JPS5984464A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS5984464A
JPS5984464A JP57195442A JP19544282A JPS5984464A JP S5984464 A JPS5984464 A JP S5984464A JP 57195442 A JP57195442 A JP 57195442A JP 19544282 A JP19544282 A JP 19544282A JP S5984464 A JPS5984464 A JP S5984464A
Authority
JP
Japan
Prior art keywords
film
base
layer
collector
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57195442A
Other languages
Japanese (ja)
Other versions
JPS6248388B2 (en
Inventor
Tadashi Hirao
正 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57195442A priority Critical patent/JPS5984464A/en
Publication of JPS5984464A publication Critical patent/JPS5984464A/en
Publication of JPS6248388B2 publication Critical patent/JPS6248388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a logical gate of uniform characteristics without depending on the difference of distance between a collector and a base terminal by a method wherein a base electrode is provided in self-alignment to the collector, thus shortening the interval, and the clearance between the base and a constant current circuit element, and each injector region are connected by means of a low resistant conductor. CONSTITUTION:An n<-> epitaxial layer 3 on a p type Si substrate wherein an n<+> layer is buried is insulated and isolated 102, and an SiO2 103, an Si3N4 double layer film, and a p<-> layer 6a, p<+> layer 71-9a are selectively provided and covered with a B doped poly Si 601. SiO2's 104 are partially formed by using Si3N4 films 203, a window is bored through the part of an Si 611, ions are implanted by masking 302, and resulting in the formation of a p<-> layer 10. An n<+> layer is completed by removing the mask 302 and annealing. When SiO2's 106 are formed by removing the SiO2's 104, the side surface of the layer 611 is formed thickly. Windows are bored through layers 7b and 9b by RIE using a mask 303, and covered with PtSi's 501, 511, and 521. Finally, it is covered with a PSG401, a window is bored, and an Al wiring 13 is laid. By this constitution, even when there are differences between each collector position and the distance of the base, an I<2>L of uniform characteristics can be obtained, and the action becomes speedy.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体集積回路装置、特に半導体基体内の分
離領域で他の部分と分離された部分に形成されるベース
を入力端子としかつ複数個のコレクタをそれぞれ出力端
子とするトランジスタと該トランジスタの前記ベースへ
定電流を供給する定電流回路素子とからなる論理ゲート
回路装置の製造方法に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit device, particularly a base formed in a part separated from other parts in an isolation region within a semiconductor substrate, which is used as an input terminal, and has a plurality of The present invention relates to a method of manufacturing a logic gate circuit device comprising a transistor whose collector is an output terminal, and a constant current circuit element that supplies a constant current to the base of the transistor.

以下、インテグレーテッド書インジェクション・ロジッ
ク(Integrated Injection Lo
gic)回路装置(以下rIIL−ICJ  という。
The following is an explanation of the integrated book Injection Logic.
gic) circuit device (hereinafter referred to as rIIL-ICJ).

)を例にとって説明する。) will be explained using an example.

〔従来技術J 第1図(a)〜(e)は従来のIIL・ICの構造をよ
りよく理解するためにその製造主要工程における状態を
示す断面図である。ただし、ここで示すのは出力(fa
n −out ) 1個の場合である。
[Prior Art J Figures 1(a) to 1(e) are cross-sectional views showing the main manufacturing steps of a conventional IIL IC in order to better understand its structure. However, what is shown here is the output (fa
This is the case where there is one n-out).

すなわち、このIIL・ICはバイポーラICで一般に
行なわれているように、p形シリコン基板(1)−ヒに
n形高不純物濃度(n+形と言い、以下これに準する。
That is, in this IIL IC, as is generally done in bipolar ICs, a p-type silicon substrate (1) is doped with a high n-type impurity concentration (referred to as n+ type, hereinafter referred to as "n+ type").

)埋込み層(2)を形成したのち、n形像不純物濃度(
n−形と言い、以下これに準する。)エピタキシャル層
(3)を成長させ、ついで酸化膜(101)と耐酸化膜
である窒化膜(201)とを順次形成して、所定形状に
パターニングし、これをマスクにしてn−形エピタキシ
ャル層(3)を所定深さだけエツチング除去してから、
イオン注入法によシチャネルカット防止層用p形イオン
注入層(4)を形成し、窒化膜(201)をマスクとし
て選択酸化を行なって分離酸化膜(102)を形成する
〔第1図(a)〕。次に、窒化膜(201)と酸化膜(
101)とを除去したのち、あらためて薄い酸化膜(1
03)を形成したのち、これを通し、所要のレジストマ
スク(この段階でのレジストマスクは図示せず。)を介
してホウ素イオンを注入して、n−形エピタキシャル層
(3)に選択的にp−形層(6)を形成した後に、あら
ためて所要パターンのレジストマスク(301)を形成
し、これを用いて酸化膜(103)を通してホウ素イオ
ンを注入して、n−形エピタキシャル層(3)にp+形
層(7) 、 (8) 、 (9)を形成する〔第1図
(b)〕。次にレジストマスク(301)を除去後、全
上面にCVD法によってリンガシスLJ(401)を成
長させた上で、このリンガラス膜(’401)  。
) After forming the buried layer (2), the n-type image impurity concentration (
It is called n-type, and will be referred to hereinafter. ) An epitaxial layer (3) is grown, and then an oxide film (101) and a nitride film (201), which is an oxidation-resistant film, are sequentially formed and patterned into a predetermined shape. Using this as a mask, an n-type epitaxial layer is formed. After removing (3) by etching to a predetermined depth,
A p-type ion implantation layer (4) for a channel cut prevention layer is formed by ion implantation, and selective oxidation is performed using the nitride film (201) as a mask to form an isolation oxide film (102) [Fig. a)]. Next, the nitride film (201) and the oxide film (
After removing the thin oxide film (101), a thin oxide film (101) is removed.
03), boron ions are implanted through this through a required resist mask (the resist mask is not shown at this stage) to selectively implant the n-type epitaxial layer (3). After forming the p-type layer (6), a resist mask (301) with the required pattern is formed again, and boron ions are implanted through the oxide film (103) using this to form the n-type epitaxial layer (3). P+ type layers (7), (8), and (9) are formed on the substrate [Fig. 1(b)]. Next, after removing the resist mask (301), a phosphorus glass film ('401) is grown on the entire upper surface by the CVD method.

