JPS60193330A - Method for diffusing impurities into semiconductor - Google Patents

Method for diffusing impurities into semiconductor

Info

Publication number
JPS60193330A
JPS60193330A JP4984384A JP4984384A JPS60193330A JP S60193330 A JPS60193330 A JP S60193330A JP 4984384 A JP4984384 A JP 4984384A JP 4984384 A JP4984384 A JP 4984384A JP S60193330 A JPS60193330 A JP S60193330A
Authority
JP
Japan
Prior art keywords
polycrystalline
film
alloy layer
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4984384A
Other languages
Japanese (ja)
Other versions
JPH0656835B2 (en
Inventor
Eiji Nagasawa
長澤 英二
Mitsutaka Morimoto
光孝 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59049843A priority Critical patent/JPH0656835B2/en
Publication of JPS60193330A publication Critical patent/JPS60193330A/en
Publication of JPH0656835B2 publication Critical patent/JPH0656835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a remarkably large and lateral diffused-region on a substrate surface under a thick insulating film, by forming a impurity diffused region on the surface layer of a semiconductor substrate, through a polycrystalline alloy layer having a rapid impurity diffusing rate. CONSTITUTION:After an SiO2 film 101 is coated on a P type Si substrate 100, an opening is bored and an Mo film 102 is deposited on the entire face. Next, Si ions are implanted to form a mixing layer of Mo and Si. The substrate is then heat-treated to produce silicide reaction only in the opening and to leave the Mo film 102 on the film 101 with a non-reacted state. After the non-reacted Mo film 102 is removed using H2O2 etching liquid, the film 101 is removed with HF aqueous solution and an Mo silicide layer 103 is formed on the substrate 100 surface. Thereafter, the entire surface is coated with an SiO2 film 104 which is then heat-treated to make dense and through which an opening is bored with being positioned at the central surface portion of the layer 103. Next, after an SiO2 film 106 is coated on the entire face including the exposed face 105 of the layer 103, an N type diffused region 107 being expanded laterally under the layer 103 can be provided owing to being diffused in POCl3 contained gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造分野において用いられる半導
体への不純物拡散方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for diffusing impurities into a semiconductor used in the field of manufacturing semiconductor devices.

(従来技術とその問題点) 従来から広く使用されている半導体への不純物のドーピ
ング方法としては熱拡散法及びイオン注入法の2つの方
法がある。前者は、半導体表面に拡散マスクを形成し、
不純物を拡散すべき領域に開口金膜けた後、拡散源にI
lfl接接させて不純物を拡散させることによって開口
部の半導体表面に不純物拡#1.領域を形成する方法で
ある。後者は、開口部表面に薄い保W!i膜全形成した
後、不純物全加速してこの薄い膜を貫通させて注入する
ことによって開口部表面に不純物拡散方法を形成する方
法である。
(Prior Art and its Problems) There are two methods for doping impurities into semiconductors that have been widely used in the past: thermal diffusion and ion implantation. The former forms a diffusion mask on the semiconductor surface,
After forming an opening in the gold film in the region where impurities are to be diffused, I
The impurity is diffused on the semiconductor surface of the opening by making it in contact with lfl and diffusing the impurity #1. This is a method of forming regions. The latter has a thin protective layer on the surface of the opening! This is a method of forming an impurity diffusion method on the surface of the opening by fully accelerating the impurity and injecting it through the thin film after the entire i-film is formed.

これらのいずれの方法においても、不純物拡散領域の形
成は殆ど開口部に限定されており、開口部から不純物が
横方向に拡散して拡散マスク下に形成される横方向拡散
領域は極めて小さい。これは、半導体中においては縦方
向と横方向の拡散機構が同一であるためであシ、実質的
な横方向拡散長は1μm程度以下である。従って、不純
物を拡散すべき領域にはを1ぼそれと同じ大きさの開口
を設ける必要がある。このため、従来の集積回路の製造
方法における手順では、まず拡散層を形成した後、該拡
散層と上層に形成されるべき配線層との電気的分離のた
めの層間絶縁膜形成が行われる。
In any of these methods, the formation of the impurity diffusion region is mostly limited to the opening, and the impurity is laterally diffused from the opening, and the lateral diffusion region formed under the diffusion mask is extremely small. This is because the diffusion mechanisms in the vertical and lateral directions are the same in the semiconductor, and the substantial lateral diffusion length is about 1 μm or less. Therefore, it is necessary to provide an opening approximately the same size as the region in which the impurity is to be diffused. Therefore, in the conventional integrated circuit manufacturing method, a diffusion layer is first formed, and then an interlayer insulating film is formed for electrical isolation between the diffusion layer and a wiring layer to be formed overlying the diffusion layer.

