JPS6292358A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6292358A
JPS6292358A JP23267985A JP23267985A JPS6292358A JP S6292358 A JPS6292358 A JP S6292358A JP 23267985 A JP23267985 A JP 23267985A JP 23267985 A JP23267985 A JP 23267985A JP S6292358 A JPS6292358 A JP S6292358A
Authority
JP
Japan
Prior art keywords
region
type
shaped
source
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23267985A
Other languages
Japanese (ja)
Other versions
JP2578757B2 (en
Inventor
Masaru Oki
勝 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60232679A priority Critical patent/JP2578757B2/en
Publication of JPS6292358A publication Critical patent/JPS6292358A/en
Application granted granted Critical
Publication of JP2578757B2 publication Critical patent/JP2578757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make a MOSTr having high withstanding voltage, a high-speed bipolar transistor and a microminiaturized CMOSTr coexist by forming a source-drain region in the MOSTr by using a deep well having low concentration. CONSTITUTION:An N<+> type buried layer 2 and a P<+> type buried layer 3 are shaped to a P-type substrate 1, and an N-type epitaxial layer 4 is grown. A P well and an N well are each formed, and thick isolation oxide films 6 are shaped selectively. A gate oxide film 8 and N<+> type gate polycrystalline silicon 9 are formed. A base region 10 composed of BiTr is shaped, an emitter diffusion window is bored, and a second polycrystalline silicon layer 11 thinner than the gate polycrystalline silicon layer 9 is formed so as to coat the emitter diffusion window. A source-drain region 12 in an NMOSTr and an emitter 17 consisting of BiTr are shaped. A source-drain region 13 in a PMOSTr and a base contact region 14 composed of BiTr are formed, an insulating film 15 is shaped, a contact window is bored, and an aluminum electrode 16 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特にシリコンゲー)MOS型電界
効果トランジスタとバイポーラトランジスタを同一基板
上に形成した集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to an integrated circuit device in which a silicon MOS field effect transistor and a bipolar transistor are formed on the same substrate.

〔従来の技術〕[Conventional technology]

従来、バイポーラトランジスタと相補型MOS電界効果
トランジスタ(以下C’MOS)ランジスタと記す)を
同一基板上に形成した集積回路は0MOS)ランジスタ
の低消費電力動作と、バイポーラトランジスタの高速動
作、高駆動能力を同時に実現出来ることから近年多くの
試みが報告されている。
Conventionally, an integrated circuit in which a bipolar transistor and a complementary MOS field effect transistor (hereinafter referred to as a C'MOS transistor) are formed on the same substrate is characterized by the low power consumption operation of the C'MOS transistor, and the high speed operation and high drive ability of the bipolar transistor. Many attempts have been reported in recent years because they can simultaneously achieve the following.

従来報告されているシリコンゲートBi−CMOSIC
製造プロセスの一例により形成したBi−0MOS素子
の工程断面図を第2図に示す。製造工程を追って説明す
ると、P型シリコン基板1にN型埋込領域3を形成し、
N型エピタキシャル114を形成する。次にNMOST
rを形成する領域と、バイポーラトランジスタの素子分
離領域にPウェル領域5を形成し、PMOSTrを形成
する領域にNウェル領域7を形成した後、所定の形状を
したシリコン窒化層を形成し、この窒化膜を耐酸化用マ
スフとして素子分離用酸化膜6を形成する。
Conventionally reported silicon gate Bi-CMOSIC
FIG. 2 shows a process cross-sectional view of a Bi-0MOS element formed by an example of the manufacturing process. To explain the manufacturing process step by step, an N-type buried region 3 is formed in a P-type silicon substrate 1,
An N-type epitaxial layer 114 is formed. Then NMOST
After forming a P-well region 5 in the region where R is formed and the element isolation region of the bipolar transistor, and forming an N-well region 7 in the region where PMOSTr is to be formed, a silicon nitride layer having a predetermined shape is formed. An oxide film 6 for element isolation is formed using the nitride film as an oxidation-resistant mask.

