JPS62149163A - Manufacture of complementary mos integrated circuit - Google Patents

Manufacture of complementary mos integrated circuit

Info

Publication number
JPS62149163A
JPS62149163A JP61054256A JP5425686A JPS62149163A JP S62149163 A JPS62149163 A JP S62149163A JP 61054256 A JP61054256 A JP 61054256A JP 5425686 A JP5425686 A JP 5425686A JP S62149163 A JPS62149163 A JP S62149163A
Authority
JP
Japan
Prior art keywords
ion implantation
conductivity type
region
mask
type mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61054256A
Other languages
Japanese (ja)
Inventor
Keimei Mikoshiba
御子柴 啓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPS62149163A publication Critical patent/JPS62149163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Abstract

PURPOSE:To decrease the number of masks, by forming an element isolating region and a gate electrode, and performing the ion implantations of high and low energies through said regions by using one mask. CONSTITUTION:Element isolating region 2 is formed on an n-type silicon substrate 1 by a selective oxidation method. Then, a gate oxide film 3 is grown, and a gate electrode 4 is formed. Thereafter, the p-channel side is covered with a first ion implanting mask 5. In order to form an n-channel MOS transistor on the n-type substrate, a p-type well 6 is formed by boron implantation at sufficiently high energy. Thereafter, by using the same mask 5, boron ions are implanted for threshold voltage control and a channel doped part 7 is formed, and arsenic is implanted in order to form n<+> source and drain regions 8. Then, a channel doped part 10, p<+> source and drain regions 11, a p<+> region 13, an interlayer film 14 and a wiring 15 are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補型MOS集積回路(CMOS )の製造方
法に関し、特に製造に必要なマスク枚数を減らし、さら
に従来よりも高性能な0MOSを実現できる新規な製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing complementary MOS integrated circuits (CMOS), and in particular, reduces the number of masks required for manufacturing and realizes a 0MOS with higher performance than conventional ones. Regarding a new manufacturing method that can be used.

〔従来の技術〕[Conventional technology]

0MOSを実現するためには、ウェルを形成する必要が
あるが、高エネルギーイオン注入’x行い高一度領域を
基板内部に埋め込み、表面磯度を下けたウェル構造を実
現する方法が提案されている。
In order to realize 0MOS, it is necessary to form a well, and a method has been proposed in which high-energy ion implantation is performed to bury a high-temperature region inside the substrate to realize a well structure with a lower surface roughness. .

従来技術としては、1981年の固体素子国際会議(I
nternational Electron 1)e
vices Meetin?)のダイジェストpp、3
46−348にコムズ(5tephenR,Combs
 ) Kよって発表されている。
As a conventional technology, the 1981 International Conference on Solid State Devices (I
international Electron 1)e
vices meetin? ) digest pp, 3
46-348 5tephenR, Combs
) Published by K.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の製造方法は、ウェルを形成した後N1 
(J S トランジスターのゲート電極とソース・ドレ
イン領域を形成しているので、スレショルド電圧胆」両
用のチャンネルドーグやソース・ドレイン領域を形成す
るために、そのたび毎にイオン注入用マスクをパターニ
ングするだめのリングラフイ一工程が必要になる。従っ
て、ウェル形成を含めると少くとも3〜4回のリソグラ
フィ一工程が必要になり、製造方法が榎雑になるという
欠点がある。
In the conventional manufacturing method described above, after forming the well, N1
(Since the gate electrode and source/drain region of the JS transistor are formed, the ion implantation mask must be patterned each time to form the channel dog and source/drain region that can be used for both threshold voltage and voltage. Therefore, if well formation is included, at least three or four lithography steps are required, which makes the manufacturing method complicated.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の相補型M(JSS集団回路製造方法は、第1お
よび第2導電型MOSトランンスターのゲート電極形成
後に、K+1記第1導電型MIJ8トランジスター領域
を第1の耐イオン注入性マスクで被い、前記第2導電型
MOS)ランシスターの基板部不別物添加およびソース
ドレイン領域形成のためのイオン注入を行うことと、前
記第1の耐イオン注入性マスクを除去後、前記第24電
型−yosトランジスター領域を第2の耐イオン注入性
マスクで被い、前記第14電型MOSトランジスターの
基板部不純物添加およびソース・ドレイン領域形成のた
めのイオン注入を行うことから構成される。
In the complementary M (JSS collective circuit manufacturing method of the present invention), after forming the gate electrodes of the first and second conductivity type MOS transistors, the K+1 first conductivity type MIJ8 transistor region is covered with a first ion implantation resistant mask. After performing ion implantation for doping the substrate portion of the second conductivity type MOS and forming source/drain regions of the second conductivity type MOS, and removing the first ion implantation resistant mask, the second conductivity type MOS -yos transistor region is covered with a second ion implantation resistant mask, and ion implantation is performed to add impurities to the substrate portion of the 14th voltage type MOS transistor and to form source/drain regions.

