JPS6032974B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS6032974B2
JPS6032974B2 JP2797877A JP2797877A JPS6032974B2 JP S6032974 B2 JPS6032974 B2 JP S6032974B2 JP 2797877 A JP2797877 A JP 2797877A JP 2797877 A JP2797877 A JP 2797877A JP S6032974 B2 JPS6032974 B2 JP S6032974B2
Authority
JP
Japan
Prior art keywords
film
heat treatment
impurities
silicon oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2797877A
Other languages
Japanese (ja)
Other versions
JPS53114355A (en
Inventor
雄二 谷田
哲一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2797877A priority Critical patent/JPS6032974B2/en
Publication of JPS53114355A publication Critical patent/JPS53114355A/en
Publication of JPS6032974B2 publication Critical patent/JPS6032974B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment

Description

【発明の詳細な説明】 ○} 発明の利用分野 本発明は、半導体装置の製造方法に関するものである。[Detailed description of the invention] ○}Field of application of the invention The present invention relates to a method for manufacturing a semiconductor device.

‘2} 従来技術半導体集積回路の集積度は年々高くな
っており、それと共に配線の幅はますます細くなってい
る。
'2} Conventional technology The degree of integration of semiconductor integrated circuits is increasing year by year, and the width of interconnections is becoming narrower and narrower.

従来の配線方法としては、半導体基体中の拡散層による
ものの他、酸化珪素膜などの絶縁膜により半導体本体と
隔てて配線された多結晶Siや金属膜などが多く用いら
れていた。しかし、上に述べたように配線の幅が小さく
なるに従い、特に金属配線の断線(ひび割れ)などが生
じ不良の原因となることがある。これを防ぐために、こ
れまでSi3N4を用いたSiの選択酸化法であるLO
COS(ISOPLANAR)や、高濃度のP205を
含むPSG膜を用いたグラスフロー(高過熱処理による
PSG膜の流動を利用する)法などが行なわれてきた。
しかしながら、前者のLOCOSだけでは、断面防止の
点からは不十分であり、また後者のグラスフロー法は、
高濃度のPを含むこと、高温(1000℃以上)での熱
処理を必要とすることなどにより、適用範囲が限定され
る。例えば、高濃度のPを含むため吸湿性があり、大気
中の日20とPSG膜中のP24が反応し、日3P04
を生成し山の腐食をもたらす。そのため、パッケージの
改良、パッシベーション膜の改善などが必要とされてき
た。また、高温での熱処理を含むという点では、拡散層
の深さの正確なコントロールが困難となる。あるいは浅
い拡散層を形成することができないなどの問題がある。
そのため、短チャネルMOS−FETを構成単位とする
高集積LSIでは不利であり、また拡散層の厚さの制御
を厳しく要求されるパィポーラ型LSIでは使用できな
い状態であった。たとえば、吸湿性の点から上限と考え
られるP205濃度1肌olのPSG膜では、少なくと
もdryN2中100000で約3び分間の熱処理を必
要とした。この熱処理時間ではPにより形成された拡散
層は、濃度にも依存するが約1仏m程度深くなる。又、
拡散係数の小さい船により形成された拡散層でも0.1
5〃m程度深くなる。{3} 発明の目的 本発明は、このようなPSG膜などの絶縁膜を用いたグ
ラスフロー法による平坦化技術を1000qo以下の低
温で行なうことにより、以上詳述した問題点を解決する
ことを目的としたものである。
As conventional wiring methods, in addition to using a diffusion layer in a semiconductor substrate, polycrystalline Si or metal films, which are separated from the semiconductor body by an insulating film such as a silicon oxide film, are often used. However, as described above, as the width of the wiring becomes smaller, breakage (cracks) in the metal wiring may occur, which may cause defects. In order to prevent this, LO, which is a selective oxidation method of Si using Si3N4, has been used.
COS (ISOPLANAR) and a glass flow method (utilizing the flow of the PSG film due to high superheating treatment) using a PSG film containing a high concentration of P205 have been used.
However, the former LOCOS alone is insufficient in terms of preventing cross sections, and the latter glass flow method
The scope of application is limited because it contains a high concentration of P and requires heat treatment at a high temperature (1000° C. or higher). For example, since it contains a high concentration of P, it has hygroscopic properties, and P24 in the PSG film reacts with P20 in the atmosphere, resulting in the reaction of P24 in the PSG film.
This causes corrosion of the mountain. Therefore, improvements to the package, passivation film, etc. have been required. Furthermore, since heat treatment at high temperatures is involved, it is difficult to accurately control the depth of the diffusion layer. Alternatively, there is a problem that a shallow diffusion layer cannot be formed.
Therefore, it is disadvantageous for highly integrated LSIs having short channel MOS-FETs as constituent units, and cannot be used for bipolar LSIs that require strict control of the thickness of the diffusion layer. For example, a PSG film with a P205 concentration of 1 skin ol, which is considered to be at the upper limit in terms of hygroscopicity, required heat treatment at least at 100,000 in dry N2 for about 3 minutes. At this heat treatment time, the diffusion layer formed by P becomes approximately 1 meter deep, although it depends on the concentration. or,
Even the diffusion layer formed by a ship with a small diffusion coefficient is 0.1
It becomes about 5m deep. {3} Purpose of the Invention The present invention aims to solve the problems described in detail above by performing planarization technology using the glass flow method using an insulating film such as a PSG film at a low temperature of 1000 qo or less. This is the purpose.

