereon is a nitride film formed by a plasma CVD method,
This is provided to compensate for the disadvantage of the SG film having poor moisture resistance.

【0010】容量素子(24)の誘電体薄膜(25)の
上を覆う層間絶縁膜(28)には、容量値に応じた大き
さの開口(34)と下部電極(23)用のコンタクトホ
ール(35)が設けられる。開口(34)は、誘電体薄
膜(25)の表面を露出し、コンタクトホール(35)
は誘電体薄膜(25)を貫通して下部電極(23)の表
面を露出する。
An interlayer insulating film (28) covering the dielectric thin film (25) of the capacitive element (24) has an opening (34) having a size corresponding to the capacitance value and a contact hole for the lower electrode (23). (35) is provided. The opening (34) exposes the surface of the dielectric thin film (25) to form a contact hole (35).
Exposes the surface of the lower electrode (23) through the dielectric thin film (25).

【0011】容量素子(24)の上部電極(26)は、
下部電極(23)の表面に沿って略水平に延在する誘電
体薄膜(25)の上に、上記開口(34)を覆うように
して設けられる。誘電体薄膜(25)が層間絶縁膜(2
8)の下に形成されるので、上部電極(26)は開口
(34)の側壁および開口(34)の周囲で層間絶縁膜
(28)と密着する。下部電極(23)の取出し電極
(27)は、コンタクトホール(35)を介して下部電
極(23)とオーミックコンタクトする。尚、MOS素
子(16)のゲート電極(15)または前記ポリシリコ
ン層による電極配線の一部と電気接続する場合も、下部
電極(23)の取出し電極(27)と同様にする。
The upper electrode (26) of the capacitive element (24)
It is provided on the dielectric thin film (25) extending substantially horizontally along the surface of the lower electrode (23) so as to cover the opening (34). The dielectric thin film (25) is an interlayer insulating film (2)
8), the upper electrode (26) is in close contact with the interlayer insulating film (28) around the side wall of the opening (34) and around the opening (34). The extraction electrode (27) of the lower electrode (23) makes ohmic contact with the lower electrode (23) via the contact hole (35). The electrical connection with the gate electrode (15) of the MOS element (16) or a part of the electrode wiring made of the polysilicon layer is made in the same manner as the extraction electrode (27) of the lower electrode (23).

【0012】以上の本発明の構造によれば、容量素子
(24)の誘電体薄膜(25)が下部電極(23)の表
面に沿って略水平に延在し、その上に層間絶縁膜(2
8)を設けたので、誘電体薄膜(25)に段差が無い。
従って、誘電体薄膜(25)の段切れ等による上部電極
(26)と下部電極(23)との耐圧劣化が無い。ま
た、段切れがないので、誘電体薄膜(25)を薄くする
ことができる。薄くできれば、単位面積当りの容量値を
増大できる。
According to the structure of the present invention described above, the dielectric thin film (25) of the capacitive element (24) extends substantially horizontally along the surface of the lower electrode (23), and the interlayer insulating film (25) is formed thereon. 2
Since 8) is provided, there is no step in the dielectric thin film (25).
Therefore, there is no deterioration of the breakdown voltage between the upper electrode (26) and the lower electrode (23) due to the disconnection of the dielectric thin film (25). Further, since there is no disconnection, the dielectric thin film (25) can be made thin. If the thickness can be reduced, the capacitance value per unit area can be increased.