例えばMOS )ランジスタの製造では、ソース・ドレ
インとなすべき拡散層を形成した後、リンシリケートガ
ラス層からなる眉間絶縁膜が形成される手順による。
For example, in manufacturing a MOS (MOS) transistor, a diffusion layer to be used as a source/drain is formed, and then a glabellar insulating film made of a phosphosilicate glass layer is formed.

しかしながら、特に高速度・高集積度が要求される高性
能集積回路においては徽細な構造のMOSトランジスタ
が使用されておシ、上記の製造手順に起因して以下に示
す問題点が生じる。すなわち、リンシリケートガラス層
形成後に該ガラス層の緻密化や平坦化のため1000℃
程度の高温熱処理を行う必要があシ、この熱処理時に既
に形成されている拡散層の不純物が拡散し、拡散層深さ
の増加が生じる。この拡散層深さの増加は微細なMOS
トランジスタにおいては致侮的であり、いわゆる短チヤ
ネル効果が強められるばかシでなく、著しい場合には、
ソースとドレインが接続されてしまいトランジスタにな
らないという問題がある。
However, in high-performance integrated circuits that particularly require high speed and high degree of integration, MOS transistors with delicate structures are used, and the following problems arise due to the above manufacturing procedure. That is, after forming the phosphosilicate glass layer, the glass layer was heated at 1000°C for densification and flattening.
It is necessary to perform a heat treatment at a high temperature for a certain amount of time, and during this heat treatment, impurities in the already formed diffusion layer are diffused, resulting in an increase in the depth of the diffusion layer. This increase in the depth of the diffusion layer is due to the fine MOS
In transistors, it is harmful and the so-called short channel effect is strengthened, but in severe cases,
There is a problem in that the source and drain are connected and it does not become a transistor.

さらに、本発明者の詳細な検討では、微細MO8集積回
路用の低抵抗ゲート電極材として有用な高融点金属硅化
物を多結晶合金層あるいは多結晶導電材料として用い、
拡散源としてpoct、及びBCl、を用いて、該硅化
物が拡散雰囲気へ直接さらされる条件で拡散を行った場
合、硅化物表面にあれが生ずるという不都合が起きるこ
とが判明した。通常、MIS)ランジスタにおいては、
ソース及びドレインの表面の一部分に配線用のアルミニ
ウムが接続されているが、前記の硅化物の表面ちれは、
硅化物とアルミニウムが接続する1固所における接合不
良等の信頼性に悪影響を及ぼすことlx明らかとなった
Furthermore, in detailed studies by the present inventor, a high melting point metal silicide, which is useful as a low resistance gate electrode material for micro MO8 integrated circuits, is used as a polycrystalline alloy layer or a polycrystalline conductive material.
It has been found that when diffusion is performed under conditions where the silicide is directly exposed to the diffusion atmosphere using POC and BCl as a diffusion source, a problem arises in that roughness occurs on the surface of the silicide. Usually, in MIS) transistors,
Aluminum for wiring is connected to a part of the surface of the source and drain, but the surface cracks of the silicide are
It has become clear that reliability is adversely affected by poor bonding at one fixed point where silicide and aluminum are connected.

また従来より、浅い拡散層形成にはイオン注入法が用い
られているが、イオン注入後に注入による損傷回復のた
めの高温アニールを行う必袂がめシ、このアニール時に
不純物が深く拡散してしまう問題がある。
In addition, ion implantation has traditionally been used to form shallow diffusion layers, but it requires high-temperature annealing after ion implantation to recover from damage caused by the implantation, and the problem is that impurities diffuse deeply during this annealing. There is.

(発明の目的) 本発明は上記の問題点?Il−解決するためになされた
ものでめシ、その目的は、層間膜の如き厚い絶縁膜等で
被われた半導体表面へも不純物を良好に拡散せしめるこ
とを可能とする新規な不純物拡散法を提供することにあ
る。
(Objective of the invention) Does the present invention solve the above problems? The purpose was to develop a new impurity diffusion method that enables good diffusion of impurities even to the semiconductor surface covered with a thick insulating film such as an interlayer film. It is about providing.