‘4)発明の総括説明配線金属の段切れを防止するため
に、例えばPSG膜などの不純物を含む酸化珪素膜を用
いて高温で熱処理することはこれまでよく行なわれてき
ており、その不純物として、燐、剛素、砥素、鉛、亜鉛
、硫化柾ヒ素、およびハロゲン化物などがよく知られて
いる。
'4) General description of the invention In order to prevent metal wiring from breaking, it has been common practice to heat-treat a silicon oxide film containing impurities, such as a PSG film, at high temperatures. Well-known examples include phosphorus, rigidity, arsenic, lead, zinc, arsenic sulfide, and halides.

しかしこれらの不純物だけでは1000oo以下の低温
で熱処理を行ない平坦化できるものは少ない。本発明は
、これらの不純物を含むガラス (Si02)にさらに他の不純物を含ませることによっ
て、軟化温度を低下することを目的としたものである。
However, with only these impurities, there are few things that can be flattened by heat treatment at a low temperature of 1000 ohms or less. The present invention aims to lower the softening temperature by further including other impurities in the glass (Si02) containing these impurities.

前記元素は軟化点を下げる物質としてよく知られている
が、半導体デバイスを構成する場合、特性上好ましくな
いと思われるものが多い。ところで蛇は、第4族に属し
ており、Si中に入ってもドナーあるいはアクセブタ準
位を形成しない点に着目し、検討を行なった。その結果
、Sj02中に含まれる元素が戊だけあるいは鉛をのぞ
いた前記不純物のみでは軟化点を1000q0以下にす
ることは困難であるが、Geおよび前記不純物の少なく
とも一種を含むことにより、Si02膜は、10000
0以下の軟化点をもつことがわかった。すなわち、本発
明においては、Si02にGeと他の不純物の少なくと
も一種を含ませたものを堆積したのち、グラスフローを
行なうことにより、上記目的を達成することを特徴とす
る。これらにより半導体装置製造上の余裕度が増し、種
々の可能性を与えることができる。(5} 実施例 まず、第1図及び第2図に、1000oodryN2中
20分の熱処理に対して、穣部がなめらかになる効果を
従釆法と本発明の一例(GドーブPSC)による場合に
ついて示したものであり、従来法に比べ、本発明による
方法の効果が分かる。
Although the above-mentioned elements are well known as substances that lower the softening point, many of them are considered to be undesirable in terms of characteristics when constituting a semiconductor device. Incidentally, the study focused on the fact that Snake belongs to Group 4 and does not form a donor or acceptor level even if it enters Si. As a result, it is difficult to reduce the softening point to 1000q0 or less if the element contained in Sj02 is only 戊 or only the above-mentioned impurities except lead, but by containing Ge and at least one of the above-mentioned impurities, the Si02 film , 10000
It was found that it has a softening point of 0 or less. That is, the present invention is characterized in that the above object is achieved by depositing Si02 containing at least one of Ge and other impurities and then performing glass flow. These increase the latitude in manufacturing semiconductor devices and provide various possibilities. (5) Example First, Fig. 1 and Fig. 2 show the effect of smoothing the grain after heat treatment in 1000 oodryN2 for 20 minutes using the conventional method and an example of the present invention (G-dove PSC). This shows the effectiveness of the method according to the present invention compared to the conventional method.