【0013】さらに、MOS素子(16)のゲート電極
(15)の表面、および前記ポリシリコン層による電極
配線の一部もシリコン窒化膜(36)が覆うので、窒化
膜のパッシベーション効果により、ゲート電極(15)
等の信頼性が向上する。特に平坦化技術としてBPSG
膜を使用し、耐湿性を補うためにプラズマCVD法によ
るSiN絶縁膜(30)を形成した本発明の構成におい
ては、SiN絶縁膜(30)内に不可避的に存在する水
素イオン(H+)の移動によるMOS素子(16)のし
きい値(VT)の変化(スロートラッピング現象)を、
ゲート電極(15)上に設けた熱生成のシリコン窒化膜
(36)が前記水素イオンの侵入を阻止することによっ
て、防止できる。さらに、誘電体薄膜(25)を挾む対
向電極に多層配線材料(Poly−SiおよびAl)を
利用しているので、直列抵抗を低減し容量素子(24)
の特性改善ができる他、容量素子(24)をLOCOS
酸化膜(14)上に配置したので、基板(11)への漏
れ電流が全く無く、集積回路特有の寄生効果を完全に防
止できる。
Further, the surface of the gate electrode (15) of the MOS element (16) and a part of the electrode wiring formed by the polysilicon layer are also covered by the silicon nitride film (36), so that the gate electrode is formed by the passivation effect of the nitride film. (15)
And the like are improved in reliability. In particular, BPSG as a planarization technology
In the configuration of the present invention in which the film is used and the SiN insulating film (30) is formed by the plasma CVD method in order to compensate for the moisture resistance, hydrogen ions (H + ) unavoidably present in the SiN insulating film (30). The change (threshold trapping phenomenon) of the threshold value (V T ) of the MOS element (16) due to the movement of
The heat-generated silicon nitride film (36) provided on the gate electrode (15) can prevent the invasion of the hydrogen ions, thereby preventing the hydrogen ions. Further, since the multi-layer wiring material (Poly-Si and Al) is used for the counter electrode sandwiching the dielectric thin film (25), the series resistance is reduced and the capacitance element (24) is used.
Characteristics can be improved, and the capacitance element (24) can be
Since it is arranged on the oxide film (14), there is no leakage current to the substrate (11), and the parasitic effect peculiar to the integrated circuit can be completely prevented.

【0014】以下に本発明の製造方法を図面に従って詳
細に説明する。先ずP型シリコン半導体基板(11)の
表面にN+型埋め込み層(12)、P+型分離領域(1
3)の下側部分、その他必要な領域を形成し、基板(1
1)上にN型エピタキシャル層を形成する。そして、エ
ピタキシャル層表面からP型不純物を拡散して島領域を
形成するための分離領域(13)の上側部分を形成し、
さらにエピタキシャル層表面を選択酸化して膜厚0.8
〜1.0μのLOCOS酸化膜(14)を形成して図2
の構造を得る。
The manufacturing method of the present invention will be described below in detail with reference to the drawings. First, an N + -type buried layer (12) and a P + -type isolation region (1) are formed on the surface of a P-type silicon semiconductor substrate (11).
3) Form the lower part and other necessary areas, and
1) An N-type epitaxial layer is formed thereon. And forming an upper portion of an isolation region (13) for forming an island region by diffusing a P-type impurity from the surface of the epitaxial layer;
Furthermore, the surface of the epitaxial layer is selectively oxidized to a film thickness of 0.8.
LOCOS oxide film (14) of ~ 1.0μ is formed and FIG.
To get the structure.

【0015】ゲート酸化膜(18)となる膜厚500〜
800Åのシリコン酸化膜を熱酸化で形成し、全面に膜
厚0.4〜0.8μのノンドープポリシリコンを堆積す
る。堆積したポリシリコンに不純物(リン)をドープし
て導電性を与え、さらにLPCVD法によって全面に膜
厚100〜300Åの熱生成によるシリコン窒化膜(S
34)を堆積する。ポリシリコン層とシリコン窒化膜
の2層膜をホトエッチングでパターニングし、LOCO
S酸化膜(14)で囲まれたゲート酸化膜上にMOS素
子(16)のゲート電極(15)を、LOCOS酸化膜
(14)上には容量素子(24)の下部電極(23)を
形成する(図3)。手法は、例えばCF 4+O2ガスによ
る連続異方性エッチである。
A film thickness of 500 to be a gate oxide film (18)
800 Å silicon oxide film formed by thermal oxidation
Deposit non-doped polysilicon 0.4-0.8μ thick
You. Doping impurities (phosphorus) into the deposited polysilicon
To give conductivity, and furthermore, a film is formed on the entire surface by LPCVD.
Silicon nitride film (S
iThreeNFourDeposit). Polysilicon layer and silicon nitride film
Is patterned by photo-etching and LOCO
A MOS element is formed on the gate oxide film surrounded by the S oxide film (14).
The gate electrode (15) of the child (16) is formed by a LOCOS oxide film.
(14) On the lower electrode (23) of the capacitive element (24)
(FIG. 3). The method is, for example, CF Four+ OTwoBy gas
Continuous anisotropic etch.

