JPH0318034A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0318034A
JPH0318034A JP15191289A JP15191289A JPH0318034A JP H0318034 A JPH0318034 A JP H0318034A JP 15191289 A JP15191289 A JP 15191289A JP 15191289 A JP15191289 A JP 15191289A JP H0318034 A JPH0318034 A JP H0318034A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
electrode
film
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15191289A
Other languages
Japanese (ja)
Inventor
Sadayuki Imanishi
貞之 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP15191289A priority Critical patent/JPH0318034A/en
Publication of JPH0318034A publication Critical patent/JPH0318034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a restriction in a process design by removing a silicon nitride film except an electrode by dry etching at the time of forming a sidewall. CONSTITUTION:After a silicide 4 is deposited, a silicon nitride film 5 is grown on its upper layer, and then an electrode is patterned. A silicon nitride film 6 is again deposited on the patterned electrode, a silicon dioxide film 7 is thereafter deposited by a CVD method, and a sidewall is formed by an anisotropic dry etching. The sidewall of silicon dioxide is formed on the sidewall of the electrode by the dry etching, the film 5 deposited initially remains on the electrode at the same time, and the silicon nitride film except the electrode is all removed. Thus, a restriction in a process for omitting a heat treatment can be eliminated, and the degree of freedoms in a process design can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高融点金属或いはシリサイドを電極及び配線と
して用いた半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device using a high melting point metal or silicide as electrodes and wiring.

従来の技術 超LSI時代に入シ、素子寸法はサブミクロン筐で達戒
され、高集積化が進むと同時に半導体回路の高速化も進
んでいる。高速化を達成するためには素子寸法を小さく
する以外に、抵抗の低い高融点金属やシリサイドを電極
或いは配線材料として用いる事が多くなっている。
Conventional Technology In the era of ultra-large scale integrated circuits (VLSI), element dimensions have been reduced to submicron casings, and at the same time as semiconductor circuits have become more highly integrated, the speed of semiconductor circuits has also increased. In order to achieve higher speeds, in addition to reducing element dimensions, high-melting point metals or silicides with low resistance are increasingly used as electrode or wiring materials.

第2図はシリサイドをMOS型トランジスタのゲート電
極に用いた場合を示す。同図の如く、シリサイドは多結
晶シリコンとの2層構造が一般的である。これは高融点
金属やシリサイドに含1れる金属が半導体基板1や二酸
化珪素膜2に拡散し、素子の電気的特性に悪影響を与え
るのを防止するためで、下層に多結晶シリコンを配置し
た形となっている。同図aは多結晶シリコン及びクリサ
イド膜を蒸着した後、フォトリソグラフイとドライエッ
チングプロセスによシ電極パターンを形成したものの断
面図を表わす。以下従来のプロセスを示す。
FIG. 2 shows a case where silicide is used for the gate electrode of a MOS type transistor. As shown in the figure, silicide generally has a two-layer structure with polycrystalline silicon. This is to prevent high melting point metals and metals contained in silicide from diffusing into the semiconductor substrate 1 and silicon dioxide film 2 and adversely affecting the electrical characteristics of the device. It becomes. Figure a shows a cross-sectional view of an electrode pattern formed by photolithography and dry etching processes after depositing polycrystalline silicon and crystalide films. The conventional process is shown below.

第2図aで電極を形威した後、電極の両側の半導体基板
にイオン注入を行ないソースドレイン領域8を形成する
。イオン注入後、cvn法によシ、二酸化珪素膜7を蒸
着する(第2図b)。
After forming the electrodes as shown in FIG. 2a, ions are implanted into the semiconductor substrate on both sides of the electrodes to form source/drain regions 8. After ion implantation, a silicon dioxide film 7 is deposited by CVN method (FIG. 2b).

次に異方性ドライエッチングによう、二酸化珪素膜をエ
ッチングする。このとき同図Cに示す如〈ゲート電極の
側壁に二酸化珪素膜が残留する。
Next, the silicon dioxide film is etched using anisotropic dry etching. At this time, as shown in Figure C, a silicon dioxide film remains on the sidewalls of the gate electrode.

この残留物をサイドウォールと一般に呼び、サイドウォ
ール形或後再びイオン注入を行ないソース・ドレイン領
域9を形成する。
This residue is generally called a sidewall, and after forming the sidewall, ions are implanted again to form the source/drain region 9.

上記構造はLDD構造と呼ばれ、ゲート電極のソース・
ドレイン間の長さが1μm程度以下の場合に用いられ、
現在では最も一般的となっている。
The above structure is called an LDD structure, and the source and gate electrode
Used when the length between drains is about 1 μm or less,
It is now the most common.