(発明の構成) 本発明によれば半導体基板または半尋体薄膜上に4電薄
膜を形成する工程と、該導電薄膜と前記半導体とが接触
する個所において該導電薄膜と前記半導体との合金化反
応を生せしめて多結晶合金層を形成する工程と、該多結
晶合金層あるいは該多結晶合金層に接続する多結晶導電
材料よシなる配線を被う様に絶縁膜を形成する工程と、
該絶縁膜の所定の領域′t−開口し前記多結晶合金層の
一部あるいは前記多結晶導電材料よシなる配線の一部を
露出させた後、不純物を透過させる性質の絶縁膜を前記
露出部分を被うように形成する工程と、前記開口部より
不純物音拡散させることによシ、当該絶縁膜下の前記多
結晶合金層あるいは前記多結晶4電材料よシなる配線及
び前記多結晶合金層を通して前記多結晶合金層に接する
半導体領域に不純物を拡散する工程とを含むことを特徴
とする半纏体への不純物拡散方法が得られる。
(Structure of the Invention) According to the present invention, there is a step of forming a tetraelectric thin film on a semiconductor substrate or a semiconductive thin film, and alloying the conductive thin film and the semiconductor at a location where the conductive thin film and the semiconductor come into contact. a step of causing a reaction to form a polycrystalline alloy layer; a step of forming an insulating film to cover the polycrystalline alloy layer or a wiring made of a polycrystalline conductive material connected to the polycrystalline alloy layer;
After opening a predetermined region 't of the insulating film to expose a part of the polycrystalline alloy layer or a part of the wiring made of the polycrystalline conductive material, the insulating film having the property of transmitting impurities is exposed. The polycrystalline alloy layer or the wiring made of the polycrystalline 4-electric material under the insulating film and the polycrystalline alloy are formed by forming the polycrystalline alloy layer or the polycrystalline 4-electrode material under the insulating film by forming the polycrystalline alloy layer so as to cover the part and by diffusing impurity sound from the opening. There is obtained a method for diffusing impurities into a semi-integrated body, which comprises the step of diffusing impurities into a semiconductor region in contact with the polycrystalline alloy layer through the layer.

巣に、本発明によれば、半導体基板lたは半導体薄膜上
に一4電薄膜全形成する工程と、該導電薄膜と前記半纏
体とが接触する個所において該導電薄膜と前記半導体と
の合金化反応を生じせしめて多結晶合金層を形成する工
程と、該多結晶付金層あるいは核多結晶合金層に接続す
る多結晶4′i1を材料よりなる配線を被う様に絶縁膜
全形成する工程と、該絶縁膜の所定の領域を開口し前記
多結晶合金層の一部あるいは前記多結晶導電材料よシな
る配線の一部を露出せしめた後、不純物をドープせしめ
た絶縁膜を前記多結晶合金層あるいは前記多結晶導電材
料の露出表面を少くとも被う様に形成し、その後、熱処
理を行うことによって前記多結晶合金層あるいは前記多
結晶導電材料よシなる配線及び前記多結晶合金層kmし
て前記多結晶合金層に接する半導体領域へ不純物を拡散
する工程とを含むことを特徴とする半導体への不純物拡
散方法が得られる。
In addition, according to the present invention, there is a step of completely forming a conductive thin film on a semiconductor substrate or a semiconductor thin film, and an alloy of the conductive thin film and the semiconductor at a place where the conductive thin film and the semi-integrated body come into contact with each other. A process of causing a chemical reaction to form a polycrystalline alloy layer, and forming an insulating film entirely so as to cover the wiring made of the polycrystalline 4'i1 material connected to the polycrystalline gold layer or the core polycrystalline alloy layer. After opening a predetermined region of the insulating film to expose a part of the polycrystalline alloy layer or a part of the wiring made of the polycrystalline conductive material, the insulating film doped with impurities is A wiring made of the polycrystalline alloy layer or the polycrystalline conductive material and the polycrystalline alloy are formed by forming at least the exposed surface of the polycrystalline alloy layer or the polycrystalline conductive material, and then performing heat treatment. There is obtained a method for diffusing impurities into a semiconductor, which comprises the step of diffusing impurities into a semiconductor region in contact with the polycrystalline alloy layer.

(実施例) 次に図?用いて本発明による方法の実施例を説明する。(Example) Next figure? An example of the method according to the invention will be described using the following.

第1図(a) 、 (b) 、 (r:) 、 (d)
は特許請求の範囲第1項の発明の詳細な説明するための
試料断面模式図である。
Figure 1 (a), (b), (r:), (d)
1 is a schematic cross-sectional view of a sample for explaining in detail the invention of claim 1. FIG.