【0016】ホトレジストによる選択マスクの形成と不
純物のイオン注入とを複数回繰り返して、NPNトラン
ジスタ(19)等のバイポーラ素子の拡散領域、および
MOS素子(16)の拡散領域を全て形成する(図
4)。NPNトランジスタ(19)は、P型のベース領
域(18)、N+型のエミッタ領域(21)、P+型のベ
ースコンタクト領域(20)、およびN+型コレクタコ
ンタクト領域(22)から成り、PchMOSトランジ
スタ(16)は、先に形成したゲート電極(15)、お
よびゲート電極(15)の両脇に形成したP+型ソース
・ドレイン領域(17)から成る。PchMOSトラン
ジスタ(16)のソース・ドレイン領域(17)がNP
Nトランジスタ(19)のベースコンタクト領域(2
0)と、図示せぬNchMOSトランジスタのソース・
ドレイン領域がNPNトランジスタ(19)のエミッタ
領域(21)と夫々共用である。
The formation of a selection mask using photoresist and the ion implantation of impurities are repeated a plurality of times to form all the diffusion regions of a bipolar element such as an NPN transistor (19) and the diffusion region of a MOS element (16) (FIG. 4). ). The NPN transistor (19) includes a P-type base region (18), an N + -type emitter region (21), a P + -type base contact region (20), and an N + -type collector contact region (22). The PchMOS transistor (16) includes a gate electrode (15) formed earlier and P + -type source / drain regions (17) formed on both sides of the gate electrode (15). The source / drain region (17) of the PchMOS transistor (16) is NP
N-transistor (19) base contact region (2
0) and the source of an NchMOS transistor (not shown).
The drain region is shared with the emitter region (21) of the NPN transistor (19).

【0017】LPCVD法等により、全面に膜厚1.0
〜2.0μのBPSG(ボロン・リン・シリケート・グ
ラス)膜を堆積して層間絶縁膜(28)とし、リフロー
して表面を平坦化する。その後、第1のレジストパター
ンを形成し、弗酸緩衝液で層間絶縁膜(28)をエッチ
ングして誘電体薄膜(25)を露出する開口(34)を
形成する(図5)。
A film thickness of 1.0 is formed on the entire surface by LPCVD or the like.
A BPSG (boron phosphorus silicate glass) film having a thickness of 2.0 μm is deposited to form an interlayer insulating film (28), and the surface is flattened by reflow. Thereafter, a first resist pattern is formed, and the interlayer insulating film (28) is etched with a hydrofluoric acid buffer solution to form an opening (34) exposing the dielectric thin film (25) (FIG. 5).

【0018】前記第1のレジストパターンを除去してか
ら第2のレジストパターンを形成し、層間絶縁膜(2
8)と誘電体薄膜(25)を連続的にエッチングしてコ
ンタクトホール(35)を形成する(図6)。この時、
ポリシリコン層上のコンタクトホール(35)のみなら
ず、各素子の拡散領域上のコンタクトホールも同時に形
成する。エッチングは、例えばCF4+O2ガス雰囲気に
よる異方性ドライエッチングで行う。
After removing the first resist pattern, a second resist pattern is formed, and an interlayer insulating film (2) is formed.
8) and the dielectric thin film (25) are successively etched to form a contact hole (35) (FIG. 6). At this time,
In addition to the contact hole (35) on the polysilicon layer, a contact hole on the diffusion region of each element is formed at the same time. The etching is performed, for example, by anisotropic dry etching in a CF 4 + O 2 gas atmosphere.