p−形層(6)およびp+形M<1) 、 (s) 、
 (9)のアニーリングを同時に行なってp−形層(6
a)およびp+形層(7a)、(8a)、(9a)を形
成させる〔第1図(C)〕。次に、p−形/1ff(6
a)の上の一部にリンガラス膜(401)および酸化膜
(103)に窓をあけ、ここからn形不純物を導入し、
アニールすることによってn1°形fi(10a)を形
成するとともに、p−形M(6a>  をp−形層(6
b)に、p+形Jm(7a)、(8a)、(9a)を(
7b)、(8b)。
p-type layer (6) and p+ type M<1), (s),
(9) is annealed at the same time, and the p-type layer (6
a) and p+ type layers (7a), (8a), and (9a) are formed [FIG. 1(C)]. Next, p-type/1ff(6
A window is formed in the phosphorus glass film (401) and the oxide film (103) in a part above a), and n-type impurities are introduced from there,
By annealing, an n1 degree fi (10a) is formed, and a p-type M (6a>) is formed as a p-type layer (6a).
b), p + type Jm (7a), (8a), (9a) (
7b), (8b).

(9b)にそれぞれ成長させる〔第1図(d)〕。つづ
いて、p 形層(7b)および(9b)上にそれぞれ窓
をあけ、上記n+形層(10a )の上の窓の部分とと
もにそれぞれ金属シリサイド層(501)を介して電極
配線を行ない、pnp  )ランジスタのエミッタであ
るp+形/1l(7b)にインジェクタ電極(11)を
、pnp  トランジスタのコレクタであplかつ逆方
向動作npn )ランジスタのベースであるp−形層(
6b)につながる電極取出し用〆形M(9b) にイン
プット電極(12)を、さらに逆方向動作npn )ラ
ンジスタのコレクタであるn+形層(10a)  にア
ウトプット電1(13)をそれぞれ接続形成して、との
IILゲートを完成させる〔第1図(e)〕。
(9b) respectively [Fig. 1(d)]. Subsequently, windows are formed on each of the p-type layers (7b) and (9b), and electrode wiring is performed through the metal silicide layer (501) together with the window portion above the n+-type layer (10a). ) the injector electrode (11) is connected to the p+ type/1l (7b) which is the emitter of the transistor;
Connect the input electrode (12) to the terminal M (9b) for taking out the electrode connected to 6b), and connect the output electrode 1 (13) to the n+ type layer (10a) which is the collector of the reverse operation npn) transistor. Then, the IIL gate of is completed [Fig. 1(e)].

以上基本的な1出力のIILゲートを示したが、第2図
はこの従来構造になる3出力と2本のグ−ト間配線とを
有するIILゲートの平面図で、(13)、 (14)
、 (15)  がそれぞれ第1のコレクタCI+第2
のコレクタC2、第3のコレクタC3につながれた3つ
のアウトプット電極、(21)、 (22)はゲート間
配線である。3つのコレクタCI + C2+03はイ
ンプット(ベース)電極(12)から近い順に配列され
ている。さて、逆動作npn  )ランジスタの電流増
幅率βUは第3図に示すようにベース電極(12)から
遠いコレクタはどコレクタ電流IcO高電流域で大きく
低下する。これはベース抵抗がベース電極から遠いコレ
クタはど大きくなるからであると考えられる。また、工
■Lのゲート伝播遅延時間tpd  と消費電力Pd 
 との間には第4図に示されるような電力遅延特性のあ
ることが知られている。(例えば、半導体トランジスタ
研究会、信学技報5SD76−89. p37: Hi
gh 5peed IIL with 5elf −A
ligned Doublel)iffuaion I
njector CS2L ) )。
The basic one-output IIL gate has been shown above, and FIG. 2 is a plan view of this conventional IIL gate having three outputs and two interconnections between gates. (13), (14) )
, (15) are respectively the first collector CI+second collector CI
The three output electrodes connected to the collector C2 and the third collector C3, (21) and (22) are inter-gate wirings. The three collectors CI+C2+03 are arranged in order from the input (base) electrode (12). Now, as shown in FIG. 3, the current amplification factor βU of the reverse operation npn transistor is greatly reduced in the high current region where the collector current IcO is far from the base electrode (12). This is thought to be because the collector whose base resistance is far from the base electrode becomes larger. Also, the gate propagation delay time tpd and power consumption Pd of
It is known that there is a power delay characteristic as shown in FIG. (For example, Semiconductor Transistor Research Group, IEICE Technical Report 5SD76-89. p37: Hi
gh 5peed IIL with 5elf -A
ligatedDouble)ifuaion I
njector CS2L ) ).