通常n−chMOsトランジスタの場合、ソース・ドレ
イン8は!J/(P )イオン注入、後の注入領域9は
砒素(▲S)イオン注入で形成する。
Normally, in the case of an n-ch MOs transistor, the source and drain 8 are ! J/(P) ion implantation, and later implantation region 9 is formed by arsenic (▲S) ion implantation.

ソース・ドレイン領域形成後、900゜C程度の熱処理
にてイオンの活性化を行ない、さらに同温度の酸化雰囲
気で、ゲート電極、ンース・ドレイン領域を酸化し、二
酸化珪素膜10を成長させ、これらの領域を互いに完全
に絶縁させる。この後、同図dに示す様にCVD法によ
り、絶縁膜11を形成し、さらに上層の配線形成を行な
う。
After forming the source/drain regions, ions are activated by heat treatment at approximately 900°C, and the gate electrode and source/drain regions are further oxidized in an oxidizing atmosphere at the same temperature to grow the silicon dioxide film 10. areas are completely isolated from each other. Thereafter, as shown in FIG. 4D, an insulating film 11 is formed by the CVD method, and further upper layer wiring is formed.

発明が解決しようとする課題 シリサイドを例にとって課題を説明する。シリサイドの
持つ問題点として、高温での異常な酸化がある。シリサ
イドは蒸着後500℃以上の熱処理を行なうと直径0.
1〜0.2μm程度の粒子の集合体(グレン)を形成す
るが、この状態で表面が露出したま1再び熱処理を行な
うと、或分でちる金属タングステン等が酸化物を形成し
、異常な酸化を引き起こす。捷たさらに、高温の熱処理
中に含1れている金属成分が、半導体基板等に拡散し、
欠陥やこれに起因する微小リーク等の電気的特性上の問
題も発生しやすい。
Problems to be Solved by the Invention The problems will be explained by taking silicide as an example. A problem with silicide is abnormal oxidation at high temperatures. If silicide is heat treated at 500°C or higher after vapor deposition, the diameter will be 0.
Aggregates (grains) of particles of about 1 to 0.2 μm are formed, but if heat treatment is performed again with the surface exposed in this state, metal tungsten, etc., which will crumble in a certain amount of time, will form oxides and abnormalities will occur. causes oxidation. Furthermore, the metal components contained during high-temperature heat treatment diffuse into semiconductor substrates, etc.
Problems in electrical characteristics such as defects and micro leaks caused by defects are also likely to occur.

これらの問題を回避するために、熱処理を省略すると云
った手法がとられているが、現実には素子の特性を安定
にするために必要とされる熱処理もあり、プロセス設計
上の制約が多くなってし1う事になる。
In order to avoid these problems, methods have been taken to omit heat treatment, but in reality, some heat treatment is required to stabilize the characteristics of the device, and there are many constraints on process design. It's going to happen.

課題を解決するための手段 本発明は前記問題点を解決するものである。たとえば、
実施例の第1図に示す様にシリサイドの蒸着後その上層
にシリコン窒化膜を成長させ、その後電極のパターニン
グを行なう(第1図a)。
Means for Solving the Problems The present invention solves the above problems. for example,
As shown in FIG. 1 of the embodiment, after silicide is deposited, a silicon nitride film is grown on top of the silicide, and then electrodes are patterned (FIG. 1a).

次にパターニングされた電極上に再びシリコン窒化膜を
蒸着し、その後は従来例の通シ、二酸化珪素膜をCVD
法で蒸着し、異方性ドライエッチングによるサイドウォ
ール形或を行なう(第1図C)。
Next, a silicon nitride film is deposited again on the patterned electrode, and then a silicon dioxide film is deposited by CVD as in the conventional method.
The sidewalls are formed by anisotropic dry etching (FIG. 1C).

同図に示す様に、このドライエッチングによシ、tiの
側壁に二酸化珪素のサイドウォールが形成されていると
同時に、電極の上部には最初に蒸着したシリコン窒化膜
が残って訃シ、電極部以外のシリコン窒化膜は全て除去
された状態となる。
As shown in the figure, as a result of this dry etching, sidewalls of silicon dioxide are formed on the sidewalls of the Ti, and at the same time, the silicon nitride film that was initially deposited remains on the top of the electrode, causing the electrode to deteriorate. All of the silicon nitride film other than the portion is removed.