第3図及び第4図は、低温での効果を明確にするために
示したもので、850qodryN2中20分の熱処理
に対する効果を、従釆法と本発明(QドープPSG)に
よる方法とに対して示したものである。従釆法では、ほ
とんど穣部の変形はみられないが、本発明を用いれば、
従来法による場合のlooぴodryN2中20分の熱
処理以上の効果があり、綾部がなめらかに変形している
ことがわかる。第5図は2山mゲート長の短チャネルF
ETを基調とする、MOS型集積回路に本発明を応用し
た例を示したものである。
Figures 3 and 4 are shown to clarify the effects at low temperatures, and show the effects of heat treatment in 850qodryN2 for 20 minutes for the conventional method and the method according to the present invention (Q-doped PSG). This is what is shown. With the subordinate method, there is almost no deformation of the grain, but with the present invention,
It can be seen that the twill portion was deformed smoothly, which was more effective than the 20 minute heat treatment in Loop Dry N2 in the case of the conventional method. Figure 5 shows a short channel F with a double peak gate length of m.
This figure shows an example in which the present invention is applied to a MOS type integrated circuit based on ET.

抵抗率100一肌、P型Sillに所定の素子間分離用
Si02膜12及びゲートSi02膜13を形成したの
ち、多結晶Sjゲート14の自己整合方式によりソース
及びドレィン拡散層15を形成した。
After forming a predetermined Si02 film 12 for element isolation and a gate Si02 film 13 on a P-type Sill with a resistivity of 100, source and drain diffusion layers 15 were formed using a self-alignment method of a polycrystalline Sj gate 14.

その後、Si02に対してP20517mol%、蛇0
2ご2比hol%となるようにN2をベースとし、Si
H4ガス、PH3ガスおよびQH4ガスを02ガスと混
合してウェハ温度480ooで気相成長法によりW及び
PをドーピングしたSi02膜16を形成した。この後
、dryN2中85000、10分の熱処理を行なって
、Si02膜1 6の穣部をなだらかに変形させたのち
、所定のホトマスクを用いて、光食刻技術によりソース
、ドレィン、及びゲートとの電気的接続をとるためのコ
ンタクト孔を形成し、さらに、この褒めryN2中85
000、5分の熱処理を行ない、コンタクト孔部の肩を
なだらかに変形させたのち、Nの配線17を行なった。
以上の工程において、ソース及びドレィンの拡散層形成
のための不純物として、Pを用いても0.3仏mの拡散
深さxiの形成が可能であった。
After that, P20517 mol% to Si02, Snake 0
N2 is used as a base, and Si is
A Si02 film 16 doped with W and P was formed by mixing H4 gas, PH3 gas, and QH4 gas with O2 gas and using a vapor phase growth method at a wafer temperature of 480 oo. After that, heat treatment was performed in dry N2 at 85,000°C for 10 minutes to gently deform the edge of the Si02 film 16, and then the source, drain, and gate were formed by photolithography using a predetermined photomask. A contact hole for electrical connection is formed, and further, 85
After heat treatment was performed for 5 minutes to gently deform the shoulder of the contact hole, N wiring 17 was formed.
In the above steps, even when P was used as an impurity for forming source and drain diffusion layers, it was possible to form a diffusion depth xi of 0.3 mm.

また、他の製作工程では、8500010分熱処理→コ
ンタクト孔ホトェッチ→850℃5分熱処理のプロセス
工程を、コンタクト孔ホトェツチ→850q010分熱
処理のプロセスに変更したが特に問題はなかった。また
、コンタクト孔の加工精度は、Q,PをドーブしたSj
02膜が、PドープSj02膜に比べ、エッチング速度
が遅くなるため、従来のGeを含まない場合に比べ向上
した。
In addition, in other manufacturing steps, the process step of 8500010 minutes heat treatment → contact hole photo-etch → 850° C. 5 minutes heat treatment was changed to contact hole photo-etch → 850q010 minutes heat treatment, but there was no particular problem. In addition, the processing accuracy of the contact hole is Sj doped with Q and P.
Since the etching rate of the 02 film was slower than that of the P-doped Sj02 film, it was improved compared to the conventional case not containing Ge.

また、蛇ドーブPSGのかわりにWドープ聡Gを用いた
結果も良好であり、特に問題はなかった。ここでは、S
iゲートMOSプロセスへの適用について説明したが、
本発明は、本実施例に限らず、800qo程度の熱処理
によって、悪影響を受けないものはすべて応用可能であ
り、従来の平坦化処理(グラスフロー)に比べ応用範囲
が広くなった。
Further, the results obtained by using W-doped Satoshi G instead of snake-doped PSG were also good, and there were no particular problems. Here, S
Although the application to the i-gate MOS process was explained,
The present invention is not limited to this embodiment, but can be applied to any material that is not adversely affected by heat treatment of about 800 qo, and has a wider range of applications than conventional flattening treatment (glass flow).

第6図は、MOS型集積回路の素子間分離に本技術を応
用した例である。
FIG. 6 is an example in which the present technology is applied to isolation between elements of a MOS type integrated circuit.