すなわち、素子分離領域およびゲート電極を形成後K、
これらの領域を貫いて高エネルギーイオン注入によりウ
ェル、チャンネルドープを、低エネルギーイオン注入に
よりソース・ドレイン領域形成を一つのマスクを用いて
行う。
That is, after forming the element isolation region and the gate electrode, K,
Through these regions, well and channel doping is performed by high-energy ion implantation, and source/drain regions are formed by low-energy ion implantation using one mask.

本発明の好ましい実施態様においては、チャンネルドー
プのイオン注入を異なるエネルギーで複数回行う。
In a preferred embodiment of the invention, channel doping ion implantations are performed multiple times at different energies.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図+a)〜tc)は本発明の一実施例の素子断面図
である。
1+a) to tc) are cross-sectional views of an element according to an embodiment of the present invention.

本実施例の説明においては、n型基板にpウェルを形成
する0MOSの場合について説明する。
In the explanation of this embodiment, a case of OMOS in which a p-well is formed on an n-type substrate will be explained.

p型基板にnウェルを形成する場合は、単にp型とn型
に変えるだけで良い。
When forming an n-well on a p-type substrate, it is sufficient to simply change the substrate to p-type and n-type.

第1図fa)において、n型シリコン基板1に例えば選
択数化法によって素子分離領域2を形成する。
In FIG. 1fa), an element isolation region 2 is formed on an n-type silicon substrate 1 by, for example, a selective numbering method.

遇択戚化法の代りに、暇化膜厚と同程度の深さの溝分離
を用いることができる。次にゲートば化膜3を成長し、
ゲート電極4を多結晶シリコンあるいは多結晶シリコン
とシリサイドの二層膜あるいはシリサイドあるいはメタ
ルで形成する。
As an alternative to the selective parallelization method, a groove separation with a depth comparable to the thickness of the thin film can be used. Next, a gate oxide film 3 is grown,
The gate electrode 4 is formed of polycrystalline silicon, a two-layer film of polycrystalline silicon and silicide, silicide, or metal.

次に第1図(b)に示すように%Pチャンネル側を第1
イオン注入マスク5で被う。マスク材とじては例えはフ
ォトレジスト膜あるいはアルミ等を用いる。nチャンネ
ルドーグ)ランシスターをn型基板上に形成するために
、ボロン注入によ、9Fウエル6を形成する。ボロン注
入は素子分離領域およびゲート電極を通して行なわれる
。このとき、ボロンのピーク濃度位置がシリコン基板内
部に存在するために、十分高いエネルギーでイオン注入
を行う必要がある。例えば素子分離領域の酸化膜の膜厚
が05μm1ゲート電極として05μm厚の多結晶シリ
コンを用いた場合には、注入エネルギーとして300K
eV8度以上望ましくは500KeV〜IMeV程贋が
必要となる。
Next, as shown in Figure 1(b), the %P channel side is
Cover with an ion implantation mask 5. For example, a photoresist film or aluminum is used as the mask material. In order to form an n-channel (Dog) run sister on an n-type substrate, a 9F well 6 is formed by boron implantation. Boron implantation is performed through the device isolation region and the gate electrode. At this time, since the peak concentration position of boron exists inside the silicon substrate, it is necessary to perform ion implantation with sufficiently high energy. For example, if the thickness of the oxide film in the element isolation region is 05 μm, and the gate electrode is made of polycrystalline silicon with a thickness of 05 μm, the implantation energy is 300 K.
A counterfeit voltage of eV 8 degrees or higher, preferably 500 KeV to IMeV, is required.