次にゲート酸化膜8を形成後、ゲート多結晶シリコン9
を形成し、バイポーラトランジスタのベース領域10を
形成する。次に、バイポーラトランジスタのエミッタ拡
散窓を開口し、開口慾より大きな第2の多結晶シリコン
層11に上り株い、NMOSTrのソース・ドレイン領
域12の形成と同時にエミッタ上の第2の多結晶シリコ
ン層にN型不純物を導入する。次にPMOSTrのソー
ス・ドレイン領域13と、バイポーラトランジスタのベ
ースコンタクト領域14を形成する。次いで絶鰍膜鳩1
5を形成後、コンタクト窓、アルき配線16を形成する
Next, after forming the gate oxide film 8, the gate polycrystalline silicon 9
is formed to form the base region 10 of the bipolar transistor. Next, the emitter diffusion window of the bipolar transistor is opened, and the second polycrystalline silicon layer 11, which is larger than the opening size, is formed, and the second polycrystalline silicon layer 11 on the emitter is formed at the same time as the source/drain region 12 of the NMOSTr. Introduce N-type impurities into the layer. Next, source/drain regions 13 of the PMOSTr and base contact regions 14 of the bipolar transistor are formed. Next, Zetsuya Pigeon 1
After forming 5, a contact window and an aluminum wiring 16 are formed.

以上最近の高速化に対応したB1−CMOSプロセスの
一例を示したが、この方法の特徴は、0M08部の微細
化の為、Pウェル、Nウェルを用いた両つニ/I/7j
式を用い、又、バイポーラ部の高速化のサイズ細小化の
為の第2多結晶シリコンの使用等がある。ここに示した
Bi−0MOSプロセスの一例でも分る通り、近年高速
化、微細化が進む中、これに対応して、プロセスの複雑
化が著しい。又、バイポーラトランジスタの高速化と同
時に高耐圧素子の共存が望まれているが、現在のプロセ
スの複雑化が一層進み、高耐圧素子の共存は国難である
The above shows an example of the B1-CMOS process that supports recent high-speed processing.
There is also the use of second polycrystalline silicon to increase the speed and reduce the size of the bipolar section. As can be seen from the example of the Bi-0 MOS process shown here, as speed increases and miniaturization progress in recent years, the complexity of the process has become remarkable. Moreover, it is desired that high-voltage elements coexist with high-speed bipolar transistors at the same time, but as the current processes become more and more complex, the coexistence of high-voltage elements is a national crisis.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は前述した様に、高速化、微細化したバイ
ポーラ及びMOS素子に加え、高耐圧MOSトランジス
タを従来の方法に付加工程をすることなく形成出来る半
導体装fin提供するものである。
As described above, an object of the present invention is to provide a semiconductor device fin that can form high-speed and miniaturized bipolar and MOS elements as well as high-voltage MOS transistors without adding any additional steps to the conventional method.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の半導体装置は、N型埋込層と、P型埋込層と、
N型ウェル領域とP型ウェル領域とを有するBi−CM
OSプロセスに関して、少なくとも1つのMOS型電界
効果トランジスタのソース。
The semiconductor device of the present invention includes an N-type buried layer, a P-type buried layer,
Bi-CM having an N-type well region and a P-type well region
With respect to the OS process, the source of at least one MOS type field effect transistor.

ドレイン領域會、N型ウェル又はP型りエルにより形成
されている事を有している。
The drain region is formed by an N-type well or a P-type well.

〔実施例〕〔Example〕

以下本発明の実施例について図面を用いて詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明の一実施例の構造並びにその製造方法を第1図(
a)〜(−に示す。
The structure of one embodiment of the present invention and its manufacturing method are shown in Figure 1 (
a) - (shown in -).