ここで同一ベース面積、同一 pnp)ランジスタ特性
であれば第5図に示すようにtpdmin ”βU′の
関係が成立するので、第6図に示すようにベース電極か
ら遠いコレクタはど(コレクタとベース電極との距離り
。−8が大きいほど)最小遅延時間tpdminが大き
くなる。よって、このように従来の製造方法によるII
Lゲートの性能には第1表にその一例を示すように各ア
ウトプット電極間で特性の差異があり、ベース電極に最
も遠いアウトプット電極の大きい遅延時間で制約される
Here, if the transistor characteristics are the same (with the same base area and the same pnp), the relationship tpdmin ``βU'' holds as shown in Figure 5, so as shown in Figure 6, where is the collector far from the base electrode? The larger the distance from the electrode (-8), the larger the minimum delay time tpdmin.
As shown in Table 1, the performance of the L gate varies among the output electrodes, and is limited by the large delay time of the output electrode that is farthest from the base electrode.

さらに同一製造法であっても、電流増幅率βUけ第7図
に示すようにコレクタ面積SCのベース面MSaに対す
る比S c /S Hに比例する。従来の構造では第2
図に示したようにp−影領域(6b)とこれにつながる
p+形領領域8b)、(9b)  とからなるベース領
域がゲート間配a (21)、 (22)の下にまでわ
たって存在し、第1表に示すようにベース面MSnが大
きく、従ってコレクタ面積Scとの比Sc/Ssが非常
に小さくなり、電流増幅率βUが小さくなり、ベース電
極に最も近いコレクタC1でも最小遅延時間tPdmi
nは大きくなり、さらに電源電流l1njを200/j
A/gate程度としたときの遅延速度tpdも大きく
なる。
Furthermore, even if the manufacturing method is the same, the current amplification factor βU is proportional to the ratio S c /S H of the collector area SC to the base surface MSa, as shown in FIG. In the conventional structure, the second
As shown in the figure, the base region consisting of the p- shadow region (6b) and the connected p+ type regions 8b) and (9b) extends below the gate interconnections a (21) and (22). As shown in Table 1, the base surface MSn is large, so the ratio Sc/Ss with the collector area Sc becomes very small, the current amplification factor βU becomes small, and even the collector C1 closest to the base electrode has a minimum delay. Time tPdmi
n increases, and the power supply current l1nj is further reduced to 200/j
The delay speed tpd also increases when it is set to about A/gate.

第1表 また、第8図は各端子の関係位置によってゲート最小遅
延時間tpdmi。が異なることを示す図で、同一のコ
レククベース間距離り。−Bであっても、インジェクタ
電極がベース電極に近い餉&tある場合(曲線A)より
もインジェクタ電極がコレクタ電極に近い側にある場合
(曲線B)の方が最小遅延時間tpdmi nが小さい
。第9図は前者(インジェクターベース−コレクタの配
置)の場合、第10図は後者(インジェクターコレクタ
ーベースの配R)の場合の構成とその動作を説明するた
めの模式断面図で、■はインジェクタ端子、Bはベース
端子、Cはコレクタ端子、Eは接地エミッタ端子である
。第9図、第10図ともに、図(a)はゲート出力が低
レベルから高レベルへスイッチング(L→H)するとき
の電流、図(b)はゲート出力が高レベルから低レベル
へスイッチング(H−+L )するときの電流を矢印で
示す。I(−+Lとは逆方向動作のnpn )ランジス
タがON状態となって、工。nが流れる時で、これはイ
ンジェクタから供給されるベース電流l1njがnpn
 )ランジスタのベース電流として働くことであって、
ベース電流供給源としてのpnp )ランジスタのコレ
クタ接合からスイッチングトランジスタとなるnpn)
ジンジスタの活性ベース領域までの距離は第10図の場
合の方が小さく、ベース電流は早く供給され、npnト
ランジスタがON状態になるのは第10図の方が第9図
の場合よりも早い。
Table 1 and FIG. 8 show the minimum gate delay time tpdmi depending on the relative position of each terminal. This is a diagram showing that the distances between the same collection bases are different. -B, the minimum delay time tpdmin is smaller when the injector electrode is closer to the collector electrode (curve B) than when the injector electrode is closer to the base electrode (curve A). Figure 9 is a schematic sectional view for explaining the configuration and operation in the former case (injector base-collector arrangement) and Figure 10 in the latter case (injector collector base arrangement R), and ■ is a schematic cross-sectional view for explaining the configuration and operation of the latter case (injector collector base arrangement R). , B is a base terminal, C is a collector terminal, and E is a grounded emitter terminal. In both Figures 9 and 10, Figure (a) shows the current when the gate output switches from a low level to a high level (L→H), and Figure (b) shows the current when the gate output switches from a high level to a low level (L→H). The arrow indicates the current when H-+L). The I (npn, which operates in the opposite direction to -+L) transistor is in the ON state, and the operation is completed. When n flows, this means that the base current l1nj supplied from the injector is npn
) to act as the base current of the transistor,
pnp as a base current supply source) npn as a switching transistor from the collector junction of the transistor
The distance to the active base region of the gingister is smaller in the case of FIG. 10, the base current is supplied earlier, and the npn transistor turns on faster in the case of FIG. 10 than in the case of FIG.

