JPS6017943A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6017943A
JPS6017943A JP58125309A JP12530983A JPS6017943A JP S6017943 A JPS6017943 A JP S6017943A JP 58125309 A JP58125309 A JP 58125309A JP 12530983 A JP12530983 A JP 12530983A JP S6017943 A JPS6017943 A JP S6017943A
Authority
JP
Japan
Prior art keywords
type
transistor
region
film
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58125309A
Other languages
Japanese (ja)
Other versions
JPH0345548B2 (en
Inventor
Kazuo Sato
和夫 佐藤
Takeshi Kimura
武司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP58125309A priority Critical patent/JPS6017943A/en
Publication of JPS6017943A publication Critical patent/JPS6017943A/en
Publication of JPH0345548B2 publication Critical patent/JPH0345548B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the number of steps and to integrate a Bi-CMOS semiconductor integrated circuit by using a high melting point metal material such as polysilicon as a mask for introducing impurity of an MOS transistor and a bipolar transistor. CONSTITUTION:A polysilicon film 10 is formed on a field oxidized film 8 and a gate oxidized film 9, pattern etching is executed, and with the films, 10, 8 as masks arsenic ions As are implanted to form an N type source region 11, an N type drain 12 of an NMOS transistor, and an N type emitter region 13 and an N type collector contacting region 14 of a bipolar transistor. Then, with the photoresist 15, a field oxidized film 18 and the film 10 as masks boron ions B are implanted, thereby forming a P type source region 16, a P type drain region 17 of a PMOS transistor and a P type base region 18 of a bipolar transistor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、B1−CMO8半導体装置を構成するMos
+・ランジスタおよびバイポーラトランジスタの双方を
高性能なものとすることができる製造方法に関する 従来例の構成とその問題点 近年、半導体プロセス技術の進歩に伴い、半導体体集積
回路の高性能化、高機能化が進んでいる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to Mos constituting a B1-CMO8 semiconductor device.
+・Conventional configurations and problems associated with manufacturing methods that can achieve high performance for both transistors and bipolar transistors In recent years, with the advancement of semiconductor process technology, the performance and functionality of semiconductor integrated circuits have increased. is progressing.

その中で、同一チップ上にアナログ機能とデジタル機能
を共存させる複合デバイスが注目されつつある。このよ
うな回路機能の要求を実現させる技術の1つとして、バ
イポーラ素子と0MO8素子の双方を同一半導体基板内
に集積化するBi −CMO8技術カアル。?ニー ノ
B i −CM OS技術は、0M08回路による低消
費電力、高集積化ならびに高速化の面での効果と、バイ
ポーラ回路による電流駆動能力ならびにアナログ量の高
精度処理能力などの効果の全てが奏される半導体装置を
実現するものである。Bi −CMO8半導体装置は、
性能面では極めて優れたものであるが、これを製造する
に際j7ては、上記のようにバイポーラ素子と相補チャ
ネル形のMOS素子を同一の半導体基板内へ作り込壕な
ければならず、このため、製造工程数の増加、すなわち
製造プロセスが複雑化するところとなる。
Among these, composite devices that coexist analog and digital functions on the same chip are attracting attention. One of the technologies to realize these circuit function requirements is Bi-CMO8 technology, which integrates both bipolar elements and 0MO8 elements on the same semiconductor substrate. ? Nino Bi-CM OS technology combines the low power consumption, high integration, and high-speed effects of the 0M08 circuit, as well as the current drive ability and high-precision analog processing ability of the bipolar circuit. This realizes a semiconductor device that can be played. The Bi-CMO8 semiconductor device is
Although it is extremely superior in terms of performance, in manufacturing it, as mentioned above, a bipolar element and a complementary channel type MOS element must be fabricated in the same semiconductor substrate. Therefore, the number of manufacturing steps increases, that is, the manufacturing process becomes complicated.