まず第1図(aJに示した様にP型車結晶シリコン基板
100の表面に厚さ100OAの酸化シリコン膜101
を形成し、通常のフォトリングラフィ工程によって一部
に1.朋の大きさの開口を設けた後、スパッタ法によシ
厚さ400Aのモリブデン族102を堆積する。欠如、
Siイオンを100keVで5×10 cm 注入し、
開口部においてモリ1デンとシリコンとの混合層全形成
する。次に、550℃20分間の熱処理を行うと開口部
のみにおいて硅化物反応が生じ、#化シリコン膜101
上のモリブデン膜は未反応で残存する。
First, as shown in FIG.
1. is formed in part by a normal photolithography process. After forming an opening of the same size as that shown in FIG. 1, a molybdenum group 102 having a thickness of 400 Å is deposited by sputtering. lack,
Inject Si ions at 100 keV to a depth of 5 × 10 cm.
A mixed layer of molybdenum and silicon is entirely formed in the opening. Next, when heat treatment is performed at 550°C for 20 minutes, a silicide reaction occurs only in the openings, and the # silicon film 101
The upper molybdenum film remains unreacted.

次に、この未反応なモリブデン膜k HzCh 系エツ
チング液で除去した後、酸化シリコン膜101をHF水
溶液にて除去することによシ、第1図(b)に示した様
に、厚さ約1oooXのモリブデン硅化物層103がシ
リコン基板100の表面に形成される。
Next, after removing this unreacted molybdenum film using a kHz etching solution, the silicon oxide film 101 is removed using an HF aqueous solution, and as shown in FIG. A molybdenum silicide layer 103 of 100X is formed on the surface of the silicon substrate 100 .

次に、気相成長法によって約6000Xの酸化シリコン
膜104全形成し、900℃で該酸化シリコン膜の緻密
化のためのアニールを20分間行った後、通常のフォト
リングラフィ工程によって数μmの大きさの開口を設け
、第1図(e)に示した様にモリブデン硅化物層表面の
一部に露出面105を設けた。
Next, a silicon oxide film 104 of about 6000X is entirely formed by vapor phase growth, annealed at 900°C for 20 minutes to make the silicon oxide film dense, and then a film of several μm is formed by a normal photolithography process. An opening of the same size was provided, and an exposed surface 105 was provided on a part of the surface of the molybdenum silicate layer as shown in FIG. 1(e).

次に、気相成長法により厚さ1oooXの酸化シリコン
膜106 t−形成した後、900℃で酸化シリコン膜
の緻密化を行った後、POC2sを含んだガス雰囲気に
おいて、950℃、30分間の拡散全行うことによシ、
第1図(d) K示した様K、酸化シリコン膜106全
通して燐がモリブデン硅化物層103を通して半導体中
へ拡散され、深さo、iμmの燐拡散層107が形成さ
れた。酸化シリコン膜106の厚さはtoooXK限ら
ず、数百A程度にうすくてもよい。つまシリン拡散層1
07があまり深くならない程度の厚さに設定する。
Next, after forming a silicon oxide film 106t with a thickness of 100X by vapor phase growth, the silicon oxide film was densified at 900°C, and then heated at 950°C for 30 minutes in a gas atmosphere containing POC2s. By doing all the spreading,
As shown in FIG. 1(d), phosphorus was diffused into the semiconductor through the molybdenum silicide layer 103 throughout the silicon oxide film 106, forming a phosphorus diffusion layer 107 with a depth of o and i μm. The thickness of the silicon oxide film 106 is not limited to tooXK, and may be as thin as several hundred amps. Tsumashirin diffusion layer 1
07 is set to a thickness that does not become too deep.

第2図(a) 、 (b)は特許請求の範囲第2項の発
明の詳細な説明するための試料断面模式図である。
FIGS. 2(a) and 2(b) are schematic cross-sectional views of a sample for explaining the invention of claim 2 in detail.