また、L−+HとはHpn )ランジスタがOFF状態
となることでIIL は飽和形ロジック〔但し、ショッ
トキー・クランプ(5chottky clamp)す
れば飽和は小さい。〕であって、スイッチングトランジ
スタであるnpn )ランジスタが深いON状態からO
FF状態に移るには活性領域にたまった過剰電荷(正孔
)をベース端子から抜いてやらねばならない。一方、イ
ンジェクタからベース電流l1njはいつも流れこんで
いて、ベース端子へ抜ける流れができている。従つ゛C
1第1O図のようにベース端子とインジェクタとの間に
活性ベース領域があると過剰電荷は上記工injの流れ
とともにベース端子にドリフトして流れ抜けてしまうが
、第9図のようにl1njの流れと離れて活性ベース領
域があると、過剰電荷は拡散による流れしか発生せず、
過剰電荷を抜き去るには第10図の場合に比して長時間
が必要で、結局、L−+Hの切換えについても第10図
の方が第9図の場合より早い。
Furthermore, since the transistor (L-+H means Hpn) is in the OFF state, IIL is a saturation type logic (however, if a Schottky clamp (5chottky clamp) is used, the saturation is small. ], and the switching transistor (npn) transistor changes from a deep ON state to an O state.
To shift to the FF state, excess charges (holes) accumulated in the active region must be removed from the base terminal. On the other hand, the base current l1nj always flows in from the injector and flows out to the base terminal. Follow゛C
1 If there is an active base region between the base terminal and the injector as shown in Figure 1O, excess charge will drift to the base terminal and flow through with the flow of the above-mentioned inj, but as shown in Figure 9, the excess charge will drift to the base terminal and flow through. If there is an active base region apart from the flow, excess charge can only flow by diffusion;
It takes a longer time to remove the excess charge than in the case of FIG. 10, and as a result, the L-+H switching is also faster in FIG. 10 than in the case of FIG.

つtシ、ゲートの動作速度はインジェクターコレクター
ベースの配置にした方が速くなることが判るであろう。
However, it will be appreciated that the operating speed of the gate will be faster with the injector collector based arrangement.

しかし、従来のIILの構造ではコレクタ出力の数が多
くなるとこの配置をとることが困難であった。
However, in the conventional IIL structure, it is difficult to adopt this arrangement when the number of collector outputs increases.

〔発明の概要〕[Summary of the invention]

この発明は以上のような点に鑑みてなされたもので、入
力端子を構成するベース端子と各コレクタに対応する各
ベース領域とベースへ定電流を供給する定電流回路素子
とを結ぶ低抵抗電路を設けることによって、コレクタが
複数個であってもその相互間に特性差異をなくするとと
もに、各コレクタに対応する各インジェクタ領域を低抵
抗電路で結ぶことによって、またベース電極をコレクタ
に対してセルフ・アライン的に形成することで、すぐれ
た特性のICを得ることを目的としている。
This invention has been made in view of the above points, and is a low-resistance electric circuit connecting a base terminal constituting an input terminal, each base region corresponding to each collector, and a constant current circuit element that supplies a constant current to the base. By providing this, even if there are multiple collectors, there will be no difference in characteristics between them, and by connecting each injector region corresponding to each collector with a low resistance electric path, it will also be possible to - The aim is to obtain an IC with excellent characteristics by forming it in an aligned manner.

〔発明の実施例〕[Embodiments of the invention]

第11図(a)〜(y)はこの発明の一実施例の構造を
よく理解するためにその製造工程の主要段階における状
態を示す断面図で、第1図(a) = (e)と同等部
分は同一符号で示す。この実施例においても従来例にお
ける第1図(a)および(b)’!、での工程は全く同
様に処理する。その後、窒化膜(202)をデポジショ
ンして、横形pnp )ランジスタのベース領域〔n−
形エピ層(3)]  を除いて窒化B (202)  
と酸化II(103)に窓をあけたのちに、全上面にポ
リシリコン膜(601)をデポジションして低濃度ノホ
ウ素イオンを注入してアニール処理する。このときp一
層(6a) 、 p”形層C7a) 、 (8a) 、
 (9a)が形成される〔第11図(a)〕。次に禦化
膜(203)をデ・1ボジイシヨンしで、コレクタ領域
のポリシリコ膜(611)上とp++H(9a’)の上
からこれにVj4接する分離酸化膜(102)の上にわ
たるポリシリコン!(621)の上およびp++H(7
a)の上からこれに隣接する分離酸化jK(102)の
上にわたるポリシリコン膜(631)の上の窒化膜を残
し、このパターニングされた窒化膜(203>  をマ
スクに選択酸化し、ポリシリコン膜を酸化膜(104)
に完全に変換する〔第11図(b) J0次いて、ポリ
シリコン膜(611)部を窓開けし、ポリシリコン膜(
621)及び(631)部を覆うようにレジスト膜(3
02)でマスクしヒ素イオンを注入シでコレクタ層とな
るべきn +形層 (IOCt P−形*(6a)の表
面部の一部に形成する〔第11図(C)〕。次に、レジ
スト膜(302)  を除去して、アニールを施してn
pn )ランジスタのn+形コレクク層(10a)を完
成するとともに、p−形層(6b)およびp+形Ff#
4(7b)、 (8b)、 (9b)を完成する。
11(a) to (y) are cross-sectional views showing the main stages of the manufacturing process in order to better understand the structure of one embodiment of the present invention, and FIG. 1(a) = (e) and Equivalent parts are indicated by the same symbols. In this embodiment as well, FIGS. 1(a) and (b)' in the conventional example! , are processed in exactly the same way. Thereafter, a nitride film (202) is deposited to form the base region of the lateral pnp transistor (n-
Nitrided B (202) except for epitaxial layer (3)
After opening a window in the oxide II (103), a polysilicon film (601) is deposited on the entire upper surface, low concentration boron ions are implanted, and annealing is performed. At this time, p single layer (6a), p'' type layer C7a), (8a),
(9a) is formed [FIG. 11(a)]. Next, the dielectric film (203) is de-positioned to cover the polysilicon film (611) in the collector region, the p++H (9a'), and the isolation oxide film (102) in Vj4 contact with the polysilicon film (611) in the collector region. (621) and p++H (7
Leaving the nitride film on the polysilicon film (631) extending from above a) to the adjacent isolation oxide jK (102), selective oxidation is performed using this patterned nitride film (203> as a mask) to form polysilicon. Oxide film (104)
[Fig. 11(b) J0] Next, a window is opened in the polysilicon film (611), and the polysilicon film (611) is completely converted to
A resist film (3) is applied to cover the (621) and (631) parts.
02) and implants arsenic ions to form an n+ type layer (IOCt P- type*(6a)) on a part of the surface portion of the collector layer (FIG. 11(C)).Next, The resist film (302) is removed and annealed.
pn) While completing the n+ type collector layer (10a) of the transistor, the p- type layer (6b) and the p+ type Ff#
Complete 4(7b), (8b), and (9b).