従来のBi−CMOS技術では、上記のような製造プロ
セスが複雑化する問題を排除する目的で、MOS素子で
あるMOS)ランジスタのゲート電極としてAfi電極
を用いるのが一般的であったが、近年システムの規模が
大きくなるに伴い、寸法の微細化、高集積化あるいは作
り込まれる素子の高性能化が強く望まれ、An ゲート
電極構造では、これらの要求に対応できなくなりつつあ
る。とこスフ下部への拡がりが少いイオン注入法によっ
て素子の各領域を形成すればよいところであるが、イオ
ン注入のだめのマスクとして用いるフォトレジストの材
質に起因するイオン注入条件の制限が生じる。
In conventional Bi-CMOS technology, in order to eliminate the problem of complicating the manufacturing process as described above, it was common to use Afi electrodes as the gate electrodes of transistors (MOS devices), but in recent years As the scale of the system increases, there is a strong demand for smaller dimensions, higher integration, and higher performance of the devices to be manufactured, and the An gate electrode structure is becoming unable to meet these demands. Although it would be possible to form each region of the element by an ion implantation method that causes less spread to the bottom of the screen, there are restrictions on the ion implantation conditions due to the material of the photoresist used as a mask for ion implantation.

ナオ、Bi −CM OS半導体装置では、Afiゲ−
1・電極構造とするばかりでなく、MOS)ランジスタ
の領域とバイポーラトランジスタの領域で導電形が同一
の領域を同時に形成することにより、工程数の低減をは
かる配慮も払われるところであるが、上記のようにイオ
ン注入条件に制限が生じる状況下でこのような配慮を払
った場合には、MOSトランジスタとバイポーラトラン
ジスタの双方を高性能なものとすることが困難となる。
In Nao, Bi-CM OS semiconductor devices, Afi game
1. Consideration is being given to reducing the number of process steps by not only forming an electrode structure but also forming regions of the same conductivity type in the MOS transistor region and the bipolar transistor region at the same time. If such considerations are taken under conditions where ion implantation conditions are restricted, it will be difficult to achieve high performance in both the MOS transistor and the bipolar transistor.

発明の目的 本発明の目的は、ポリシリコンなどの高融点金属材料を
MOS)ランジスタおよびバイポーラトランジスタの不
純物導入のだめのマスクとして用いることにより、従来
の製造方法に存在した不都合を排除することにある。
OBJECTS OF THE INVENTION An object of the present invention is to eliminate the disadvantages of conventional manufacturing methods by using a high melting point metal material such as polysilicon as a mask for introducing impurities into MOS transistors and bipolar transistors.

発明の構成 本発明の半導体装置の製造方法は、−導電形の半導体基
板上に成長されたこれとは逆導電形のエピタキシャル層
を分離して形成した少くとも2個のエピタキシャル島領
域の一方にバイポーラトランジスタを、他方に相補チャ
ネル形MOSトラン5、ニー、;= ジスタを作り込むにあたり、前記バイポーラトランジス
タの少くともエミッタ領域およびこれと導電形が同一と
なるMOS)ランジスタのソースならびにドレイン領域
を、高融点金属膜をマスクとする自己整合式イオン注入
法によって、同時に形成するようにした方法である。
Structure of the Invention The method for manufacturing a semiconductor device of the present invention includes forming an epitaxial layer of an opposite conductivity type grown on a semiconductor substrate of a -conductivity type in one of at least two epitaxial island regions formed separately. In fabricating a bipolar transistor and a complementary channel type MOS transistor on the other hand, at least the emitter region of the bipolar transistor and the source and drain regions of a MOS transistor having the same conductivity type as the bipolar transistor, This method uses a self-aligned ion implantation method using a high melting point metal film as a mask to simultaneously form the layers.