第1図(a)〜<e)までと同様の製造工程を経た後、
気相成長法によシ膜厚5oooXの通常の萬龜度にリン
をドープし7c#化シリコン膜206を形成し、第2図
(a)に示した構造を得た。次に、窒素ガス雰囲気で9
50℃、30分間の熱処理を行うことによシ、酸化シリ
コン膜中に含まれた燐がモリブデン硅化物203全通し
てシリコン基板表面へ拡散され、第2図(b)に示す如
く、浅い燐拡散層207が得られた。
After going through the same manufacturing process as in Fig. 1(a) to <e),
A 7c# silicon film 206 doped with phosphorus to a normal degree of doping and having a film thickness of 500X was formed by vapor phase growth to obtain the structure shown in FIG. 2(a). Next, in a nitrogen gas atmosphere,
By performing the heat treatment at 50°C for 30 minutes, the phosphorus contained in the silicon oxide film is diffused through the entire molybdenum silicide 203 to the silicon substrate surface, resulting in shallow phosphorus formation as shown in FIG. 2(b). A diffusion layer 207 was obtained.

第3図(at t <b> t (a)は半導体表面に
形成した多結晶合金層上に史に多結晶導電材料による配
線を形成し、そこから不純物を拡散する実施例を説明す
るための試料断面模式図である。第1図(a)〜(e)
までと同様な製造工程を経た後、スパッタ法によシ、全
面に膜厚5000 Xの多結晶モリブデン硅化物を形成
した後、通常の水トエッチング法によシバターニングを
行いモリブデン硅化物配a306’c形成し、第3図(
a)の+14造を形成した。次に、第3図(b)に示し
た様に、気相成長法によシ膜厚約600OAの酸化シリ
コン膜307を形成し、緻密化のための900℃のアニ
ールft20分間行った後、通常のフォトリングラフィ
工程によシ開口を設け、モリブデン硅化物の露出表面3
08を形成した。次に、第3図(c)に示した様に、膜
厚1000Aの酸化シリコン膜309全形成し、緻密化
のために900℃。
Figure 3 (at t <b> t (a) is a diagram for explaining an example in which a wiring made of a polycrystalline conductive material is formed on a polycrystalline alloy layer formed on a semiconductor surface and impurities are diffused from there. FIG. 1 is a schematic cross-sectional view of a sample. FIGS. 1(a) to (e)
After going through the same manufacturing process as above, a polycrystalline molybdenum silicide film with a thickness of 5000× is formed on the entire surface by sputtering method, and then shiba tanning is performed by ordinary water etching method to form molybdenum silicide distribution A306. 'c form, Figure 3 (
The +14 structure of a) was formed. Next, as shown in FIG. 3(b), a silicon oxide film 307 with a thickness of about 600 OA was formed by vapor phase growth, and after annealing at 900° C. for 20 minutes for densification, An opening is made using a normal photolithography process to expose the molybdenum silicide surface 3.
08 was formed. Next, as shown in FIG. 3(c), a silicon oxide film 309 with a thickness of 1000 Å is entirely formed and heated at 900° C. for densification.

20分間のアニールを行った後、poct、 @用いて
950℃、30分間の拡散を行うことにより、燐がモリ
ブデン硅化物配線306及びモリブデン硼化物層303
全通して拡散され、半導体表面に拡散層310が形成さ
れた。
After annealing for 20 minutes, phosphorus is diffused into the molybdenum silicide wiring 306 and the molybdenum boride layer 303 by performing diffusion at 950° C. for 30 minutes using poct.
It was diffused throughout to form a diffusion layer 310 on the semiconductor surface.

以上いずれの実施例においても、モリブデン硅化物層を
介して実現された横方向拡散長は500μm以上に達し
ておシ、本発明の如く、あらかじめ不純物の高速拡散路
として多結晶合金層を形成しておけば、従来不可能であ
った厚い絶縁膜下の半導体表面へ不純物全トープするこ
とが可能であることが明らかとなった。
In all of the above examples, the lateral diffusion length achieved through the molybdenum silicide layer reached 500 μm or more. It has become clear that by doing so, it is possible to completely dope impurities to the semiconductor surface under a thick insulating film, which was previously impossible.

また、上記実施例におりては多結晶合金層及び多結晶導
電材料からなる配線としてモリブデン硅化物を用いて説
明したが、タンタルやタングステンの硅化物あるいはこ
れらの多層膜を用いた場合にも同様な結果が確認された
。更に、チタン硅化物の場合も、試料作成の際に酸化7
リコン膜除去工程にドライエッテングヲ使用した点を除
けば、同様の結果であった。
Furthermore, in the above embodiment, molybdenum silicide was used as the wiring made of the polycrystalline alloy layer and the polycrystalline conductive material, but the same applies when tantalum or tungsten silicide or a multilayer film of these is used. The results were confirmed. Furthermore, in the case of titanium silicide, oxidation
The results were similar, except that dry etching was used in the recon film removal step.