同一のマスク5を用いて、スレショルド電圧制御のため
のボロン注入によるチャンネルドープ7と、n+ソース
ドレイン領域8を形成するためのヒ素あるいはリン注入
を行う。Pウェル6を浅く形成すれは、チャンネルドー
プ7を行なわなくても、所望のスレショルド電圧を得る
ことが可能になる。
Using the same mask 5, channel doping 7 by boron implantation for threshold voltage control and arsenic or phosphorus implantation for forming n+ source/drain regions 8 are performed. By forming the P well 6 shallowly, a desired threshold voltage can be obtained without channel doping 7.

この様な場合には、チャンネルドープを省くことができ
る。しかし、一般にはチャンネルドープが必要になる。
In such a case, channel doping can be omitted. However, channel doping is generally required.

注入条件としては、ゲート電極4を通してイオン注入し
たとき、不純物のピーク位置がシリコン表面近傍に位置
するようにする。さらに、このチャンネルドーグは素子
分離領域のチャンネルストッパーとしても働くため、素
子分離領域でも不純物のピーク位置がシリコン表面近傍
に位置することが望ましい。例えば、ゲート電極として
厚さが05μmの多結晶シリコンを用い、素子分離領域
の酸化膜厚が05μmの場合には、200KeV程度で
ボロン注入を行えばよい。このとき、ソース・ドレイン
領域では、シリコン表面よシ約05μmの所にボロン濃
度のピークが存在する。
The implantation conditions are such that when ions are implanted through the gate electrode 4, the peak position of the impurity is located near the silicon surface. Furthermore, since this channel dog also functions as a channel stopper in the element isolation region, it is desirable that the peak position of impurities be located near the silicon surface even in the element isolation region. For example, if polycrystalline silicon with a thickness of 0.5 μm is used as the gate electrode and the oxide film thickness of the element isolation region is 0.5 μm, boron implantation may be performed at about 200 KeV. At this time, in the source/drain regions, a peak of boron concentration exists at a distance of approximately 05 μm from the silicon surface.

そこで、ソース・ドレインの接合深さを0.2μm程贋
種々るようにヒ素あるいはリンをイオン注入する。ソー
ス・ドレインのn+p接合はボロン濃度の高い所に存在
しないため、接合容量を低減できる。CM(J8の動作
速度は主としてを主容量への充放電時間で決まるから、
接合容量が小さくなることは高速化に有利である。
Therefore, arsenic or phosphorus ions are implanted so that the junction depth of the source and drain is varied by about 0.2 μm. Since the source/drain n+p junction does not exist in a location with a high boron concentration, the junction capacitance can be reduced. CM (The operating speed of J8 is mainly determined by the charging and discharging time to the main capacitor,
Reducing the junction capacitance is advantageous for increasing speed.

次に、第1図(C)に示すように、第1イオン注入マス
ク5を除去しnチャンネル側を第2イオン注入マスク9
で被う。マスク材としてはフォトレジスト膜あるいはア
ルミ等を用いる。n型基板を用いているため、通常はn
ウェルを形成する必要はない。もし、ラッチアップ耐性
やα腺によるソフトエラー耐性を向上させるためにnウ
ェルが有効な場合には、例えば700KeV程匿以上の
エネルギーでリンをイオン注入する。チャンネルドープ
10は、ゲート電極を通してリンをイオン注入したとき
、不純物のピーク位置がシリコン表面近傍に存在するこ
とが望ましい。例えばゲート電極として0.5μm厚の
多結晶シリコンの場合には、400KeV程度のエネル
ギーでリンをイオン注入する。
Next, as shown in FIG. 1C, the first ion implantation mask 5 is removed and the n-channel side is covered with a second ion implantation mask 9.
cover with A photoresist film, aluminum, or the like is used as the mask material. Since an n-type substrate is used, normally n
There is no need to form wells. If an n-well is effective for improving latch-up resistance and soft error resistance due to α glands, phosphorus ions are implanted at an energy higher than 700 KeV, for example. In the channel dope 10, when ion implantation of phosphorus is performed through the gate electrode, it is desirable that the impurity peak position exists near the silicon surface. For example, in the case of polycrystalline silicon with a thickness of 0.5 μm as the gate electrode, phosphorus ions are implanted at an energy of about 400 KeV.