かかる本発明の半導体装置の製造方法によると、イオン
注入条件の制限が除かれるだめ、例えば、バイポーラト
ランジスタがN P N形であるときにはN形エミッタ
領域を、また、横形PNP構造であるときにはP形のエ
ミッタおよびコレクタ領域をこれらと導電形が同じにな
るMOS)ランジスタのソースおよびドレイン領域とと
もに一度のイオン注入処理で形成し、しかも、イオン注
入条件をバイポーラトランジスタおよびMO!3)ラン
ジスタの双方を高性能なものとするのに好ましい条件に
設定することが可能になる。
According to the method for manufacturing a semiconductor device of the present invention, restrictions on ion implantation conditions are removed, and for example, when the bipolar transistor has an N P N type, the N type emitter region is formed, and when the bipolar transistor has a lateral PNP structure, the P type emitter region is formed. The emitter and collector regions of the MOS transistor, which have the same conductivity type as these, are formed in a single ion implantation process along with the source and drain regions of the MOS transistor, and the ion implantation conditions are changed to those of the bipolar transistor and MO! 3) It becomes possible to set both transistors to conditions favorable for achieving high performance.

実施例の説明 以下に、Bi−CMOS半導体装置の製造過程を示す第
1図〜第6図を参照して本発明の半導体装6 ′。
DESCRIPTION OF THE EMBODIMENTS The semiconductor device 6' of the present invention will now be described with reference to FIGS. 1 to 6, which show the manufacturing process of a Bi-CMOS semiconductor device.

置の製造方法について詳しく説明する。The manufacturing method of the device will be explained in detail.

本発明の半導体装置の製造方法では、先ず、第1図で示
すように、バイポーラ集積回路において出発材料として
用いられるP型シリコン基板1を準備し、この中へ二酸
化シリコン(S i02 )膜をマスクとして用いる周
知の選択拡散法によりN+形埋込層2およびP+形埋込
層3を形成したのち、表面を覆うS 102膜を除去し
、さらに、ジクロルシラン(S I H2CF’−2)
の熱分解によりN形エピタキシャル層4を約5μmの厚
さに成長させる。
In the method for manufacturing a semiconductor device of the present invention, first, as shown in FIG. 1, a P-type silicon substrate 1 used as a starting material in a bipolar integrated circuit is prepared, and a silicon dioxide (S i02 ) film is masked into the substrate. After forming an N+ type buried layer 2 and a P+ type buried layer 3 using a well-known selective diffusion method, the S102 film covering the surface is removed, and dichlorosilane (SI H2CF'-2)
The N-type epitaxial layer 4 is grown to a thickness of about 5 μm by thermal decomposition.

次いで、第2図で示すように、上記と同様の選択拡散法
により、N形エピタキシャル層1を貫通してピ形埋込層
3に繋るP膨拡散層5を形成する。
Next, as shown in FIG. 2, a P-swelled diffusion layer 5 penetrating the N-type epitaxial layer 1 and connected to the pi-type buried layer 3 is formed by the same selective diffusion method as described above.

このP膨拡散層5の形成により、N形エピタキシャル層
4が島状に分離される。こののち、選択拡散時にマスク
として用いたS 102 膜ならびに選択拡散時の熱処
理で生成されだS 102膜の全てを除去し、表面全域
に厚さが約500人の3102膜6と厚さが約1200
人の窒化シリコン(Si3N4)膜7とを積層形成した
のち、周知のフォトエッチング処理を施すことによって
、MO8)ランジスタを形成するべき基板部分−になら
びにバイポーラトランジスタのベース領域とコレクタコ
ンタクト領域を形成するべき基板部分上にのみ積層され
た2種類の膜を残す。
By forming this P-swelled diffusion layer 5, the N-type epitaxial layer 4 is separated into islands. After this, all of the S 102 film used as a mask during selective diffusion and the S 102 film generated during the heat treatment during selective diffusion were removed, leaving a 3102 film 6 with a thickness of approximately 500 mm over the entire surface. 1200
After forming a layered silicon nitride (Si3N4) film 7, a well-known photoetching process is performed to form the base region and collector contact region of the bipolar transistor as well as on the substrate portion where the MO8 transistor is to be formed. Two types of films are left laminated only on the desired substrate portion.