また、他のn型不純物であるAs、p型不純物であるホ
ウ素についても同様に卓効があった。
Furthermore, other n-type impurities such as As and p-type impurities such as boron were similarly effective.

また、実施例において、多結晶合金層としてのモリブデ
ン姓化物形成に際して、モリブデン膜上からStイオン
注入を行った後熱処理を行う形成手順が示されているが
、この方法は平滑かつ均一な硅化物を得る方法として知
られているものである。
In addition, in the examples, when forming a molybdenum compound as a polycrystalline alloy layer, a formation procedure is shown in which St ions are implanted onto the molybdenum film, followed by heat treatment. This is a known method for obtaining .

Stイオン注入を行わないで単に熱処理にのみよって形
成された硅化物を多結晶合金層に用いた場合も同様な結
果てあった。
Similar results were obtained when the polycrystalline alloy layer was made of silicide formed simply by heat treatment without St ion implantation.

(発明の効果) 本発明による方法においては、半導体表面への不純物拡
散は不純物拡散速度が十分速い多結晶合金層を通して行
われているため、著しく大きな横方向拡散が実現され、
厚い絶縁膜下の半導体表面への不純物ドーピングが達成
された。
(Effects of the Invention) In the method according to the present invention, since impurity diffusion to the semiconductor surface is performed through the polycrystalline alloy layer where the impurity diffusion rate is sufficiently high, significantly large lateral diffusion is achieved.
Impurity doping of the semiconductor surface under a thick insulating film was achieved.

従って本発明によれば、MIS型トランジスタの従来の
製3M手順全逆転しうる。例えば、ソースおよびドレイ
ン形成のための不純物ドーピング全リンシリケートガラ
スからなる層間絶縁膜に設けたコンタクトホールから行
うことが可能である。このことは、特に^性能集積回路
に不可欠な微細なMIS型トランジスタを形成する上で
極めて重要である。すなわち、従来は、拡散層深さ増大
のために充分実施しえなかったリンシリケートガラスの
緻密化や平坦化のための高温熱処理を充分に行うことが
可能となった。
Therefore, according to the present invention, the conventional 3M manufacturing procedure for MIS type transistors can be completely reversed. For example, it is possible to perform this through contact holes provided in an interlayer insulating film made of impurity-doped all-phosphorus silicate glass for forming sources and drains. This is extremely important, especially when forming minute MIS type transistors that are essential for high-performance integrated circuits. That is, it has become possible to sufficiently perform high-temperature heat treatment for densification and flattening of phosphosilicate glass, which could not be performed sufficiently in the past due to the increase in the depth of the diffusion layer.

また、本発明における多結晶合金層として高融点金属の
硅化物音用いた場合には数Ω/口〜20Ω/口の低い電
気抵抗層が拡散層表面に形成されており、従来より大き
な問題点となっている浅い拡散層の抵抗増大の問題も同
時に解決された。
In addition, when a high melting point metal silicide is used as the polycrystalline alloy layer in the present invention, a low electrical resistance layer of several Ω/mm to 20 Ω/mm is formed on the surface of the diffusion layer, which poses a larger problem than the conventional one. The problem of increased resistance in the shallow diffusion layer was also solved at the same time.

また本発明では、不純物拡散は多結晶付金層あるいは多
結晶導電材料からなる配線の開口部を被った絶縁膜、あ
るいは、不純物がドープされた絶縁膜から行われるため
K、拡散時に前記多結晶合金層または多結晶導電材料が
拡散雰囲気に直接さらされることはないので、多結晶合
金層あるいは多結晶導電材料からなる配M表面にはいか
なる表面おれも発生しなかった。
In addition, in the present invention, impurity diffusion is performed from an insulating film covering the opening of a wiring made of a polycrystalline gold layer or a polycrystalline conductive material, or an insulating film doped with impurities. Since the alloy layer or the polycrystalline conductive material was not directly exposed to the diffusion atmosphere, no surface wracking occurred on the surface of the M made of the polycrystalline alloy layer or the polycrystalline conductive material.

また本発明では、熱拡散法によっているためr1i1記
の損傷回復のためのアニールは必費でなく、かつ、不純
物ドーピングが必要な高温熱処理を充分行った後に実施
されるために、浅い嵌合形成の点でイオン注入法よシ有
利である。
In addition, in the present invention, since the thermal diffusion method is used, annealing for damage recovery as described in r1i1 is not necessary, and since it is carried out after sufficient high-temperature heat treatment that requires impurity doping, shallow fitting formation is possible. This is advantageous over ion implantation in this respect.