抵抗率100肌、P型Si21表面に窒化膜22(窒化
膜に限らず通常絶縁膜はすべて応用可能)を約15仇m
形成し、ホトェッチングにより、所定の部分のみ残して
他の部分の窒化膜を除去した。
Approximately 15 m thick of nitride film 22 (not limited to nitride film, all normal insulating films can be applied) on the surface of P-type Si 21 with a resistivity of 100.
The nitride film was formed and then photoetched to leave only a predetermined portion and remove the nitride film from other portions.

さらに、これをマスクとしてSj基板を約1ムmの深さ
に選択的に食刻除去した。この後、酸化を行ない食刻除
去された後のSi表面には約10仇mのSi02膜23
を形成した。この後、Si02に対して、B2Qご7m
ol%、Ce02ご2比hol%となるように、先の例
と同様な方法で&及びPをドーブしたSi02膜24を
1.5仏m形成した(同図ィ)。この後dryN2中1
000oC30分の熱処理を行ない充分流動させSi0
2膜24′とした(同図ロ)のち、全面均一エッチング
を行ない蛇ドーブBSG膜の埋め込み層24″を形成し
た(同図ハ)。この埋め込み層24″形成後は、通常の
工程を行ないMOS型集積回路を製造した。本法によれ
ば素子間分離がさらに平坦な絶縁膜により形成できる。
又、この実施例中位ドープ斑Gの熱処理を行なう際、B
の濃度、熱処理温度下地酸化膜厚などを適当に選ぶこと
により、埋め込み層を形成すると同時に、Sj中へのB
の拡散を行なうことも可能であり、フィールド部へのイ
オン打込工程、さらにはチャネル領域へのイオン打込工
程を省略することができる。
Furthermore, using this as a mask, the Sj substrate was selectively etched to a depth of about 1 mm. After this, approximately 10 m of Si02 film 23 is formed on the Si surface after oxidation and etching removal.
was formed. After this, for Si02, B2Q 7m
A Si02 film 24 doped with & and P was formed in a thickness of 1.5 m by the same method as in the previous example so that the Ce02 ratio was hol% (FIG. 1). After this, dryN2 middle school 1
Heat treatment at 000oC for 30 minutes to sufficiently fluidize Si0
After forming two films 24' (FIG. 2B), the entire surface was uniformly etched to form a buried layer 24'' of the snake-doped BSG film (FIG. 2C). After forming this buried layer 24'', normal processes were performed. A MOS type integrated circuit was manufactured. According to this method, isolation between elements can be formed using a more flat insulating film.
In addition, when heat-treating the moderately doped spots G in this example, B
By appropriately selecting the concentration of B, heat treatment temperature, base oxide film thickness, etc., a buried layer can be formed and at the same time B can be infiltrated into the Sj.
It is also possible to perform diffusion, and the ion implantation process into the field part and further the ion implantation process into the channel region can be omitted.

なお、以上の実施例においては、CeとともにSi02
に含有させる他の不純物としてPとBを例示したが、そ
の他、As,Pb,Znなど不純物元素、又硫化枇素や
ハロゲン化物などの不純物、及び以上述べた不純物を2
種以上Si02に含有させても同様な効果があった。
In addition, in the above embodiment, Si02 as well as Ce
Although P and B are exemplified as other impurities to be included in the 2. In addition, impurity elements such as As, Pb, and Zn, impurities such as phosphorus sulfide and halides, and the above-mentioned impurities are also included.
A similar effect was obtained even when more than one species was contained in Si02.

■まとめ 以上説明したごと〈本発明によれば、低温(10000
0以下)のグラスフロー処理が可能となり、MOS型集
積回路にとどまらず、バイポーラ型集積回路での使用も
可能となる。
■Summary As explained above, according to the present invention, low temperature (10,000
0 or less) becomes possible, and it becomes possible to use it not only in MOS type integrated circuits but also in bipolar type integrated circuits.