以」−の処理が施されたシリコン基板に対して、熱酸化
のだめの処理を施すことにより積層膜によって覆われる
ことなく露出するシリコン基板部分に厚さが約0.8μ
mのフィールド酸化膜を形成し、さらにSi3N4膜7
とこの直下のS t 02膜6とを順次エツチング17
て除去したのち、これらの膜の除去部分に露出するシリ
コン基板面の上に厚さが、500〜700八程度のゲー
ト酸化膜を形成する。
A thermal oxidation treatment is applied to the silicon substrate that has been subjected to the following process, so that the exposed portion of the silicon substrate that is not covered by the laminated film has a thickness of approximately 0.8 μm.
m field oxide film is formed, and then a Si3N4 film 7 is formed.
and the S t 02 film 6 directly below this are sequentially etched 17.
After removing these films, a gate oxide film having a thickness of approximately 500 to 700 mm is formed on the silicon substrate surface exposed in the removed portions of these films.

第3図は、以」−の過程を経た後の構造を示す図であり
、後の工程で不純物導入がなされることのないシリコン
基板部分上にはフィールド酸化膜8が形成され、一方、
不純物導入がなされるシリコン基板部分上にはゲート酸
化膜9が形成された構造が得られる。
FIG. 3 is a diagram showing the structure after going through the following process, in which a field oxide film 8 is formed on the silicon substrate portion where impurities will not be introduced in the subsequent process, and on the other hand,
A structure is obtained in which a gate oxide film 9 is formed on a portion of the silicon substrate into which impurities are introduced.

次いで、第4図で示すように、全面にポリシリコン膜1
oを約4000への厚さで形成し、この後、NMO3)
ランジスタのゲートとなりうる部分、PMO8)ランジ
スタのゲート、ソース、ドレインとなりうる部分および
バイポーラトランジスタのベースとなりうる部分で、エ
ミッタ領域の作り込みがなされる部分を除く残余の部分
のみにポリシリコン膜1oを残すだめのパターンエツチ
ング処理を施す。こののち、ポリシリコン膜1゜とフィ
ールド酸化膜8をマスクとして加速電圧150KeV、
ドーズ量8×10 m の注入条件で砒素(As) を
イオン注入し、NMO3)ランジスタのN形ソース領域
11、N形ドレイン12およびバイポーラトランジスタ
のN形エミッタ領域13、N形コレクタコンタクト領域
14を形成する。
Next, as shown in FIG. 4, a polysilicon film 1 is formed on the entire surface.
o to a thickness of about 4000, after which NMO3)
Part that can become the gate of a transistor, PMO 8) A polysilicon film 1o is applied only to the remaining part excluding the part where the emitter region is formed, in the part that can become the gate, source, and drain of the transistor and the part that can become the base of the bipolar transistor. Perform pattern etching to remove any remaining parts. After this, using the polysilicon film 1° and the field oxide film 8 as a mask, an acceleration voltage of 150 KeV was applied.
Arsenic (As) was ion-implanted at a dose of 8×10 m2 to form the N-type source region 11 and N-type drain 12 of the NMO transistor, and the N-type emitter region 13 and N-type collector contact region 14 of the bipolar transistor. Form.

次いで、第5図で示すように、PMO3)ランジスタの
ゲートとなりうる部分、NMO3)ランジスタのゲート
、ソース、ドレイン領域およびバイポーラトランジスタ
のコレクタコンタクト領域の」二をフォトレジスト15
で覆い、このフォトレジ9 。
Next, as shown in FIG. 5, photoresist 15 is applied to the parts of the PMO (3) that can become the gate of the transistor, the gate, source, and drain regions of the NMO (3) transistor, and the collector contact region of the bipolar transistor.
Cover this photo register with 9.