このとき素子分離領域の酸化膜厚が0.5μn1ならば
、素子分離領域ではシリコン赦化膜界面近傍にリンのピ
ーク濃度が存在することになるから、チャンネルストッ
パーとしても有効に働く。Pソース・ドレイン領域11
ではシリコン表面より+Fl O,5μmの所にリンの
ピーク濃度が存在する。従って、ソース・ドレイン11
、として例えばBP、注入を行い02μm程度の接合を
形成すれば、P”n接合は低磯歴の所に存在することに
なるから、接合容量を低減できる。
At this time, if the oxide film thickness in the element isolation region is 0.5 .mu.n1, the peak concentration of phosphorus exists in the vicinity of the silicon forgiving film interface in the element isolation region, so that it also functions effectively as a channel stopper. P source/drain region 11
In this case, the peak concentration of phosphorus exists at +FlO, 5 μm from the silicon surface. Therefore, the source/drain 11
If, for example, BP is implanted to form a junction with a thickness of about 0.2 μm, the P''n junction will be present at a location with a low surface roughness, so that the junction capacitance can be reduced.

次に第1図1d)に示すように、pウェル6のコンタク
トを取る以外の領域を第3イオン注入マスクで覆い、P
領域13を形成するため12ポロンをイオン注入する。
Next, as shown in FIG. 1 d), the area other than the contact area of the p-well 6 is covered with a third ion implantation mask, and the p-well 6 is covered with a third ion implantation mask.
To form region 13, 12 polons are ion-implanted.

次いで第1図(e)K示すように、層間膜14を成長し
、コンタクトを開孔した後記ffM15を行う。
Next, as shown in FIG. 1(e)K, an interlayer film 14 is grown and contacts are formed in ffM15, which will be described later.

以後通常のCMOSプロセスにょシ集横回路を実現でき
る。
Thereafter, an integrated horizontal circuit can be realized using a normal CMOS process.

本発明の他の実施例を第2図に示す。第2図(a)はシ
リコン11/二酸化シリコン12/シリコン13の3層
構造を有するSOI基板を示し、同図(b)に同図(a
)の基板を用いた実施例を示し、対応する部分は同一の
参照番号で乍!。各トランジスタは他のトランジスター
と電黴的に完全に分離されるため、ウェル領域を接地す
るだめのコンタクト部の形成が不要になる。
Another embodiment of the invention is shown in FIG. FIG. 2(a) shows an SOI substrate having a three-layer structure of silicon 11/silicon dioxide 12/silicon 13, and FIG.
), and corresponding parts have the same reference numbers! . Since each transistor is completely electrically isolated from other transistors, there is no need to form a contact portion to ground the well region.

第3図に、nチャンネルMOSトランジスターのチャン
ネル領域、ソース・ドレイ/領域それに素子分離領域の
不純物分布を示す。この例では、pつエルは600Ke
Vでl X I Ql3(m−”ボ07を、f−w7ネ
ル’r’−v”Kti、200KeVで2x10”cm
 2ボロンを、ソース、・ドレインにはASを7QKe
Vで2 X I Q”c!IL−″2イオン注入してい
る。基板はリンがl X I Ql”(m 3ドープさ
れたn型基板を用いている。
FIG. 3 shows the impurity distribution in the channel region, source/drain/region, and element isolation region of an n-channel MOS transistor. In this example, pEl is 600Ke
V at l
2 boron, AS for source and drain, 7QKe
2×IQ”c!IL-”2 ions are implanted at V. The substrate used is an n-type substrate doped with phosphorus in the form of lXIQl'' (m3).