作用 上記手段によれば、シリコン窒化膜が酸素の透過を防止
するため、高温酸化雰囲気でのシリサイドの異常な酸化
をおさえると同時に、含有する金属の拡散も防止する事
ができる。1た、第1図Cに示す如く、電極部以外のシ
リコン窒化膜は、サイドウォール形成時のドライエッチ
ングにより取り除かれるため、その後のプロセスを従来
と同様に進める事ができる。
According to the above means, since the silicon nitride film prevents oxygen from permeating, it is possible to suppress abnormal oxidation of the silicide in a high-temperature oxidizing atmosphere, and at the same time, prevent the diffusion of the metal contained therein. Furthermore, as shown in FIG. 1C, since the silicon nitride film other than the electrode portions is removed by dry etching during sidewall formation, subsequent processes can proceed in the same manner as before.

実施例 以下第1図に例示するところに従って、本発明の実施例
を説明する。同図乙の如く、半導体基板1上に二酸化珪
素膜250人2、多結晶シリコン2000人3及びタン
グステンシリサイド2500入4、シリコン窒化膜1 
000人6を成長し、フォトリソグラフィ及びドライエ
ッチングプロセスにより、前記或長膜のゲート電極を形
戒する。なお6のシリコン窒化膜は6oO゜C以下のプ
ラズマcvn法で或長じておく。
EXAMPLE Hereinafter, an example of the present invention will be described according to the example shown in FIG. As shown in Figure B, a silicon dioxide film of 250 layers 2, a polycrystalline silicon layer of 2000 layers 3, a tungsten silicide layer of 2500 layers 4, and a silicon nitride film 1 are formed on a semiconductor substrate 1.
The gate electrode of the certain long film is shaped by a photolithography and dry etching process. Note that the silicon nitride film No. 6 is grown to some extent by plasma CVN method at 600°C or less.

次にイオン注入法でリンイオンを注入し、ソース・ドレ
イン領域8を形成する。その後全面をCVD法によりシ
リコン窒化膜400人6、及び二酸化珪素膜3000入
7で被覆する(同図b)。
Next, phosphorus ions are implanted using an ion implantation method to form source/drain regions 8. Thereafter, the entire surface is coated with a silicon nitride film of 400 mm 6 and a silicon dioxide film of 3000 mm 7 by the CVD method (FIG. b).

そして同図Cに示す様に異方性ドライエッチングで全面
エッチングを行なう。このときソース・ドレイン領域9
の上部のシリコン窒化膜もドライエッチングで除去する
。ソース・ドレイン領域9が露出した時点でエッチング
を止める。そうすると電極の側壁には二酸化珪素膜がサ
イドウォールとして形成され、電極上部はシリコン窒化
膜6はドライエッチによシ除去されているが、最初に成
長しておいたシリコン窒化膜6が残っている状態となる
Then, as shown in Figure C, the entire surface is etched by anisotropic dry etching. At this time, the source/drain region 9
The silicon nitride film on top of is also removed by dry etching. Etching is stopped when the source/drain region 9 is exposed. Then, a silicon dioxide film is formed as a sidewall on the side wall of the electrode, and the silicon nitride film 6 on the upper part of the electrode is removed by dry etching, but the silicon nitride film 6 that was initially grown remains. state.

その後ソース・ドレイン領域9にイオン注入法で砒素を
注入し、従来例と同様に900゜Cの熱処理及び酸化を
行ない、上層の金属配線との絶縁のための層間絶縁膜を
形成する。
Thereafter, arsenic is implanted into the source/drain region 9 by ion implantation, followed by heat treatment at 900° C. and oxidation as in the conventional example, thereby forming an interlayer insulating film for insulation from the upper layer metal wiring.

発明の効果 本発明によれば、高融点金属やシリサイドを電極・配線
に用いても、高温熱処理時の含有金属による異常酸化を
防止し、1た同金属の拡散による電気的特性への悪影響
をも防止する。そして現状の熱処理を省略すると云った
プロセス上の制約も不要となシ、プロセス設計上の自由
度が増す事になる。
Effects of the Invention According to the present invention, even if high-melting point metals or silicides are used for electrodes and wiring, abnormal oxidation due to the contained metals during high-temperature heat treatment can be prevented, and the adverse effects on electrical characteristics due to diffusion of the metals can be prevented. It also prevents Further, there is no need for process constraints such as omitting the current heat treatment, and the degree of freedom in process design increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体装置の製造工
程断面図、第2図は従来例の工程断面図である。 1・・・・・・半導体基板、2・・・・・・二酸化珪素
膜、3・・・・・・多結晶シリコン、4・・・・・・シ
リサイド、5.6・・・・・・シリコン窒化膜、7・・
・・・・二酸化珪素膜、8・・・・・・リン注入領域、
9・・・・・・砒素注入領域。
FIG. 1 is a cross-sectional view of the manufacturing process of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the manufacturing process of a conventional example. 1... Semiconductor substrate, 2... Silicon dioxide film, 3... Polycrystalline silicon, 4... Silicide, 5.6... Silicon nitride film, 7...
...Silicon dioxide film, 8... Phosphorous implantation region,
9...Arsenic implantation region.