スト16をマスクとして、ポリシリコン膜1oを周知の
プラズマエッチによりエツチングする。その後フォトレ
ジスト15、フィールド酸化膜8、ポリシリコン膜10
をマスクにして、加速電圧50 KeV 、ドーズ量5
×10 crn の注入条件でボロン(B)をイオン注
入し、PMO3)ランジスタのP形ソース領域16、P
形ドレイン領域17およびバイポーラトランジスタのP
形ベース領域18を形成する。
Using the resist 16 as a mask, the polysilicon film 1o is etched by well-known plasma etching. After that, photoresist 15, field oxide film 8, polysilicon film 10
using a mask, acceleration voltage 50 KeV, dose amount 5
Boron (B) is ion-implanted under the implantation condition of ×10 crn, and the P-type source region 16, P
shaped drain region 17 and P of the bipolar transistor
A shape base region 18 is formed.

次いで、第6図で示すように、周知の気相成長により、
表面全域にS i 02膜19を形成したのち、ソース
領域とドレイン領域の押し込みと5IO2膜、19の緻
密化をはかるため、N2雰囲気中で、1000℃の熱処
理を10分間にわたり施す。
Next, as shown in FIG. 6, by well-known vapor phase growth,
After forming the Si 0 2 film 19 over the entire surface, heat treatment is performed at 1000° C. for 10 minutes in an N 2 atmosphere in order to push in the source and drain regions and to make the 5IO 2 film 19 denser.

そして最後に、ソース領域11.16、ドレイン領域1
2 、17、バイポーラトランジスタのエミッタ領域、
コレクタコンタクト領域およびベース領域13.14お
よび18のそれぞれにアルミニウム電極を形成するだめ
のコンタクト孔を穿設し、それぞれの領域にアルミニウ
ム電極20を形0 − 成することによって本発明の製造方法によるシリコンゲ
ート構造のBi −CMOS半導体装置の製作が完了す
る。
And finally, source region 11.16, drain region 1
2, 17, emitter region of bipolar transistor,
A contact hole for forming an aluminum electrode is formed in each of the collector contact region and the base region 13, 14 and 18, and an aluminum electrode 20 is formed in each region, thereby forming a silicon oxide film according to the manufacturing method of the present invention. The fabrication of the Bi-CMOS semiconductor device with the gate structure is completed.

以」二、本発明を一例を示して説明したが、本発明によ
れば、バイポーラトランジスタとしてPNP形のトラン
ジスタを作り込むこともできる。
Hereinafter, the present invention has been explained by showing an example, but according to the present invention, a PNP type transistor can also be fabricated as a bipolar transistor.

壕だ、高融点金属膜としてポリシリコン膜を例示したが
、これにかえて、タングステンあるいはモリブデンなど
の膜を用いてもよいこと勿論である。
Although a polysilicon film is exemplified as the high melting point metal film, it goes without saying that a film of tungsten, molybdenum, or the like may be used instead.