600KeVの高エネルギーボロン注入によシ表面11
1[が低い理想的なりエル不純物分布が実現されている
。ソース・ドレイン領域では、チャンネルドープが沫く
入るため、ヒ素注入によるn+ソース・ドレインは低濃
度部分で接合を形成する。従って、接合容量が減少する
。小さな接合容量は、高速動作に有利である。素子分離
領域では、チャンネルドープによシ十分高い表面濃度が
得られており、畜生チャンネルの発生が防止されている
The surface 11 was implanted with high energy boron at 600 KeV.
An ideal impurity distribution with a low value of 1 is achieved. In the source/drain regions, since the channel dope penetrates, the n+ source/drain formed by arsenic implantation forms a junction in the low concentration portion. Therefore, the junction capacitance is reduced. Small junction capacitance is advantageous for high speed operation. In the element isolation region, a sufficiently high surface concentration is obtained by channel doping, and the generation of nuisance channels is prevented.

第1図に示した実施例では、n型基板にpウェルを形成
している。本発明は、これに限ることはなく、n型基板
にpウェルおよびnウェル、あるいはp型基板にpウェ
ルおよびnウェルを形成する場合でも、イオン注入を適
宜変更するだけで良い。
In the embodiment shown in FIG. 1, a p-well is formed in an n-type substrate. The present invention is not limited to this, and even when forming a p-well and an n-well on an n-type substrate, or a p-well and an n-well on a p-type substrate, it is only necessary to change the ion implantation as appropriate.

本発明の製造方法では、ゲート電極を通してチャンネル
ドープを行う。そのため、ゲート電極膜中の変動が直接
スレショルド電圧を変動させる。
In the manufacturing method of the present invention, channel doping is performed through the gate electrode. Therefore, variations in the gate electrode film directly vary the threshold voltage.

これを解決するために、多重チャンネルドープを行う。To solve this problem, multi-channel doping is performed.

異なるエネルギーで多重チャンネル注入を行うと、ゲー
ト電極膜厚変動に強いチャンネルドーピングを行うこと
ができる。第4図に、−回注入と三重注入の場合につい
て、ゲート電極膜厚の変動がスレショルド電圧に及ぼす
影響を比較して示す。三重注入により、スレショルド電
圧変動は著しく改善される。
Multi-channel implantation with different energies allows channel doping to be resistant to variations in gate electrode thickness. FIG. 4 shows a comparison of the effects of variations in gate electrode film thickness on the threshold voltage in the cases of -times implantation and triple implantation. With triple implantation, the threshold voltage variation is significantly improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、7枚のマスクだけで0M
OSを製造できる。さらに、ソース・ドレイン拡散層の
畜生容1゛が減少するため、動作速度が早くなるという
効果がある。また、本発明におけるウェルは、基板内部
に不純物一度のピークがくるため、ウェル不純物総量を
従来型ウェルよりも多くできる。しかも、ウェルは浅い
ため横方向への広がりも少ない。従って、微細化に有利
であり、ラッチアップ耐性が高いという効果がある。
As explained above, the present invention can achieve 0M using only 7 masks.
OS can be manufactured. Furthermore, since the storage volume of the source/drain diffusion layer is reduced, the operating speed is increased. Further, in the well according to the present invention, since the impurity peak occurs once inside the substrate, the total amount of impurities in the well can be larger than in the conventional well. Moreover, since the well is shallow, there is little lateral spread. Therefore, it is advantageous for miniaturization and has the effect of high latch-up resistance.