その後、酸化膜(104)を全面除去した後、低温酸化
して高濃度にn+層となっているポリシリコンJ]IN
(61i、’)表面に厚くかつシリコン表面およびポリ
シリコン膜(621) 、 (631)表面には薄く酸
化膜を形成する〔第11図(d)〕。次いで前記コレク
タのポリシリコン膜(:611)の側壁の厚い酸化膜(
106)のみ奮残すために、まずコレクタのポリシリコ
ン月u (611)を覆うようにレジスト膜(ao3)
をマスクしてポリシリコン膜(621) 、 (631
)の側壁の酸化膜と基板表面の薄い酸化膜(105)の
一部を除去するし第11図(e)〕。レジスト膜(30
3) の除去後、異方性エツチング(例えばリアクティ
ブ・イオン・エツチング)法で残った薄い酸化膜(10
5)のみを除去してから窒化膜(203)を熱リン酸な
どて全面除去して、その稜に全上面にPt。
After that, after removing the entire oxide film (104), polysilicon J]IN is oxidized at a low temperature and becomes a highly concentrated n+ layer.
A thick oxide film is formed on the (61i,') surface and a thin oxide film is formed on the silicon surface and the polysilicon film (621) and (631) surface [FIG. 11(d)]. Next, a thick oxide film (
106), a resist film (AO3) is first applied to cover the polysilicon U (611) of the collector.
Polysilicon films (621), (631
) and a part of the thin oxide film (105) on the substrate surface are removed (FIG. 11(e)). Resist film (30
3) After removal, the remaining thin oxide film (10
After removing only 5), the entire nitride film (203) is removed using hot phosphoric acid, etc., and Pt is applied to the entire upper surface of the ridge.

Pd 、W、Mo などのシリサイド形成金属膜(図示
せず)を形成しシンタリングを行い金属シリサイド膜(
501)、 (511) 、 (521)をシリコンお
よびポリシリコン表面にのみ形成する〔第11図(f)
〕。
A silicide-forming metal film (not shown) such as Pd, W, or Mo is formed and sintered to form a metal silicide film (not shown).
501), (511), and (521) are formed only on the silicon and polysilicon surfaces [Fig. 11(f)
].

次に、例えば王水によって金属膜のみを除去し、その上
にパッシベーションLN(401)(例えばリンガラス
膜やプラズマ窒化膜など)をデポジションした後、所要
のレジストマスク(図示せず)を用いてコンタクト用の
窓明けを行う。
Next, only the metal film is removed using, for example, aqua regia, and a passivation LN (401) (for example, a phosphorus glass film or a plasma nitride film) is deposited thereon, and then a required resist mask (not shown) is used to A window for contact will be opened.

その後にAt、Auなとの低抵抗金属で、従来と同様、
接続配線(13)を形成して、 この実施例は完成する
し第11図(7)〕。この時の平面パターン図を第12
図に示す。
After that, using low resistance metals such as At and Au, as before,
This embodiment is completed by forming the connection wiring (13), as shown in FIG. 11 (7). The plane pattern diagram at this time is the 12th
As shown in the figure.

さて、この実施例の第1の利点は、コレクタ(アウトプ
ット)電極とベース(インプット)電極との距離Dc−
Bがほぼ無視できるほど小さいことである。すなわち、
従来装置ではAt配線の幅が当該電極のコンタクト部の
幅よシもはみ出しているので、上記距rLaD C−B
は配線幅で制約を受けて小さくできなかった。この実施
例では低抵抗のポリシリコン膜(621)と金属シリサ
イド膜(521)とを利用してベース電極配線を分離酸
化膜(102)の上へ追い出したので、従来装置におけ
るような制約はなくなり、第12図に示したように、ポ
リシリコン膜(621)に金属シリサイド膜(521)
でつながった金属シソサイドJl(501)の端部は酸
化膜(106)の端部と接してお9、この酸化膜(10
6)の残る幅が実質的に上記り。−6となるので、その
値は無視できるほど小さくできる。
Now, the first advantage of this embodiment is that the distance Dc- between the collector (output) electrode and the base (input) electrode is
B is so small that it can be almost ignored. That is,
In the conventional device, the width of the At wiring extends beyond the width of the contact part of the electrode, so the above distance rLaD C-B
could not be made smaller due to restrictions on wiring width. In this example, the base electrode wiring is pushed out onto the isolation oxide film (102) by using a low resistance polysilicon film (621) and a metal silicide film (521), so there are no restrictions like in the conventional device. , as shown in FIG. 12, a metal silicide film (521) is formed on a polysilicon film (621).
The end of the metal sisoside Jl (501) connected with the oxide film (106) is in contact with the end of the oxide film (106).
The remaining width of 6) is substantially the same as above. -6, so the value can be made negligibly small.