先ず、第1図(a)に示す様にP型半導体基板1に十 N型埋込r@2.P型埋込層3を形成し、N型エピタキ
シャルI@4を成長させる。次に、(b)に示すように
、NMOSTr形成領域18とバイポーラTrの絶縁分
離領域19.高耐圧P M O8Trのソース・ドレイ
ン領域5にPウェルを形成し、 PMOS’I’r形成
領域7と高耐圧NMOSTrのソース・ドレイン領域2
0とバイポーラトランジスタのコレクタコンタクト部2
1KNウェルを形成し、シリコン窒化膜を用いて、選択
的に厚い分離酸化膜6を形成する。次に同図(C)に示
す様に、ゲート酸化膜8゜+ N型ゲート多結晶シリコン9を形成する。次に同図(d
lに示す様にバイポーラトランジスタのベース領域lO
會形成し、エミッタ拡散窓を開口し、ゲート多結晶シリ
コンN9よシも薄い第2の多結晶シリコン111m1 
ikエミッタ拡散窓1tう様に形成する。
First, as shown in FIG. 1(a), ten N type embeddings r@2. A P-type buried layer 3 is formed and an N-type epitaxial layer I@4 is grown. Next, as shown in (b), the NMOS Tr formation region 18 and the bipolar Tr isolation region 19. A P well is formed in the source/drain region 5 of the high breakdown voltage PMO8Tr, and the PMOS'I'r formation region 7 and the source/drain region 2 of the high breakdown voltage NMOSTr are formed.
0 and collector contact part 2 of bipolar transistor
A 1KN well is formed, and a thick isolation oxide film 6 is selectively formed using a silicon nitride film. Next, as shown in FIG. 2C, a gate oxide film 8°+N type gate polycrystalline silicon 9 is formed. Next, the same figure (d
As shown in l, the base region lO of the bipolar transistor
A second polycrystalline silicon layer 111m1, which is thinner than the gate polycrystalline silicon N9, is formed.
ik emitter diffusion window 1t is formed.

次いで同図(elの様にNMOSTrのソース・ドレイ
:/9@12と、バイポーラトランジスタのエミッタ1
7を例えばヒ素のイオン注入により形成する。
Next, in the same figure (as shown in el, the source/drain of NMOS Tr: /9@12 and the emitter 1 of bipolar transistor
7 is formed by, for example, arsenic ion implantation.

次に同図(flに示す様にPMOSTrのソース拳ドレ
イン領域13とバイポーラトランジスタのベースコンタ
クト領域14ftボロンのイオン注入により形成し、#
後に同図(mに示す様に絶縁膜15を形成し、各素子に
宵、t*を接続するだめのコンタクト窓を開口し、アル
ミ[極16を形成する。以上で本実施例のシリコングー
)Bi−0MOSは児成する。
Next, as shown in FIG.
Later, as shown in FIG. ) Bi-0MOS is formed.

以上の様な構造及び製造方法によれば、M08T「のソ
ース・ドレイン領域を深い低濃度のウェルにより形成出
来、これによりN08Trの耐圧は飛躍的に向上すると
いう利点がある。
According to the structure and manufacturing method as described above, the source/drain regions of M08T can be formed by deep, low concentration wells, which has the advantage of dramatically improving the withstand voltage of N08Tr.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明はMOSTrのソース・ド
レイン領域を深い低濃度のウェルを用φて形成すること
により、従来のプロセスに工程を増やすことなく、高耐
圧のMOS’rrと、高速バイボ−ラトランジスタ、微
細化されたCMOSTr を共存させることが出来ると
いう利点がある。
As explained above, by forming the source/drain regions of the MOSTr using deep, low-concentration wells, the present invention can produce a high-voltage MOS'rr and a high-speed biboelectric MOSTr without increasing the number of steps in the conventional process. - There is an advantage that large transistors and miniaturized CMOSTr can coexist.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(glは本発明の一実施例を製造工程と
共に示した断面図、m2図は従来技術を示す栴造断16
1図である。 l・・・・・・P型半導体基板、2・・・・・・N型埋
込領域、3・・・・・・P型札込領域、4・・・・・・
N型エピ領域、18・・・・・・P型ウェル領域、6・
・・・・・シリコン酸化膜、7・・・・・・N型りエル
領域、8・・・・・・ゲート酸化膜、9・・・・・・ケ
ート多結晶シリコン% 10・・・・・・P型ベース+ 領域、11・・・・・・多結晶シリコン層、12・・・
・・・N型ンース・ドレイン領域、13・・・・・・P
型7−y、・ドレイ/領域、14・・・・・・Pfiベ
ースコンタクト領土 域、15・・・・・・絶縁族、1G・・・・・・電極、
17・・・・・・N型エミッタ領域、19・・・・・・
絶縁分離領域、5・・・・・・p5ソース・ドレイン領
域、20・・・・・・Nf1Mソーx・ドレイン領域、
21・・・・・・N型コレクタ領域@7図
Figure 1 (al~(gl) is a sectional view showing one embodiment of the present invention together with the manufacturing process, and m2 is a sectional view showing the prior art.
Figure 1. 1...P-type semiconductor substrate, 2...N-type buried region, 3...P-type bill-embedded region, 4...
N-type epi region, 18... P-type well region, 6.
...Silicon oxide film, 7...N type reel region, 8...Gate oxide film, 9...Cate polycrystalline silicon% 10... ... P-type base + region, 11 ... polycrystalline silicon layer, 12 ...
...N-type source/drain region, 13...P
Type 7-y, dray/region, 14...Pfi base contact territory, 15...insulating group, 1G...electrode,
17...N-type emitter region, 19...
Insulating isolation region, 5...P5 source/drain region, 20...Nf1M source/drain region,
21...N-type collector region @Figure 7