本発明罠よる製造方法を用いることにより、高速で高密
度な0MOSが短かい製造工程で実現できる。
By using the manufacturing method according to the present invention, a high-speed, high-density 0MOS can be realized in a short manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための素子断面図、第
2図ta) 、 tb)は本発明の他の実施例を示す断
面図、第3図は本発明を用いて製造された0MOSの不
純物分布図、第4図は本発明の詳細な説明するだめのグ
ラフである。 1・・・・・・n型/リコン基板、2・・・・・・素子
分離領域、3・・・・・・ゲート醒化膜、4・・・・・
・ゲート電極、5・・・・・第1イオン注入マスク、6
・・・・・・pウェル、7・・・・・・チャンネルドー
プ、8・・・・・・n+ソース・ドレイ/、9・・・・
・・第2イオン注入マスク、10・・・・・・チャンネ
ルドープ、11・・・・・・p+ソース・ドレイン、1
2・・・・・・第3イオン注入マスク、13・・・・・
・P+領域、14・・・・・・層間膜、15・・・・・
・配縁。 代理人 弁理士  内 原   晋 竿 t 図 ELL $ 2 図 ! シリボン替玉( 斥) (μボ)
FIG. 1 is a cross-sectional view of an element for explaining the present invention in detail, FIG. 2 (ta) and tb) are cross-sectional views showing other embodiments of the present invention, and FIG. The impurity distribution diagram of 0MOS, FIG. 4, is a graph which is sufficient to explain the present invention in detail. 1...N-type/recon substrate, 2...Element isolation region, 3...Gate formation film, 4...
・Gate electrode, 5...First ion implantation mask, 6
...p-well, 7...channel dope, 8...n+ source drain/, 9...
...Second ion implantation mask, 10...Channel doping, 11...P+ source/drain, 1
2...Third ion implantation mask, 13...
・P+ region, 14... Interlayer film, 15...
・Marriage. Agent Patent Attorney Shinkan Uchihara t Figure ELL $ 2 Figure! Siribon Kaedama (斥) (μBO)

Claims (3)

【特許請求の範囲】[Claims] (1)単結晶シリコン基板の一主面に、第1導電型およ
び第2導電型MOSトランジスターから成る相補型MO
S集積回路を形成するに当り、前記第1および第2導電
型MOSトランジスターのゲート電極形成後に、前記第
1導電型MOSトランジスター領域を第1の耐イオン注
入性マスクで被い、前記第2導電型MOSトランジスタ
ーの基板部不純物添加およびソースドレイン領域形成の
ためのイオン注入を行う工程と、前記第1の耐イオン注
入性マスクを除去後、前記第2導電型MOSトランジス
ター領域を第2の耐イオン注入性マスクで被い、前記第
1導電型MOSトランジスターの基板部不純物添加およ
びソースドレイン領域形成のためのイオン注入を行う工
程を有することを特徴とする相補型MOS集積回路の製
造方法。
(1) Complementary MO consisting of a first conductivity type and a second conductivity type MOS transistor on one main surface of a single crystal silicon substrate
In forming the S integrated circuit, after forming the gate electrodes of the first and second conductivity type MOS transistors, the first conductivity type MOS transistor region is covered with a first ion implantation resistant mask, and the second conductivity type MOS transistor region is covered with a first ion implantation resistant mask. A process of adding impurities to the substrate of a type MOS transistor and performing ion implantation for forming a source/drain region, and after removing the first ion implantation resistant mask, implanting the second conductivity type MOS transistor region into a second ion implantation resistant mask. A method for manufacturing a complementary MOS integrated circuit, comprising the step of covering with an implantation mask and performing ion implantation for doping a substrate portion of the first conductivity type MOS transistor and forming a source/drain region.
(2)前記ゲート電極の厚みと前記相補型MOS集積回
路の素子分離領域の厚みが、ボロンあるいはリンが或る
エネルギーでイオン注入されたときの前記ゲート電極中
の飛程および前記素子分離領域中の飛程と概略一致して
いることを特徴とする特許請求の範囲第(1)記載の相
補型MOS集積回路の製造方法。
(2) The thickness of the gate electrode and the thickness of the element isolation region of the complementary MOS integrated circuit are determined by the range in the gate electrode and the thickness in the element isolation region when boron or phosphorus is ion-implanted with a certain energy. A method for manufacturing a complementary MOS integrated circuit according to claim 1, wherein the range is approximately the same as the range of .
(3)前記第1および第2導電型MOSトランジスタの
基板部不純物添加のためのイオン注入を異なるエネルギ
ーで複数回行うことを特徴とする特許請求の範囲第(1
)項記載の相補型MOS集積回路の製造方法。
(3) Ion implantation for adding impurities to the substrate portions of the first and second conductivity type MOS transistors is performed multiple times at different energies.
) A method for manufacturing a complementary MOS integrated circuit according to item 1.
JP61054256A 1985-08-30 1986-03-11 Manufacture of complementary mos integrated circuit Pending JPS62149163A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-192536 1985-08-30
JP19253685 1985-08-30

Publications (1)