以上本発明によって、微細なMISI−ランジスタのソ
ース及びドレインあるいは配線に用いる拡散層となしう
る高信頼でかつ低抵抗な浅い不純物拡散層の形成方法が
得られた。
As described above, according to the present invention, a method for forming a highly reliable and low-resistance shallow impurity diffusion layer that can be used as a diffusion layer for the source and drain of a minute MISI transistor or for wiring has been obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1 (a)〜(d) 、 % 2図(a) * (b
) −$ 3図(B)〜(e)は笑流側を説明するため
の試料断面模式図。図中の爵号はそれぞれ以下のもの金
示す。 100.200,300・・・単結晶シリコン基板、1
01゜104.204,304,106,307,30
9・・・酸化シリコン膜、102・・・モリブデン膜、
103,203,303・・・モリブデン硅化物層、1
05.305・・・モリブデン硅化物の露出表面、10
7,207,310・・・燐の拡散層、206・・・リ
ンをドープした酸化シリコン膜、306・・・モリブデ
ン硅化物配線、308・・・モリブデン硅化物配線の露
出表面 徐1図 00 第2図 第3図 j/U
1 (a) to (d), % 2 (a) * (b
) -$ Figure 3 (B) to (e) are schematic cross-sectional views of the sample for explaining the flow side. The titles in the diagram indicate the following: 100.200,300...single crystal silicon substrate, 1
01゜104.204,304,106,307,30
9... Silicon oxide film, 102... Molybdenum film,
103,203,303...Molybdenum silicide layer, 1
05.305...Exposed surface of molybdenum silicide, 10
7,207,310... Phosphorus diffusion layer, 206... Phosphorus-doped silicon oxide film, 306... Molybdenum silicide wiring, 308... Exposed surface of molybdenum silicide wiring. Figure 2 Figure 3 j/U

Claims (1)

【特許請求の範囲】 1、半導体基板または半導体薄膜上に導電薄膜を形成す
る工程と、該導電薄膜と前記半導体とが接触する個所に
おいて該導電薄膜と前記半導体との合金化反応音生ぜし
めて多結晶合金層を形成する工程と、該多結晶合金層あ
るいは該多結晶合金層に接続する多結晶導電材料よ#)
なる配線を被う様に絶縁膜全形成する工程と、該絶縁膜
の所定の領域全開口し前記多結晶合金層の一部あるいは
前記多結晶導電材料よりなる配線の一郡t−i出させた
後、不純物を透過させる性質の絶縁膜を前記露出郡分全
被うように形成する工程と、前記開口部より不純物全拡
散させることによシ、当該絶縁膜下の前記多結晶合金層
あるいは前記多結晶導電材料よシなる配線及び前記多結
晶合金層を通して前記多結晶合金層に接すふ半導体領域
に不純物を拡散する工程とを含むことを特徴とする半導
体への不純物拡散方法。 2、半導体基板または半導体薄膜上に導電薄膜を形成す
る工程と、該導電#膜と前記半導体とが接触する個所に
おいて該導電薄膜と前記半導体との合金化反応音生じせ
しめて多結晶合金層を形成する工程と、該多結晶合金層
あるいは該多結晶合金層に接続する多結晶導電材料よシ
なる配線ヲ被う様に絶縁膜全形成する工程と、該絶縁膜
の所定の領域を開口し@紀要結晶合金層の一部あるいは
前記多結晶導電材料よシなる配線の一部1r露出せしめ
た後、不純物をドープした絶縁膜を前記多結晶合金層あ
るいは前記多結晶導電材料の賑出表面を少くとも被う様
に形成し、その後、熱処m’i行うことKよって前記多
結晶合金層あるいは前記多結晶導電材料よシなる配線及
び前記多結晶合金層を通して前記多結晶合金層に接する
半導体領域へ不純物を拡散する工程とを含むことを特徴
とする半導体への不純物拡散方法。
[Claims] 1. A step of forming a conductive thin film on a semiconductor substrate or a semiconductor thin film, and producing a large amount of alloying reaction sound between the conductive thin film and the semiconductor at a place where the conductive thin film and the semiconductor come into contact. A step of forming a crystalline alloy layer and a polycrystalline conductive material connected to the polycrystalline alloy layer or the polycrystalline alloy layer
forming an insulating film entirely to cover the wiring, and opening a predetermined area of the insulating film completely to expose a part of the polycrystalline alloy layer or a group of wiring made of the polycrystalline conductive material t-i. After that, the polycrystalline alloy layer or A method for diffusing impurities into a semiconductor, comprising the step of diffusing impurities into a semiconductor region in contact with the polycrystalline alloy layer through the wiring made of the polycrystalline conductive material and the polycrystalline alloy layer. 2. A step of forming a conductive thin film on a semiconductor substrate or a semiconductor thin film, and forming a polycrystalline alloy layer by producing an alloying reaction sound between the conductive thin film and the semiconductor at a place where the conductive film and the semiconductor come into contact. a step of forming an insulating film in its entirety so as to cover the polycrystalline alloy layer or a wiring made of a polycrystalline conductive material connected to the polycrystalline alloy layer; and a step of opening a predetermined region of the insulating film. @Bulletin After exposing a part of the crystalline alloy layer or a part of the wiring made of the polycrystalline conductive material, an insulating film doped with impurities is applied to the protruding surface of the polycrystalline alloy layer or the polycrystalline conductive material. and then heat-treating the polycrystalline alloy layer or the wiring made of the polycrystalline conductive material and the semiconductor contacting the polycrystalline alloy layer through the polycrystalline alloy layer and the polycrystalline conductive material. 1. A method for diffusing impurities into a semiconductor, comprising the step of diffusing impurities into a region.
JP59049843A 1984-03-15 1984-03-15 Method of diffusing impurities into semiconductor Expired - Lifetime JPH0656835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049843A JPH0656835B2 (en) 1984-03-15 1984-03-15 Method of diffusing impurities into semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049843A JPH0656835B2 (en) 1984-03-15 1984-03-15 Method of diffusing impurities into semiconductor