Claims (1)

【特許請求の範囲】[Claims] シリコンゲートMOS型電界効果トランジスタとバイポ
ーラトランジスタを含む半導体装置に於て、第1導電型
の埋込み領域、第2導電型の埋込み領域、第1導電型の
エピタキシャル層、第1導電型のウェル領域、および第
2導電型のウェル領域を有し少なくとも一つのMOS型
電界効果トランジスタのソース・ドレイン領域は前記第
1導電型のウェル又は第2導電型のウェルにより形成さ
れていることを特徴とする半導体装置。
In a semiconductor device including a silicon gate MOS field effect transistor and a bipolar transistor, a buried region of a first conductivity type, a buried region of a second conductivity type, an epitaxial layer of a first conductivity type, a well region of a first conductivity type, and a semiconductor having a well region of a second conductivity type, wherein the source/drain region of at least one MOS field effect transistor is formed by the well of the first conductivity type or the well of the second conductivity type. Device.
JP60232679A 1985-10-17 1985-10-17 Semiconductor device Expired - Lifetime JP2578757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60232679A JP2578757B2 (en) 1985-10-17 1985-10-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60232679A JP2578757B2 (en) 1985-10-17 1985-10-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6292358A true JPS6292358A (en) 1987-04-27
JP2578757B2 JP2578757B2 (en) 1997-02-05

Family

ID=16943092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60232679A Expired - Lifetime JP2578757B2 (en) 1985-10-17 1985-10-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2578757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331156A (en) * 1986-07-24 1988-02-09 Nec Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217353A (en) * 1983-05-25 1984-12-07 Seiko Instr & Electronics Ltd Metal oxide semiconductor integrated circuit device
JPS6017943A (en) * 1983-07-08 1985-01-29 Matsushita Electronics Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217353A (en) * 1983-05-25 1984-12-07 Seiko Instr & Electronics Ltd Metal oxide semiconductor integrated circuit device
JPS6017943A (en) * 1983-07-08 1985-01-29 Matsushita Electronics Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331156A (en) * 1986-07-24 1988-02-09 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JP2578757B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
EP0234054B1 (en) Method of manufacturing a bipolar transistor
JPH08222645A (en) Method for forming lightly doped drain region
JPH0348457A (en) Semiconductor device and manufacture thereof
JPH0730107A (en) High voltage withstand transistor and its manufacture
EP0091256B1 (en) Cmos device
JPS6035558A (en) Semiconductor integrated circuit device and manufacture thereof
JPS62149163A (en) Manufacture of complementary mos integrated circuit
JPS6292358A (en) Semiconductor device
JPH0351309B2 (en)
JP2605757B2 (en) Method for manufacturing semiconductor device
JPS62262462A (en) Semiconductor device
JP3226252B2 (en) Method for manufacturing semiconductor device
JPS60121765A (en) Manufacture of mis type semiconductor device
JPS6251247A (en) Semiconductor device and manufacture thereof
JPS61281544A (en) Manufacture of semiconductor integrated circuit
KR970009032B1 (en) Power semiconductor and its manufacturing method
US6156609A (en) EEPROM device manufacturing method
JP3902412B2 (en) Manufacturing method of semiconductor device
JPS632365A (en) Manufacture of semiconductor integrated circuit
JPH05121683A (en) Complementary type mos semiconductor device
JPS63240058A (en) Manufacture of semiconductor device
JPH05291568A (en) Semiconductor device
JPS6246571A (en) Semiconductor device
JPS61174664A (en) Complementary type semiconductor device and manufacture thereof
JPS63124575A (en) Semiconductor device