Publication Number Publication Date
JPS62149163A true JPS62149163A (en) 1987-07-03

Family

ID=16292906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054256A Pending JPS62149163A (en) 1985-08-30 1986-03-11 Manufacture of complementary mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS62149163A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484747A (en) * 1987-09-28 1989-03-30 Nec Corp Manufacture of semiconductor device
JPH01220858A (en) * 1988-02-29 1989-09-04 Sony Corp Manufacture of semiconductor device
JPH0227760A (en) * 1988-07-15 1990-01-30 Sony Corp Manufacture of semiconductor device
US4950616A (en) * 1988-07-13 1990-08-21 Samsung Electronics Co., Ltd. Method for fabricating a BiCMOS device
JPH0645434A (en) * 1992-07-27 1994-02-18 Nec Corp Manufacture of mos semiconductor device
JPH0846058A (en) * 1994-08-01 1996-02-16 Nec Corp Manufacture of mos semiconductor device
US5804497A (en) * 1996-08-07 1998-09-08 Advanced Micro Devices, Inc. Selectively doped channel region for increased IDsat and method for making same
US5830789A (en) * 1996-11-19 1998-11-03 Integrated Device Technology, Inc. CMOS process forming wells after gate formation
JP2007234878A (en) * 2006-03-01 2007-09-13 Toshiba Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743456A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Manufacture of cmos integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743456A (en) * 1980-08-29 1982-03-11 Fujitsu Ltd Manufacture of cmos integrated circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484747A (en) * 1987-09-28 1989-03-30 Nec Corp Manufacture of semiconductor device
JPH01220858A (en) * 1988-02-29 1989-09-04 Sony Corp Manufacture of semiconductor device
US4950616A (en) * 1988-07-13 1990-08-21 Samsung Electronics Co., Ltd. Method for fabricating a BiCMOS device
JPH0227760A (en) * 1988-07-15 1990-01-30 Sony Corp Manufacture of semiconductor device
JPH0645434A (en) * 1992-07-27 1994-02-18 Nec Corp Manufacture of mos semiconductor device
JPH0846058A (en) * 1994-08-01 1996-02-16 Nec Corp Manufacture of mos semiconductor device
US5571745A (en) * 1994-08-01 1996-11-05 Nec Corporation Fabrication method of semiconductor device containing n- and p-channel MOSFETs
US5804497A (en) * 1996-08-07 1998-09-08 Advanced Micro Devices, Inc. Selectively doped channel region for increased IDsat and method for making same
US5830789A (en) * 1996-11-19 1998-11-03 Integrated Device Technology, Inc. CMOS process forming wells after gate formation
JP2007234878A (en) * 2006-03-01 2007-09-13 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
Snoeys et al. A new NMOS layout structure for radiation tolerance
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US5354699A (en) Method of manufacturing semiconductor integrated circuit device
US6297082B1 (en) Method of fabricating a MOS transistor with local channel ion implantation regions
JP2002329793A (en) Semiconductor device and its manufacturing method
US6879006B2 (en) MOS transistor and method for fabricating the same
CN101326640A (en) CMOS device with zero soft error rate
JPS62174966A (en) Manufacture of semiconductor device
JPH07183393A (en) Fabrication of semiconductor device
JP3227983B2 (en) Semiconductor device and manufacturing method thereof
US20020182793A1 (en) Transistors having selectively doped channel regions
JP3031880B2 (en) Semiconductor device and manufacturing method thereof
JPH0348457A (en) Semiconductor device and manufacture thereof
US20020017640A1 (en) Method of manufacturing semiconductor device
US6396100B2 (en) Efficient fabrication process for dual well type structures
JPH1070250A (en) Semiconductor device and method of fabricating the same
JPS62149163A (en) Manufacture of complementary mos integrated circuit
JPH08186179A (en) Complementary semiconductor device
JP2745228B2 (en) Semiconductor device and manufacturing method thereof
JP2001284540A (en) Semiconductor device and its manufacturing method
JPS6035558A (en) Semiconductor integrated circuit device and manufacture thereof
JP3462886B2 (en) Semiconductor device
JPH08288465A (en) Static electricity protecting element
JP2605757B2 (en) Method for manufacturing semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method