第13図はこの発明の構造になる出力を有するxo、?
−トの一例を示す平面図である。図から判るように、n
pnトランジスタの各コレクタについて、ベース電極(
12)を金属シリサイド膜(521)で低抵抗化された
ポリシリコンIQ(621)で、電流源であるpnp 
)ランジスタのコレクタに連結されており、各インジェ
クタも同様にポリシリコン膜(631)  上のシリサ
イド膜で電極(11)に接続されていて、各コレクタ間
に電気的差異はなくなり、第2表に示すように特性も同
一となる。
FIG. 13 shows xo, ? which has the output of the structure of this invention.
- FIG. As can be seen from the figure, n
For each collector of the pn transistor, the base electrode (
12) is a polysilicon IQ (621) whose resistance has been lowered by a metal silicide film (521), and the current source is a pnp
) is connected to the collector of the transistor, and each injector is similarly connected to the electrode (11) through a silicide film on the polysilicon film (631), and there is no electrical difference between the collectors, as shown in Table 2. As shown, the characteristics are also the same.

更に、ベース電極配線が非活性領域上のポリシリコン膜
(621)とその上の金属シリサイド膜(521)とに
よっているので、従来構造では必須であったゲート間配
m (21) 、 (22)の直下のベース拡散層(6
b) 、 (8b)、 (9b) カ不用、!: ;’
j L ベース面積S8 自体が小さくなシコレクタ面
M S c  との比S C/’S Bが大きく、従っ
て電流増幅率βUも大きくなる。また第10図で説明し
たインジェクターコレクターベース配置にできるので、
ゲート動作速度を速くできる。
Furthermore, since the base electrode wiring consists of the polysilicon film (621) on the non-active region and the metal silicide film (521) thereon, the gate spacing m (21), (22), which was essential in the conventional structure, is The base diffusion layer (6
b), (8b), (9b) No need for power! : ;'
j L The base area S8 itself has a large ratio S C/'S B to the collector surface M S c which is small, and therefore the current amplification factor βU also becomes large. Also, since the injector collector base arrangement explained in Fig. 10 can be done,
Gate operation speed can be increased.