また、グラスフローで従来問題となっていた信頼性(山
の腐食)についても、P等の他の不純物の濃度を減少さ
せることができるため、改善できる。
Furthermore, reliability (corrosion of mountains), which has traditionally been a problem with glass flow, can also be improved because the concentration of other impurities such as P can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、1000q○のグラスフローにおけ
る従来法と本発明を用いた場合の効果を示す基本的断面
図、第3図及び第4図は、850℃のグラスフローにお
ける上と同様の断面図、第5図及び第6図は、MOS−
FET製造に本発明を応用した場合の説明図である。 多’図 努之図 第3図 多々図 象夕風 多ク図
Figures 1 and 2 are basic cross-sectional views showing the effects of the conventional method and the present invention in a glass flow of 1000q○, and Figures 3 and 4 are cross-sectional views of the upper and lower glass flows in a glass flow of 850°C. Similar cross-sectional views, FIGS. 5 and 6, show MOS-
It is an explanatory view when the present invention is applied to FET manufacturing. Ta'zu Tsutomu no zu Figure 3 Many elephants Evening wind Taku

Claims (1)

【特許請求の範囲】 1 半導体基板上に窒化膜を設ける工程、 該窒化膜を
ホトエツチングにより所望形状に形成する工程、 該窒
化膜をマスクとして上記半導体基板を約1μmの深さま
で食刻する工程、 上記食刻後は半導体基板表面に約1
00nmのシリコン酸化膜を形成する工程、 B_2O
_5を約7mol%、GeO_2を約20mol%含ん
だシリコン酸化膜を気相成長法により約1.5μm厚に
形成する工程。 約1000℃で熱処理し、上記不純物を含んだシリコ
ン酸化膜を平坦化する工程、 全面エツチングを行い、
上記窒化膜が露出するまで上記不純物を含んだシリコン
酸化膜を除去する工程、 を含むことを特徴とする半導
体装置の製造方法。
[Claims] 1. A step of providing a nitride film on a semiconductor substrate. A step of forming the nitride film into a desired shape by photo-etching. A step of etching the semiconductor substrate to a depth of about 1 μm using the nitride film as a mask. After the above etching, approximately 1
Step of forming 00nm silicon oxide film, B_2O
A step of forming a silicon oxide film containing about 7 mol% of _5 and about 20 mol% of GeO_2 to a thickness of about 1.5 μm by vapor phase growth. Heat treatment is performed at approximately 1000°C to planarize the silicon oxide film containing the impurities, and the entire surface is etched.
A method for manufacturing a semiconductor device, comprising: removing the silicon oxide film containing impurities until the nitride film is exposed.
JP2797877A 1977-03-16 1977-03-16 Manufacturing method of semiconductor device Expired JPS6032974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2797877A JPS6032974B2 (en) 1977-03-16 1977-03-16 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2797877A JPS6032974B2 (en) 1977-03-16 1977-03-16 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS53114355A JPS53114355A (en) 1978-10-05
JPS6032974B2 true JPS6032974B2 (en) 1985-07-31

Family

ID=12235939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2797877A Expired JPS6032974B2 (en) 1977-03-16 1977-03-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6032974B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784147A (en) * 1980-11-13 1982-05-26 Seiko Epson Corp Manufacture of integrated circuit
JPS57128944A (en) * 1981-02-03 1982-08-10 Nec Corp Maufacture of semiconductor device
EP0060205B1 (en) * 1981-03-16 1986-10-15 FAIRCHILD CAMERA & INSTRUMENT CORPORATION Low temperature melting binary glasses for leveling surfaces of integrated circuits containing isolation grooves
US4630343A (en) * 1981-03-16 1986-12-23 Fairchild Camera & Instrument Corp. Product for making isolated semiconductor structure
US4431900A (en) * 1982-01-15 1984-02-14 Fairchild Camera & Instrument Corporation Laser induced flow Ge-O based materials
GB8401250D0 (en) * 1984-01-18 1984-02-22 British Telecomm Semiconductor fabrication

Also Published As

Publication number Publication date
JPS53114355A (en) 1978-10-05

Similar Documents

Publication Publication Date Title
KR910007097B1 (en) Manufacturing method of semiconductor device
JPS6242385B2 (en)
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
US4046606A (en) Simultaneous location of areas having different conductivities
JPS6032974B2 (en) Manufacturing method of semiconductor device
GB2044533A (en) A semiconductor device and method of manufacturing same
JP3077760B2 (en) Solid phase diffusion method
JPS6115595B2 (en)
JPS6310896B2 (en)
JP2968548B2 (en) Semiconductor device and manufacturing method thereof
JPS643070B2 (en)
JPH0481327B2 (en)
JP2888461B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JP3432307B2 (en) Method for manufacturing semiconductor device
JPS59222939A (en) Semiconductor device
JPS60133740A (en) Manufacture of semiconductor device
JPH07283323A (en) Manufacture of semiconductor device
JPS596559A (en) Semiconductor device
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPS61147550A (en) Manufacture of semiconductor device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPS61251041A (en) Semiconductor device
JPH01212469A (en) Manufacture of semiconductor device
JPS60193330A (en) Method for diffusing impurities into semiconductor
JPH0274042A (en) Manufacture of mis transistor