発明の詳細 な説明したところから明らかなように、本発明の製造方
法によれば、MO3)ランジスタとバことかでき、丑だ
高い寸法精度を確保することができる自己整合法により
、MO3)ランジスタ々らびにバイポーラトランジスタ
の主要な領域が形成されるものであるため、不純物導入
処理の統合による工程数の削減ならびにBi −CMO
S半導体集積回路の高集積化などの効果が奏される。さ
ら11 ・ ゛ に、各領域を形成するに際して、イオン注入法を採用し
た場合の注入条件の制限が緩和されるだめ、注入条件設
定の範囲が拡がり、MO3I−ランジスタとバイポーラ
トランジスタの双方を高性能なものとすることができる
効果も奏される。
As is clear from the detailed description of the invention, according to the manufacturing method of the present invention, the MO3) transistor can be manufactured using a self-aligning method that can ensure extremely high dimensional accuracy. Since the main regions of bipolar transistors and bipolar transistors are formed, the number of steps can be reduced by integrating impurity introduction processes, and Bi-CMO
Effects such as higher integration of S semiconductor integrated circuits can be achieved. Furthermore, when forming each region, restrictions on implantation conditions when using the ion implantation method are relaxed, which expands the range of implantation condition settings, making it possible to achieve high performance for both MO3I transistors and bipolar transistors. It also has the effect of making it more effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は、本発明の製造方法によってBi−C
MO3半導体装置が製造される過程を説明するだめの断
面図である。 1・・・・・・P形シリコン基板、2・・・・N4−形
埋込層、3・・・・P″−形埋込層、4・・・・・・N
形エピタキシャル層、6・・・・・・P膨拡散層、6,
19・・・・二酸化シリコン膜、7・・・・・・窒化シ
リコン膜、8・・・・フィールド酸化膜、9・・・・・
ゲート酸化膜、10・・・・・ポリシリコン膜、11・
・・・・N形ソース領域、12・・・・N形ドレイン領
域、13・・・・N形エミッタ領域、14・・・・・・
N形コレクタコンタクト領域、16・・・・・・フォト
レジスト、16・・・・・・P形ソース領域、17・・
・・・・P形ドレイン領域、18・・・・・・P形ベー
ス領域、20・・・・・・アルミニウム電極。 第1図 第2図 第3図 az 3 za 2
1 to 6 show Bi-C produced by the manufacturing method of the present invention.
FIG. 3 is a cross-sectional view illustrating a process of manufacturing an MO3 semiconductor device. DESCRIPTION OF SYMBOLS 1...P type silicon substrate, 2...N4-type buried layer, 3...P''-type buried layer, 4...N
type epitaxial layer, 6...P swelling diffusion layer, 6,
19...Silicon dioxide film, 7...Silicon nitride film, 8...Field oxide film, 9...
Gate oxide film, 10... Polysilicon film, 11.
...N type source region, 12...N type drain region, 13...N type emitter region, 14...
N-type collector contact region, 16... Photoresist, 16... P-type source region, 17...
. . . P type drain region, 18 . . . P type base region, 20 . . . aluminum electrode. Figure 1 Figure 2 Figure 3 az 3 za 2

Claims (1)

【特許請求の範囲】 0)−導電形の半導体基板上に成長させたこれとは逆嗜
電形のエピタキシャル層を分離して形成した少くとも2
個のエピタキシャル島領域の一方にバイポーラトランジ
スタを、他方に相補チャネル形MOSトランジスタを作
り込むにあたり、前記バイポーラトランジスタの少くと
もエミッタ領域および、これと導電形が同一となるMO
S)ランジスタのソースならびにドレイン領域を、高融
点金属膜をマスクとする自己整合式イオン注入法で同時
に形成するととを特徴とする半導体装置の製造方法。 (2)高融点金属膜がポリシリコン膜であることを特徴
とする特許請求の範囲第1項に記載の半導体装置の製造
方法。
[Claims] 0) - At least two epitaxial layers grown on a semiconductor substrate of a conductivity type and separated from each other and of a reverse electrostatic type.
In fabricating a bipolar transistor in one of the epitaxial island regions and a complementary channel type MOS transistor in the other, at least the emitter region of the bipolar transistor and the MOS transistor having the same conductivity type as the bipolar transistor are formed.
S) A method for manufacturing a semiconductor device, characterized in that the source and drain regions of the transistor are simultaneously formed by a self-aligned ion implantation method using a high melting point metal film as a mask. (2) The method for manufacturing a semiconductor device according to claim 1, wherein the high melting point metal film is a polysilicon film.
JP58125309A 1983-07-08 1983-07-08 Manufacture of semiconductor device Granted JPS6017943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125309A JPS6017943A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125309A JPS6017943A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6017943A true JPS6017943A (en) 1985-01-29
JPH0345548B2 JPH0345548B2 (en) 1991-07-11