第2表 なお、上記実施例では選択酸化を使用したゲート分離方
式について述べたが、その他の通常のゲート分離方式や
高不純物濃度領域によるカラー分離方式についてもこの
発明は適用でき、甘た、ベース層をグラフト構造の場合
について説明したが、埋込みベース構造についてもこの
発明は適用できる。
Table 2 Although the above embodiment describes a gate isolation method using selective oxidation, this invention can also be applied to other ordinary gate isolation methods and color separation methods using high impurity concentration regions. Although the case where the layer has a graft structure has been described, the present invention can also be applied to a buried base structure.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように、この発明ではコレクタに対して
セルファライン的にベース電極を形成してコレクタ・ベ
ース間隔を非常に小さくシ、かつ各コレ、ククに対応す
る各ベース領域ケ金ハシリサイド膜を重ねたポリシリコ
ン膜で構成された低抵抗導体で定電流源回路素子へ接続
するとともに、各インジェクタも同様の低抵抗導体で接
続するようにしたので、各コレクタの位置とベース端子
との距離に差異があっても特性は均一化ぜれすぐれた論
理ゲートICが得られる。更に上述の構成にしたのでイ
ンジェクターコレクターベース配置が実現でき動作速度
を速くすることができる。
As described in detail above, in this invention, the base electrode is formed in a self-line manner with respect to the collector, and the collector-base distance is made very small. We connected the constant current source circuit element to the constant current source circuit element using a low resistance conductor made of polysilicon film, and also connected each injector using the same low resistance conductor, so the position of each collector and the base terminal were Even if there is a difference in distance, the characteristics are made uniform, and an excellent logic gate IC can be obtained. Furthermore, with the above configuration, an injector collector base arrangement can be realized and the operating speed can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は従来のエエL−ICの製造主要
工程における状態を示す断面図、第2図はこの従来のI
IL−ICの平面図、第3図おノ、び第4図は3つのコ
レクタCB 、C2、C3を有する従来のIILゲート
のコレクタ′亀流Ic と電流増幅率りとの関係および
消費電力Pdとゲート伝播遅延時間tpd  との関係
をそれぞれ示す図、第5図は電流増幅率βU と最小遅
延時間jpchninとの関係を示す図、第6図はコレ
クタとベース電極との距離Do、と最小遅延時間tpd
との関係を示す図、147図はコレクターベース面坑比
S。/ S rlと電流増幅率βUとの間作を示す図、
第8図は各端子の関係位置によって最小遅延時間t、p
dmi。が異なることを示す図、第9図はインジェクタ
ーベース−コレクタの配置の場合の構成とその動作を説
明するための模式断面図、1第10図はインジェクター
コレクターベース配置の場合の構成とその動作を説明す
るための模式断面図、第11図(a)〜(2)はこの発
明の一実施例を製造する主要段階における状態を示す断
面図、第12図は第11図(P)での平面図、813図
はこの実施例の平面図である。 (6b)・・・・ベース層、(8b)、(9b)  ・
・・・ベース取出し層、(10a)・・・・ コレクタ
層、(11)・・・・インジェクタ端子、(12)・・
・・ベース端子(電枦配線)、(13) 、 (14)
、(15)・・・・コレクタ端子(事後配線)、(21
)、(22)・・・・論理ゲート回路装置相互間配線、
(501)、(,511)、 (521)、 (531
)・争・・金属シリサイド膜、(601)、 (611
)、  (621)、 (631)  ・・・ ・ ポ
リシリコン膜。 なお、図中同一符号は同一または相当部分を示す。 代理人  葛 野 信 − 第1図 第1図 第2図 b 第8図 Dc−e (Pm) 第11図 第11図 第11図 第12図 手 イJこ 柚 正 狽 (自発) 昭和1)■年:、’  +14 +三(’i、l゛許庁
長官IX☆ 1 事件の表示    特願昭 57−195442号
25と明の名(る、 半導体集積回路装置の製造方法 3.1山正を1−ると 名 称(601)   三菱電機株式会社代表者片山仁
八部 4、代理人 5、補正の対象 明細書の発明の詳細な説明の(閘 6、補正の内容 (1)  明細膚第15頁第3〜5行の「のみ形成する
・・・・その上に」を次の通り補正する。 [のみ形成してから、例えば王水によって金属膜のみを
除去する〔第11図(f)〕。次に、その上に」 (21同、書同頁第19行の「低抵抗の」を削除する。 以  上
Figures 1 (a) to (e) are cross-sectional views showing the main steps in the manufacturing process of a conventional AI L-IC, and Figure 2 is a cross-sectional view of the conventional I
The plan view of the IL-IC, Figures 3 and 4, show the relationship between the collector current Ic and the current amplification factor, and the power consumption Pd, of a conventional IIL gate having three collectors CB, C2, and C3. Figure 5 is a diagram showing the relationship between current amplification factor βU and minimum delay time jpchnin, and Figure 6 is a diagram showing the relationship between collector and base electrode distance Do and minimum delay time. time tpd
Figure 147 shows the relationship between the collector base surface well ratio S. A diagram showing intercropping between / S rl and current amplification factor βU,
Figure 8 shows the minimum delay time t, p depending on the relative position of each terminal.
dmi. Figure 9 is a schematic sectional view to explain the configuration and operation in the case of an injector base-collector arrangement, 1 Figure 10 is a diagram showing the configuration and operation in the case of the injector collector base arrangement. Schematic sectional views for explanation; FIGS. 11(a) to (2) are sectional views showing states at main stages of manufacturing an embodiment of the present invention; FIG. 12 is a plane view in FIG. 11(P). Figure 813 is a plan view of this embodiment. (6b)...Base layer, (8b), (9b) ・
... Base extraction layer, (10a) ... Collector layer, (11) ... Injector terminal, (12) ...
...Base terminal (electrical wiring), (13), (14)
, (15)... Collector terminal (post wiring), (21
), (22)...Inter-wiring between logic gate circuit devices,
(501), (,511), (521), (531
)・Contest・Metal silicide film, (601), (611
), (621), (631) ... ・Polysilicon film. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Fig. 1 Fig. 1 Fig. 2 b Fig. 8 Dc-e (Pm) Fig. 11 Fig. 11 Fig. 12 Fig. 11 ■Year:,' +14 +3('i,l゛Licensing Agency IX☆ 1 Case description Patent Application No. 57-195442 25 and Ming's name (Ru, Method of Manufacturing Semiconductor Integrated Circuit Devices 3.1 Yamamasa) 1- and name (601) Mitsubishi Electric Co., Ltd. Representative Hitoshi Katayama 4, Agent 5, Detailed explanation of the invention in the specification subject to amendment (6, Contents of amendment (1) Specification In lines 3 to 5 of page 15, ``Only form...on top'' is corrected as follows: [After forming only, remove only the metal film with, for example, aqua regia [Figure 11 ( f)]. Then, on top of it” (21, same page, line 19, “low resistance” is deleted.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基体内の分離領域で他の部分と分離された
部分に形成され、ベースを入力端子とし複数のコレクタ
をそれぞれ出力端子とするトランジスタと、このトラン
ジスタの前記ベースへ定箱、流を供給する定電流回路素
子とからなる論理ゲート回路装置を有するものにおいて
、半導体基体の表面部に分離領域に囲まれエミッタ領域
を構成すべき第1伝導形層を形成する第1の工程、この
第1伝−樽形層内に第2伝導形のベース層および定電流
回路素子のエミツタ層とを形成する第2の工程、前記エ
ミツタ層の第1伝導形の定電流回路素子のペース八4表
面を少なくとも覆うように酸化膜と窒化膜とからなる二
層膜を形成する第3の工程、前記二層膜、半導体基体表
面及び分離領域にわたって第2伝導形のシリコン膜を形
成する第4の工程、コレクタ領域となる部分、ベース電
極となる部分および定電流回路素子のエミッタ電極とな
る部分に相当する前記シリコン膜表面上にのみ窒化膜を
形成する第5の工程、前記窒化膜をマスクにシリコン膜
を選択的にかつその部分では完全に酸化膜に変換する第
6の工程、前記ベース及び定電流回路素子のエミッタ電
極部のシリコン膜を覆うようにして前記変換された酸化
膜をマスクとして第1伝導形不純物を前記コレクタ領域
のシリコン膜に導入し、さらに該シリコン膜から前記ベ
ース領域内にコレクタとなる第1伝導形層を形成する第
7の工程、前記変換された酸化膜を除去する第8の工程
、低温酸化によって前記第1伝導形不純物の入ったコレ
クタ部のシリコン膜側壁に半導体基体表面と前記ベース
および定電流回路素子のエミッタ電極となるシリコン膜
表面に形成される酸化膜に比らべ厚い酸化膜を形成する
第9の工程、前記ベース及び定電流回路素子のエミッタ
電極となるシリコン膜表面に形成された酸化膜を選択的
に除去する第10の工程、異方性エツチングによって前
記コレクタのシリコン膜側壁の酸化膜を除いて基板表面
の薄い酸化膜を除去する第11の工程、前記窒化膜を全
面除去する第12の工程、前記シリコン膜及び基板シリ
コン表面に金属シリサイドを形成する第13の工程、パ
ッシベーション膜を形成した後電極配線のための窓開け
を行う第14の工程、低抵抗金属配線を行う第15の工
程を備えたことを特徴とする半導体集積回路装置の製造
方法。
(1) A transistor that is formed in a separated region in a semiconductor substrate and is separated from other parts, and has a base as an input terminal and a plurality of collectors as output terminals, and a fixed box and current to the base of this transistor. In a device having a logic gate circuit device comprising a constant current circuit element to be supplied, a first step of forming a first conductivity type layer surrounded by an isolation region and constituting an emitter region on the surface of a semiconductor substrate; 1. A second step of forming a base layer of a second conductivity type and an emitter layer of a constant current circuit element in the barrel-shaped layer; a third step of forming a two-layer film consisting of an oxide film and a nitride film so as to at least cover the semiconductor substrate; a fourth step of forming a silicon film of the second conductivity type over the two-layer film, the semiconductor substrate surface, and the isolation region; a fifth step of forming a nitride film only on the surface of the silicon film corresponding to a portion that will become a collector region, a portion that will become a base electrode, and a portion that will become an emitter electrode of a constant current circuit element; a sixth step of converting the film selectively and completely into an oxide film in that part; a seventh step of introducing a first conductivity type impurity into the silicon film in the collector region and further forming a first conductivity type layer serving as a collector in the base region from the silicon film; and removing the converted oxide film. Eighth step, an oxide film formed on the side wall of the silicon film of the collector portion containing the first conductivity type impurity by low temperature oxidation on the semiconductor substrate surface and the base and the silicon film surface that will become the emitter electrode of the constant current circuit element. a ninth step of forming a relatively thick oxide film; a tenth step of selectively removing the oxide film formed on the surface of the silicon film that will become the base and emitter electrode of the constant current circuit element; anisotropic etching; an eleventh step of removing a thin oxide film on the substrate surface except for an oxide film on the side wall of the silicon film of the collector; a twelfth step of removing the entire nitride film; and a metal silicide on the silicon film and the substrate silicon surface. A semiconductor integrated circuit device comprising a thirteenth step of forming a passivation film, a fourteenth step of opening a window for electrode wiring after forming a passivation film, and a fifteenth step of forming a low resistance metal wiring. Production method.
(2)シリコン膜に多結晶シリコン膜を用いることを特
徴とする特許請求の範囲第1項記載の半導体集積回路装
置の製造方法。
(2) A method for manufacturing a semiconductor integrated circuit device according to claim 1, characterized in that a polycrystalline silicon film is used as the silicon film.
JP57195442A 1982-11-06 1982-11-06 Manufacture of semiconductor integrated circuit device Granted JPS5984464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195442A JPS5984464A (en) 1982-11-06 1982-11-06 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195442A JPS5984464A (en) 1982-11-06 1982-11-06 Manufacture of semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5984464A true JPS5984464A (en) 1984-05-16
JPS6248388B2 JPS6248388B2 (en) 1987-10-13