Publications (2)

Publication Number Publication Date
JPS60193330A true JPS60193330A (en) 1985-10-01
JPH0656835B2 JPH0656835B2 (en) 1994-07-27

Family

ID=12842349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049843A Expired - Lifetime JPH0656835B2 (en) 1984-03-15 1984-03-15 Method of diffusing impurities into semiconductor

Country Status (1)

Country Link
JP (1) JPH0656835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563803A (en) * 1992-03-19 1996-10-08 Hitachi, Ltd. Fluidized-bed equipment and pressurized fluidized-bed (combustion) combined cycle apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459731A (en) * 1987-08-31 1989-03-07 Hitachi Ltd Buffer type gas breaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459731A (en) * 1987-08-31 1989-03-07 Hitachi Ltd Buffer type gas breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563803A (en) * 1992-03-19 1996-10-08 Hitachi, Ltd. Fluidized-bed equipment and pressurized fluidized-bed (combustion) combined cycle apparatus

Also Published As

Publication number Publication date
JPH0656835B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
KR910007097B1 (en) Manufacturing method of semiconductor device
US4273805A (en) Passivating composite for a semiconductor device comprising a silicon nitride (Si1 3N4) layer and phosphosilicate glass (PSG) layer
JPH0523055B2 (en)
JPS60254766A (en) Method of producing gage electrode
JPS6360549B2 (en)
JPS60193330A (en) Method for diffusing impurities into semiconductor
JPH1064898A (en) Manufacturing method of semiconductor device
JPS6138858B2 (en)
JPS59169179A (en) Semiconductor integrated circuit device
JPH0227769A (en) Semiconductor device
KR100256246B1 (en) Method of forming gate electrode in semiconductor device
JPS61256672A (en) Manufacture of semiconductor device
JPH0318034A (en) Manufacture of semiconductor device
JPS5988868A (en) Manufacture of semiconductor device
JPS61248476A (en) Manufacture of semiconductor device
JPH05102181A (en) Manufacture of high-breakdown-strength semiconductor device
JPS61150377A (en) Manufacture of mis type semiconductor device
JP3147374B2 (en) Semiconductor device
JPH0380542A (en) Semiconductor integrated circuit device
JPH04354328A (en) Production of semiconductor device
JPH0513697A (en) Manufacture of semiconductor device
JPS6097668A (en) Semiconductor device and manufacture thereof
JPH03204968A (en) Semiconductor device and manufacture thereof
JPH11354648A (en) Method for simultaneously generating oxides with different thickness on same semiconductor substrate
JPS6247122A (en) Manufacture of semiconductor device