Family

ID=14906910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125309A Granted JPS6017943A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6017943A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292358A (en) * 1985-10-17 1987-04-27 Nec Corp Semiconductor device
JPS63216370A (en) * 1987-03-05 1988-09-08 Toshiba Corp Semiconductor device
JPH01133356A (en) * 1987-11-18 1989-05-25 Fuji Electric Co Ltd Manufacture of bipolar-metal oxide semiconductor (bi-mos) circuit device
US4855245A (en) * 1985-09-13 1989-08-08 Siemens Aktiengesellschaft Method of manufacturing integrated circuit containing bipolar and complementary MOS transistors on a common substrate
US5086006A (en) * 1984-12-11 1992-02-04 Seiko Epson Corporation Semiconductor device and method of production
US5190886A (en) * 1984-12-11 1993-03-02 Seiko Epson Corporation Semiconductor device and method of production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420679A (en) * 1977-07-18 1979-02-16 Hitachi Ltd Bipolar mos semiconductor integrated circuit device and the same
JPS55165669A (en) * 1979-06-11 1980-12-24 Hitachi Ltd Bipolar-mos device
JPS5768075A (en) * 1980-10-16 1982-04-26 Nippon Gakki Seizo Kk Manufacture of integrated circuit device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420679A (en) * 1977-07-18 1979-02-16 Hitachi Ltd Bipolar mos semiconductor integrated circuit device and the same
JPS55165669A (en) * 1979-06-11 1980-12-24 Hitachi Ltd Bipolar-mos device
JPS5768075A (en) * 1980-10-16 1982-04-26 Nippon Gakki Seizo Kk Manufacture of integrated circuit device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086006A (en) * 1984-12-11 1992-02-04 Seiko Epson Corporation Semiconductor device and method of production
US5190886A (en) * 1984-12-11 1993-03-02 Seiko Epson Corporation Semiconductor device and method of production
US4855245A (en) * 1985-09-13 1989-08-08 Siemens Aktiengesellschaft Method of manufacturing integrated circuit containing bipolar and complementary MOS transistors on a common substrate
JPS6292358A (en) * 1985-10-17 1987-04-27 Nec Corp Semiconductor device
JPS63216370A (en) * 1987-03-05 1988-09-08 Toshiba Corp Semiconductor device
JPH0413861B2 (en) * 1987-03-05 1992-03-11 Tokyo Shibaura Electric Co
JPH01133356A (en) * 1987-11-18 1989-05-25 Fuji Electric Co Ltd Manufacture of bipolar-metal oxide semiconductor (bi-mos) circuit device
JP2610906B2 (en) * 1987-11-18 1997-05-14 富士電機株式会社 Method for manufacturing BiMOS semiconductor circuit device

Also Published As

Publication number Publication date
JPH0345548B2 (en) 1991-07-11

Similar Documents

Publication Publication Date Title
JPS63304657A (en) Manufacture of semiconductor device
JPH0555484A (en) Manufacture of semiconductor device
JPH05226589A (en) C-bicmos semiconductor device and manufacture thereof
US4550490A (en) Monolithic integrated circuit
JPS6017943A (en) Manufacture of semiconductor device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH11191597A (en) Semiconductor device
US5994190A (en) Semiconductor device with impurity layer as channel stopper immediately under silicon oxide film
JPH0240947A (en) Manufacture of semiconductor device
JPS6244862B2 (en)
JPH07176639A (en) Semiconductor integrated circuit device and fabrication thereof
JP3097095B2 (en) Method for manufacturing semiconductor device
JPH10172981A (en) Semiconductor device and its manufacture
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JPS63311753A (en) Manufacture of semiconductor integrated circuit
JPH056961A (en) Manufacture of semiconductor device
JPS6286752A (en) Manufacture of semiconductor integrated circuit
JPS628939B2 (en)
JP2820284B2 (en) Method for manufacturing semiconductor device
JPH02241057A (en) Manufacture of semiconductor integrated circuit
JPH04368171A (en) Manufacture of bi-cmos integrated circuit
JP2915040B2 (en) Method for manufacturing semiconductor device
JPH01238058A (en) Manufacture of high-speed bipolar transistor
JPS62141765A (en) Manufacture of semiconductor device
JPS60127756A (en) Complementary field effect semiconductor device