Family

ID=16341128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195442A Granted JPS5984464A (en) 1982-11-06 1982-11-06 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5984464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774634A (en) * 1986-01-21 1988-09-27 Key Tronic Corporation Printed circuit board assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430590U (en) * 1990-07-03 1992-03-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4774634A (en) * 1986-01-21 1988-09-27 Key Tronic Corporation Printed circuit board assembly

Also Published As

Publication number Publication date
JPS6248388B2 (en) 1987-10-13

Similar Documents

Publication Publication Date Title
US5017503A (en) Process for making a bipolar transistor including selective oxidation
US5065208A (en) Integrated bipolar and CMOS transistor with titanium nitride interconnections
US4115797A (en) Integrated injection logic with heavily doped injector base self-aligned with injector emitter and collector
US4418468A (en) Process for fabricating a logic structure utilizing polycrystalline silicon Schottky diodes
US5019523A (en) Process for making polysilicon contacts to IC mesas
JPH02211662A (en) Method of manufacturing bupolar and cmos transistor on common substrate
US4735912A (en) Process of fabricating a semiconductor IC device
JPH0241170B2 (en)
US6596600B1 (en) Integrated injection logic semiconductor device and method of fabricating the same
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
US4584594A (en) Logic structure utilizing polycrystalline silicon Schottky diodes
JPH0645537A (en) Manufacture of integrated circuit
US5430317A (en) Semiconductor device
JP2592414B2 (en) Method of manufacturing bipolar transistor structure
JPS60163452A (en) Integrated circuit with bipolar device and field effect device and method of producing same
JPS5984464A (en) Manufacture of semiconductor integrated circuit device
JP2697631B2 (en) Method for manufacturing semiconductor device
JPS5989458A (en) Manufacture of semiconductor device
JPH0473300B2 (en)
JPS6158981B2 (en)
KR100206579B1 (en) Semiconductor device and manufacture thereof
JPS63187660A (en) Semiconductor integrated circuit device and manufacture thereof
JP3333863B2 (en) Manufacturing method of bipolar transistor
JPS6174363A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0575033A (en) Semiconductor integrated circuit device and manufacture thereof