Claims (1)

【特許請求の範囲】[Claims] 基板半導体の一主面上に高融点金属或いはシリサイド膜
を蒸着する工程と、該膜上にシリコン窒化膜を蒸着する
工程と、該シリコン窒化膜と高融点金属或いはシリサイ
ド膜をフォトリソグラフィ及びドライエッチング法を用
いてエッチングし、パターンを形成する工程と、該パタ
ーン上にシリコン窒化膜を蒸着する工程と、該シリコン
窒化膜上に二酸化珪素膜を蒸着し、異方性ドライエッチ
ング法により二酸化珪素膜、シリコン窒化膜のエッチン
グを行なう工程を含むことを特徴とする半導体装置の製
造方法。
A step of vapor depositing a high melting point metal or silicide film on one main surface of a substrate semiconductor, a step of vapor depositing a silicon nitride film on the film, and photolithography and dry etching of the silicon nitride film and the high melting point metal or silicide film. a step of etching using a method to form a pattern, a step of depositing a silicon nitride film on the pattern, a step of depositing a silicon dioxide film on the silicon nitride film, and etching the silicon dioxide film by an anisotropic dry etching method. A method of manufacturing a semiconductor device, comprising the steps of etching a silicon nitride film.
JP15191289A 1989-06-14 1989-06-14 Manufacture of semiconductor device Pending JPH0318034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15191289A JPH0318034A (en) 1989-06-14 1989-06-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15191289A JPH0318034A (en) 1989-06-14 1989-06-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0318034A true JPH0318034A (en) 1991-01-25

Family

ID=15528913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15191289A Pending JPH0318034A (en) 1989-06-14 1989-06-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0318034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214305A (en) * 1990-08-28 1993-05-25 United Microelectronics Corporation Polycide gate MOSFET for integrated circuits
JPH07122649A (en) * 1993-10-26 1995-05-12 Matsushita Electric Ind Co Ltd Fabrication of cmos transistor
JP2004193629A (en) * 1996-12-03 2004-07-08 Toshiba Corp Semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214305A (en) * 1990-08-28 1993-05-25 United Microelectronics Corporation Polycide gate MOSFET for integrated circuits
JPH07122649A (en) * 1993-10-26 1995-05-12 Matsushita Electric Ind Co Ltd Fabrication of cmos transistor
JP2004193629A (en) * 1996-12-03 2004-07-08 Toshiba Corp Semiconductor device and method of manufacturing the same
JP4585205B2 (en) * 1996-12-03 2010-11-24 株式会社東芝 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US5256894A (en) Semiconductor device having variable impurity concentration polysilicon layer
JPH0318034A (en) Manufacture of semiconductor device
JPS60235473A (en) Manufacture of semiconductor device
KR100336042B1 (en) Method for forming ohmic contact on silicon-silicon interface in semiconductor device
JPS6220711B2 (en)
JP3417114B2 (en) Method for manufacturing semiconductor device
JPH0274031A (en) Manufacture of semiconductor device
KR970006208B1 (en) Fabricating method of semiconductor device
JPH02186625A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
KR19980058438A (en) Silicide Formation Method of Semiconductor Device
KR960011639B1 (en) Formation of shallow-junction using titanium silicide
JPH0415617B2 (en)
JPH07240461A (en) Fabrication of semiconductor device
JPH04208570A (en) Manufacture of semiconductor device
JPS603156A (en) Manufacture of semiconductor device
JPS61220468A (en) Semiconductor device
JPS62190849A (en) Semiconductor device and manufacture thereof
KR20020030338A (en) Manufacturing method for semiconductor device
JPH025411A (en) Manufacture of semiconductor device
JPS62137869A (en) Manufacture of field-effect transistor
JPS6041243A (en) Manufacture of semiconductor device
JPS62286221A (en) Manufacture of semiconductor device
JPS60110163A (en) Manufacture of mos transistor
JPH02218164A (en) Mis type field-effect transistor