【0019】全面にAl又はAl−Siを堆積し、これ
をホトエッチングすることで各デバイスの電極配線(2
9)と容量素子(24)の上部電極(26)、および下
部電極取出し電極(27)を形成する(図7)。斯る製
造方法によれば、MOS素子(16)のゲート電極(1
5)形成と、同時的に容量素子(24)の下部電極(2
3)と誘電体薄膜(25)の形成を行うので、工程を簡
略化できる。
Al or Al-Si is deposited on the entire surface and is photo-etched to form an electrode wiring (2) of each device.
9), an upper electrode (26) of the capacitive element (24), and a lower electrode extraction electrode (27) are formed (FIG. 7). According to such a manufacturing method, the gate electrode (1) of the MOS element (16) is
5) Simultaneously with formation, lower electrode (2) of capacitive element (24)
Since 3) and the formation of the dielectric thin film (25) are performed, the process can be simplified.

【0020】[0020]

【発明の効果】以上に説明した通り、本発明によれば、
容量素子(24)の誘電体薄膜(25)に段差が無いの
で、段切れ等による耐圧劣化の無い容量素子(24)を
提供できる利点を有する。また、MOS素子(16)の
ゲート電極(15)にも同様にシリコン窒化膜(36)
が被覆するので、しきい値変動等が無い信頼性の高い素
子を組み込むことができる利点を有する。
As described above, according to the present invention,
Since there is no step in the dielectric thin film (25) of the capacitor (24), there is an advantage that the capacitor (24) can be provided with no withstand voltage deterioration due to disconnection of the step. Similarly, a silicon nitride film (36) is formed on the gate electrode (15) of the MOS device (16).
Has an advantage that a highly reliable element having no fluctuation in threshold value or the like can be incorporated.

【0021】さらに、MOS素子(16)のゲート電極
(15)と容量素子(24)の下部電極(23)等を同
時的に形成できるので、工程を簡素化できる利点をも有
する。
Further, since the gate electrode (15) of the MOS element (16) and the lower electrode (23) of the capacitive element (24) can be formed simultaneously, there is an advantage that the process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するための断面図である。FIG. 1 is a cross-sectional view for explaining the present invention.

【図2】図1の製造方法を説明するための第1の断面図
である。
FIG. 2 is a first sectional view for explaining the manufacturing method of FIG. 1;

【図3】図1の製造方法を説明するための第2の断面図
である。
FIG. 3 is a second cross-sectional view for explaining the manufacturing method in FIG. 1;

【図4】図1の製造方法を説明するための第3の断面図
である。
FIG. 4 is a third cross-sectional view for explaining the manufacturing method in FIG. 1;

【図5】図1の製造方法を説明するための第4の断面図
である。
FIG. 5 is a fourth cross-sectional view for explaining the manufacturing method in FIG. 1;

【図6】図1の製造方法を説明するための第5の断面図
である。
FIG. 6 is a fifth sectional view for describing the manufacturing method in FIG. 1;

【図7】図1の製造方法を説明するための第6の断面図
である。
FIG. 7 is a sixth sectional view for explaining the manufacturing method in FIG. 1;

【図8】従来例を説明するための断面図である。FIG. 8 is a sectional view for explaining a conventional example.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少くとも容量素子を集積化した半導体集
積回路であって、 絶縁膜上に設けた容量素子の下部電極と、 前記下部電極の全面を被覆する容量素子の誘電体薄膜
と、 前記誘電体薄膜の上を覆う層間絶縁膜と、 前記層間絶縁膜に設けた、前記誘電体薄膜の表面を露出
する開口と、 前記層間絶縁膜に設けた、前記誘電体薄膜を貫通し前記
下部電極の表面を露出するコンタクトホールと、 前記開口を覆うように設けた容量素子の上部電極と、 前記コンタクトホールを通して前記下部電極とコンタク
トする取出し電極と、 を具備することを特徴とする半導体集積回路。
1. A semiconductor integrated circuit in which at least a capacitive element is integrated, comprising: a lower electrode of the capacitive element provided on an insulating film; a dielectric thin film of the capacitive element covering an entire surface of the lower electrode; An interlayer insulating film covering the dielectric thin film; an opening provided in the interlayer insulating film, exposing a surface of the dielectric thin film; and the lower electrode provided in the interlayer insulating film, penetrating the dielectric thin film. A semiconductor integrated circuit, comprising: a contact hole that exposes a surface of the capacitor; an upper electrode of a capacitor provided to cover the opening; and an extraction electrode that contacts the lower electrode through the contact hole.
【請求項2】 少くともMIS型素子と容量素子とを集
積化した半導体集積回路であって、 素子分離用のLOCOS酸化膜と、 前記LOCOS酸化膜で囲まれた素子領域に配置したM
OS素子のゲート電極、および前記LOCOS酸化膜上
に配置した前記ゲート電極材料と同じ材料から成る容量
素子の下部電極と、 前記ゲート電極と下部電極の略全表面を被覆する誘電体
薄膜と、 前記誘電体薄膜の上を被覆する層間絶縁膜と、 前記層間絶縁膜に設けた、前記下部電極上の誘電体薄膜
の表面を露出する開口と、 前記層間絶縁膜に設けた、前記誘電体薄膜を貫通して前
記下部電極の表面を露出する下部電極用コンタクトホー
ルと、 各素子を形成する拡散領域の表面を露出するコンタクト
ホールと、 前記開口を覆うように形成した容量素子の上部電極と、 前記下部電極用コンタクトホールを介して前記下部電極
にコンタクトする電極、および前記コンタクトホールを
介して前記拡散領域にコンタクトする電極とを具備する
ことを特徴とする半導体集積回路。
2. A semiconductor integrated circuit in which at least an MIS type element and a capacitance element are integrated, wherein a LOCOS oxide film for element isolation, and an M disposed in an element region surrounded by the LOCOS oxide film.
A gate electrode of an OS element, a lower electrode of a capacitive element made of the same material as the gate electrode material disposed on the LOCOS oxide film, a dielectric thin film covering substantially all surfaces of the gate electrode and the lower electrode, An interlayer insulating film covering the dielectric thin film; an opening provided in the interlayer insulating film, exposing a surface of the dielectric thin film on the lower electrode; and the dielectric thin film provided in the interlayer insulating film. A contact hole for a lower electrode that penetrates and exposes a surface of the lower electrode; a contact hole that exposes a surface of a diffusion region forming each element; an upper electrode of a capacitive element formed to cover the opening; An electrode that contacts the lower electrode through a contact hole for the lower electrode, and an electrode that contacts the diffusion region through the contact hole. A semiconductor integrated circuit characterized by the above-mentioned.
【請求項3】 前記誘電体薄膜はシリコン窒化膜である
ことを特徴とする請求項2記載の半導体集積回路。
3. The semiconductor integrated circuit according to claim 2, wherein said dielectric thin film is a silicon nitride film.
【請求項4】 素子分離用のLOCOS酸化膜を形成す
る工程と、 全面にMOS素子のゲート電極および容量素子の下部電
極となる電極材料を堆積する工程と、 全面に容量素子の誘電体薄膜となる絶縁材料を堆積する
工程と、 前記電極材料に前記絶縁材料とを同時的にパターニング
して、MOS素子のゲート電極と、前記LOCOS酸化
膜上の容量素子の下部電極と誘電体薄膜を形成する工程
と、 全面を被覆する層間絶縁膜を堆積する工程と、 前記層間絶縁膜に、ひとつのレジストプロセスによって
前記下部電極上の誘電体薄膜の表面を露出する開口を形
成し、他のレジストプロセスによって前記誘電体薄膜を
貫通し前記下部電極の表面を露出する下部電極用コンタ
クトホールと、 電極材料を堆積、パターニングして、前記開口を覆う容
量素子の上部電極および各素子の電極配線を形成する工
程と、を具備することを特徴とする半導体集積回路の製
造方法。
4. A step of forming a LOCOS oxide film for element isolation, a step of depositing an electrode material to be a gate electrode of a MOS element and a lower electrode of a capacitor on the entire surface, and a step of forming a dielectric thin film of the capacitor on the entire surface. Depositing an insulating material, and simultaneously patterning the insulating material on the electrode material to form a gate electrode of a MOS element, a lower electrode of a capacitive element on the LOCOS oxide film, and a dielectric thin film. Depositing an interlayer insulating film covering the entire surface; forming an opening in the interlayer insulating film to expose the surface of the dielectric thin film on the lower electrode by one resist process; and performing another resist process. A lower electrode contact hole that penetrates the dielectric thin film and exposes a surface of the lower electrode; and a capacitor that covers the opening by depositing and patterning an electrode material. Forming an upper electrode of an element and an electrode wiring of each element.
【請求項5】 前記ひとつのレジストプロセスがウェッ
ト手法、前記他のレジストプロセスがドライ手法である
ことを特徴とする請求項3記載の半導体集積回路の製造
方法。
5. The method according to claim 3, wherein said one resist process is a wet process, and said another resist process is a dry process.
JP3249713A 1991-09-27 1991-09-27 Semiconductor integrated circuit and manufacturing method thereof Expired - Fee Related JP2840488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3249713A JP2840488B2 (en) 1991-09-27 1991-09-27 Semiconductor integrated circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3249713A JP2840488B2 (en) 1991-09-27 1991-09-27 Semiconductor integrated circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0590492A JPH0590492A (en) 1993-04-09
JP2840488B2 true JP2840488B2 (en) 1998-12-24

Family

ID=17197095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3249713A Expired - Fee Related JP2840488B2 (en) 1991-09-27 1991-09-27 Semiconductor integrated circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2840488B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349301A (en) * 1999-04-01 2000-12-15 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
JP3918442B2 (en) 2001-02-19 2007-05-23 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP2003224201A (en) 2002-01-31 2003-08-08 Mitsubishi Electric Corp Semiconductor device and its fabricating method
JP2010245318A (en) 2009-04-07 2010-10-28 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0590492A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
KR100232319B1 (en) Large value capacitor for soi
JP2616569B2 (en) Method for manufacturing semiconductor integrated circuit device
US5945712A (en) Semiconductor device having a SOI structure with substrate bias formed through the insulator and in contact with one of the active diffusion layers
US6693325B1 (en) Semiconductor device having silicon on insulator and fabricating method therefor
US5929490A (en) Semiconductor device with an improved body contact hole structure
US5061645A (en) Method of manufacturing a bipolar transistor
JPH1074921A (en) Semiconductor device and manufacturing method thereof
US4887145A (en) Semiconductor device in which electrodes are formed in a self-aligned manner
US5144408A (en) Semiconductor integrated circuit device and method of manufacturing the same
KR0152098B1 (en) Method for manufacturing semiconductor integrated circuit
US5324672A (en) Manufacturing method for bipolar transistor
JP2840488B2 (en) Semiconductor integrated circuit and manufacturing method thereof
US5280188A (en) Method of manufacturing a semiconductor integrated circuit device having at least one bipolar transistor and a plurality of MOS transistors
JPH0846068A (en) Bimos semiconductor device and its manufacture
US5843828A (en) Method for fabricating a semiconductor device with bipolar transistor
US6156622A (en) Bipolar transistor having isolation regions
JP2830215B2 (en) Method for manufacturing charge transfer device
JP2722506B2 (en) Semiconductor device and manufacturing method thereof
KR0149317B1 (en) Method of fabricating horizontal bipolar transistor
JPH0618200B2 (en) Method of manufacturing lateral transistor semiconductor device
JP2627369B2 (en) Semiconductor integrated circuit
JPH065708B2 (en) Semiconductor integrated circuit device
JPH0654794B2 (en) Semiconductor integrated circuit
JPH0157506B2 (en)
JPH0389563A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees