JPH0413861B2 - - Google Patents

Info

Publication number
JPH0413861B2
JPH0413861B2 JP62048807A JP4880787A JPH0413861B2 JP H0413861 B2 JPH0413861 B2 JP H0413861B2 JP 62048807 A JP62048807 A JP 62048807A JP 4880787 A JP4880787 A JP 4880787A JP H0413861 B2 JPH0413861 B2 JP H0413861B2
Authority
JP
Japan
Prior art keywords
semiconductor region
semiconductor
type
region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62048807A
Other languages
Japanese (ja)
Other versions
JPS63216370A (en
Inventor
Koichi Kitahara
Yosuke Takagi
Tamotsu Oohata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62048807A priority Critical patent/JPS63216370A/en
Publication of JPS63216370A publication Critical patent/JPS63216370A/en
Publication of JPH0413861B2 publication Critical patent/JPH0413861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は素子間分離を必要とする半導体装置
に係わり、例えば、高出力トランジスタを含むモ
ノリシツク集積回路に好適な半導体装置に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device that requires isolation between elements, and for example, relates to a semiconductor device suitable for a monolithic integrated circuit including high-output transistors. .

(従来の技術) 大出力トランジスタを含むモノリシツク集積回
路においては、従来、一般に大出力トランジスタ
のコレクタ電極を半導体チツプの表面から取り出
すようになつている。
(Prior Art) Conventionally, in a monolithic integrated circuit including a high-output transistor, the collector electrode of the high-output transistor is generally taken out from the surface of a semiconductor chip.

しかし、こにような構成では、半導体チツプの
面積が大きくなるという問題がある。
However, such a configuration has a problem in that the area of the semiconductor chip becomes large.

この問題を解決するために、第4図に示すよう
なモノリシツク集積回路が考えられている。図示
のモノリシツク集積回路は、N+型の半導体基板
11の所定の位置に、N型の第1の埋込み層12
を形成した後、P型のシリコン単結晶をエピタキ
シヤル成長させる。次に、このエピタキシヤル層
13の表面から所定の位置にN型の第2の埋込み
層14を形成後、N型のエピタキシヤル層15を
成長させる。最後に、P+型の拡散層16により、
PN分離を行なつている。
In order to solve this problem, a monolithic integrated circuit as shown in FIG. 4 has been considered. The illustrated monolithic integrated circuit includes an N type first buried layer 12 at a predetermined position of an N + type semiconductor substrate 11.
After forming, a P-type silicon single crystal is epitaxially grown. Next, after forming an N-type second buried layer 14 at a predetermined position from the surface of this epitaxial layer 13, an N-type epitaxial layer 15 is grown. Finally, due to the P + type diffusion layer 16,
Performing PN separation.

上記構成においては、N型のエピタキシヤル層
15のうち、P+型の拡散層16とP型のエピタ
キシヤル層13によつて分離された島領域17に
は、小信号トランジスタ等が形成され、N+型の
シリコン半導体基板11に電気的につながるN型
のエピタキシヤル層18には大出力トランジスタ
が形成される。したがつて、大出力トランジスタ
のコレクタ電極を半導体チツプの表面から取り出
さなくてもよいので、半導体チツプの面積を小さ
くすることができる。
In the above structure, a small signal transistor or the like is formed in the island region 17 of the N type epitaxial layer 15 separated by the P + type diffusion layer 16 and the P type epitaxial layer 13. A high output transistor is formed in the N type epitaxial layer 18 electrically connected to the N + type silicon semiconductor substrate 11. Therefore, since it is not necessary to take out the collector electrode of the high output transistor from the surface of the semiconductor chip, the area of the semiconductor chip can be reduced.

しかし、このような構成では、P+型の拡散層
16が必要であり、このP+型の拡散層を形成す
るときに、縦方向とほぼ同じ横方向の拡散が不可
避的に発生し、チツプ面積の増大を招くという問
題が生じる。
However, in such a configuration, a P + type diffusion layer 16 is required, and when forming this P + type diffusion layer, diffusion in the lateral direction, which is almost the same as the vertical direction, inevitably occurs, and the chip A problem arises in that the area increases.

また、島領域17とN型のエピタキシヤル層1
8とが同じエピタキシヤル成長によつて同時に形
成されるので、両者の不純物濃度が同じになり、
それぞれに作り込む半導体素子の特性に合つた不
純物濃度を設定できないという問題がある。
In addition, the island region 17 and the N-type epitaxial layer 1
8 are formed at the same time by the same epitaxial growth, so the impurity concentration of both is the same,
There is a problem in that it is not possible to set an impurity concentration that matches the characteristics of each semiconductor element to be manufactured.

(発明が解決しようとする問題点) 以上述べたように、大出力トランジスタのコレ
クタ電極を半導体チツプの裏面から取り出せるよ
うにした従来の半導体装置においては、PN分離
によつてチツプ面積の拡大を招くという問題や各
半導体領域において、それぞれに作り込まれる素
子に合つた不純物濃度を設定することができない
という問題があつた。
(Problems to be Solved by the Invention) As described above, in conventional semiconductor devices in which the collector electrode of a high-output transistor can be taken out from the back side of a semiconductor chip, PN separation causes an increase in the chip area. There was a problem that it was not possible to set an impurity concentration suitable for each element to be manufactured in each semiconductor region.

この発明は上述したような問題を解決すること
ができる半導体装置を提供することを目的とす
る。
An object of the present invention is to provide a semiconductor device that can solve the above-mentioned problems.

[発明の構成] (問題点を解決するための手段) 第1の導電型の第1の半導体領域の上に第2の
導電型の第2の半導体領域を形成し、この第2の
半導体領域に、その表面から上記第1の半導体領
域に至る第1の導電型の第3の半導体領域と、上
記第1の半導体領域に達する前の所定の位置まで
形成された第4の半導体領域とを形成している。
そして、上記第3の半導体領域に、この第3の半
導体領域と上記第1の半導体領域とを通電する第
1の半導体素子を形成し、上記第4の半導体領域
に、この第4の半導体領域のみを通電する第2の
半導体素子を形成するようにし、かつ上記第2の
半導体領域を、上記第1の半導体素子と第2の半
導体素子とを互いに分離する領域として構成して
いる。
[Structure of the Invention] (Means for Solving the Problems) A second semiconductor region of a second conductivity type is formed on a first semiconductor region of a first conductivity type, and the second semiconductor region a third semiconductor region of the first conductivity type extending from the surface thereof to the first semiconductor region; and a fourth semiconductor region formed to a predetermined position before reaching the first semiconductor region. is forming.
A first semiconductor element that conducts current between the third semiconductor region and the first semiconductor region is formed in the third semiconductor region, and a first semiconductor element that conducts electricity between the third semiconductor region and the first semiconductor region is formed in the fourth semiconductor region. A second semiconductor element is formed that only conducts current, and the second semiconductor region is configured as a region that separates the first semiconductor element and the second semiconductor element from each other.

(作 用) 上記構成によれば、横方向のPN分離が第2の
導電型の拡散層によつてなされることがないの
で、PN分離に伴うチツプ面積の拡大を防止する
ことができる。
(Function) According to the above configuration, since PN separation in the lateral direction is not performed by the second conductivity type diffusion layer, it is possible to prevent the chip area from increasing due to PN separation.

また、第3の半導体領域と第4の半導体領域と
は個別に形成されているので、作り込む半導体素
子の特性に合つた不純物濃度を設定することがで
きる。
Further, since the third semiconductor region and the fourth semiconductor region are formed separately, the impurity concentration can be set to match the characteristics of the semiconductor element to be manufactured.

(実施例) 以下、図面を参照してこの発明の一実施例を詳
細に説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図a〜cはこの発明に係わる半導体装置の
一実施例の製造工程を示す断面図である。
FIGS. 1a to 1c are cross-sectional views showing the manufacturing process of an embodiment of a semiconductor device according to the present invention.

まず、第1図aにおいては、N+型の半導体基
板(比抵抗0〜0.015Ωcm、厚さ300〜500μm)の
表面に、P型のシリコン(比抵抗5〜20Ωcm)を
約20〜30μmエピタキシヤル成長させ、エピタキ
シヤル層22を形成する。
First, in Fig. 1a, P-type silicon (specific resistance 5-20 Ωcm) is epitaxially deposited to a thickness of about 20-30 μm on the surface of an N + type semiconductor substrate (specific resistance 0-0.015 Ωcm, thickness 300-500 μm). Then, the epitaxial layer 22 is formed.

次に、第1図bでは、P型のエピタキシヤル層
22の表面からN型の不純物を選択拡散し、N型
の半導体領域23を形成する。この時、N型の半
導体領域23はN+型シリコン半導体基板21と
つながるようにする。
Next, in FIG. 1B, N-type impurities are selectively diffused from the surface of the P-type epitaxial layer 22 to form an N-type semiconductor region 23. At this time, the N type semiconductor region 23 is connected to the N + type silicon semiconductor substrate 21.

最後に、第1図cにおいては、P型のエピタキ
シヤル層22の表面からN型の不純物を選択拡散
し、N型の半導体領域24を形成する。但し、こ
の場合は、上記N型の半導体領域23とは異な
り、p型のシリコン半導体基板21につながらな
いようにする。これにより、N型の半導体領域2
4は、P型のエピタキシヤル層22に囲まれた島
領域となる。
Finally, in FIG. 1c, N-type impurities are selectively diffused from the surface of the P-type epitaxial layer 22 to form an N-type semiconductor region 24. However, in this case, unlike the N-type semiconductor region 23 described above, it should not be connected to the P-type silicon semiconductor substrate 21. As a result, the N-type semiconductor region 2
4 is an island region surrounded by a P-type epitaxial layer 22.

第2図は上記構成をもつ半導体装置に素子を作
り込んだ場合の断面構造を示す。
FIG. 2 shows a cross-sectional structure when an element is built into a semiconductor device having the above structure.

なお、第2図では、島領域となるN型エピタキ
シヤル層24として24a,24bの2つを示
す。
In FIG. 2, two N-type epitaxial layers 24a and 24b are shown as the island regions.

P型のエピタキシヤル層22からN+型のシリ
コン半導体基板21につながるN型の半導体領域
23に形成される素子は、例えばパワー素子とし
て良く知られるD−MOS型の電界効果トランジ
スタ(以下、FETと記す)である。ここで、2
51はベースであり、252はソースであり、2
53はゲートである。
The elements formed in the N-type semiconductor region 23 that connects the P-type epitaxial layer 22 to the N + type silicon semiconductor substrate 21 are, for example, D-MOS field effect transistors (hereinafter referred to as FETs), which are well known as power elements. ). Here, 2
51 is the base, 252 is the source, 2
53 is a gate.

また、一方のN型の半導体領域24aには、例
えば、耐圧をさほど必要としないNPN型のバイ
ポーラトランジスタ26が形成されている。ここ
で、261はこのトランジスタ26のベースであ
り、262はエミツタであり、263はコレクタ
である。他方のN型の半導体領域24bには、P
チヤンネルMOSFET27とNチヤンネル
MOSFET28が形成されている。ここで、27
1,281は各FET27,28のソースであり、
272,282は同じくドレインであり、27
3,283は同じくゲートである。
Further, in one of the N-type semiconductor regions 24a, for example, an NPN-type bipolar transistor 26 that does not require much breakdown voltage is formed. Here, 261 is the base of this transistor 26, 262 is the emitter, and 263 is the collector. In the other N type semiconductor region 24b, P
Channel MOSFET27 and N channel
A MOSFET 28 is formed. Here, 27
1,281 is the source of each FET27, 28,
272 and 282 are also drains, and 27
3,283 is also a gate.

なお、上記FET25,27,28やバイポー
ラトランジスタ29は詳細は省略するが、周知の
方法で作られるものである。
Although details of the FETs 25, 27, and 28 and the bipolar transistor 29 are omitted, they are manufactured by a well-known method.

29は半導体チツプの表面に形成された絶縁膜
であり、30は半導体チツプの裏面に形成された
上記D−MOS型FETのドレイン電極として使わ
れる導電体層である。
29 is an insulating film formed on the front surface of the semiconductor chip, and 30 is a conductive layer formed on the back surface of the semiconductor chip used as the drain electrode of the D-MOS type FET.

以上述べたようにこの実施例は、P型のエピタ
キシヤル層22にN型の不純物を選択拡散するこ
とにより、N型の半導体領域23,24を形成す
るようにしたものである。したがつて、この実施
例によれば、横方向PN分離をP+型の拡散層16
を使つて行なう従来の半導体装置と違つて、例え
ば、第2図に示すxの距離を小さくすることがで
き、横方向のPN分離に伴うチツプ面積の拡大を
防ぐことができる。
As described above, in this embodiment, N-type semiconductor regions 23 and 24 are formed by selectively diffusing N-type impurities into the P-type epitaxial layer 22. Therefore, according to this embodiment, the lateral PN separation is performed using the P + type diffusion layer 16.
Unlike a conventional semiconductor device using a semiconductor device, for example, the distance x shown in FIG. 2 can be made small, and the chip area can be prevented from increasing due to lateral PN separation.

また、各N型の半導体領域23,24を拡散に
より個別に形成することにより、各半導体領域2
3,24の不純物濃度を別々に設定することがで
き、作り込む素子の特性に合つた不純物濃度を設
定することができる。
In addition, by forming each N-type semiconductor region 23 and 24 individually by diffusion, each semiconductor region 2
The impurity concentrations of 3 and 24 can be set separately, and the impurity concentrations can be set to match the characteristics of the device to be manufactured.

さらに、N型の半導体領域23,24を、P型
のエピタキシヤル層22の表面からの不純物の拡
散によつて形成しているので、半導体領域23,
24の表面積が広くなり、表面を使用する半導体
素子に好都合な半導体領域を設定することができ
る。
Furthermore, since the N-type semiconductor regions 23 and 24 are formed by diffusion of impurities from the surface of the P-type epitaxial layer 22, the semiconductor regions 23 and
The surface area of 24 is increased, and a convenient semiconductor region can be set for a semiconductor device using the surface.

第3図はこの発明の他の実施例の構成を示す断
面図である。先の実施例では、P型のエピタキシ
ヤル層22の表面からN型のシリコン半導体基板
21まで形成される半導体領域23を不純物の拡
散だけで形成する場合を説明したが、この実施例
では、N+型埋め込み層311と不純物の拡散層
312を使つて形成するにしたものである。すな
わち、まず、P型のエピタキシヤル層22を形成
する前に、N+型のシリコン半導体基板21の上
にN+型の埋め込み層311を形成する。次に、
P型のエピタキシヤル層22を形成した後、その
表面からN+の埋込み層311につなげるように、
不純物を拡散し、拡散層312に形成する。
FIG. 3 is a sectional view showing the structure of another embodiment of the present invention. In the previous embodiment, a case was explained in which the semiconductor region 23 from the surface of the P-type epitaxial layer 22 to the N-type silicon semiconductor substrate 21 was formed only by diffusion of impurities. It is formed using a + type buried layer 311 and an impurity diffusion layer 312. That is, first, before forming the P-type epitaxial layer 22, an N + -type buried layer 311 is formed on the N + -type silicon semiconductor substrate 21. next,
After forming the P-type epitaxial layer 22, connect it to the N + buried layer 311 from its surface.
An impurity is diffused to form a diffusion layer 312.

このような構成によれば、先の実施例と同様の
効果を得ることができることは勿論、さらに、半
導体領域31を形成するための不純物の拡散時間
を短縮することができる。また、半導体領域31
の厚みを厚くすることができるので、高耐圧半導
体素子の搭載が可能となる。
According to such a configuration, it is possible to obtain the same effects as in the previous embodiment, and furthermore, it is possible to shorten the diffusion time of impurities for forming the semiconductor region 31. In addition, the semiconductor region 31
Since the thickness can be increased, it is possible to mount a high voltage semiconductor element.

以上この発明の実施例をいくつか説明したが、
この発明はこのような実施例に限定されるもので
はなく、他にも、発明の要旨を逸脱しない範囲で
種々様々変形実施可能なことは勿論である。
Several embodiments of this invention have been described above, but
It goes without saying that the present invention is not limited to these embodiments, and that various other modifications can be made without departing from the gist of the invention.

[発明の効果] 以上述べたようにこの発明によれば、横方向の
PN分離に伴うチツプ面積の拡大を防止すること
ができるとともに、それぞれの半導体領域におい
て、作り込む半導体素子の特性に合つた不純物濃
度を設定することができる半導体装置を提供する
ことができる。
[Effect of the invention] As described above, according to this invention, horizontal
It is possible to provide a semiconductor device in which it is possible to prevent the chip area from increasing due to PN separation, and in which impurity concentrations can be set in each semiconductor region to match the characteristics of the semiconductor element to be fabricated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係わる半導体装置の一実施
例の製造工程を示す断面図、第2図は第1図で説
明した半導体装置に半導体素子を作り込んだ状態
を示す断面図、第3図はこの発明に係わる半導体
装置の他の実施例の構成を示す断面図、第4図は
従来の半導体装置の構成を示す断面図である。 21…N型のシリコン半導体基板、22…P型
のエピタキシヤル層、23,24,24a,24
b,31…N型の半導体領域、25…D−
MOSFET、26…NPN型のバイポーラトランジ
スタ、27,28…MOSFET、29…絶縁層、
30…導電体層、311…N+型の埋込み層、3
12…N型の拡散層。
FIG. 1 is a cross-sectional view showing the manufacturing process of an embodiment of a semiconductor device according to the present invention, FIG. 2 is a cross-sectional view showing a state in which a semiconductor element is built into the semiconductor device explained in FIG. 1, and FIG. 4 is a cross-sectional view showing the structure of another embodiment of the semiconductor device according to the present invention, and FIG. 4 is a cross-sectional view showing the structure of a conventional semiconductor device. 21... N-type silicon semiconductor substrate, 22... P-type epitaxial layer, 23, 24, 24a, 24
b, 31...N-type semiconductor region, 25...D-
MOSFET, 26... NPN type bipolar transistor, 27, 28... MOSFET, 29... Insulating layer,
30...Conductor layer, 311...N + type buried layer, 3
12...N type diffusion layer.

Claims (1)

【特許請求の範囲】 1 第1の導電型の第1の半導体領域と、 この第1の半導体領域の上に形成された第2の
導電型の第2の半導体領域と、 この第2の半導体領域に、その表面から上記第
1の半導体領域に至るように形成された第1の導
電型の第3の半導体領域と、 上記第2の半導体領域に、その表面から上記第
1の半導体領域に達する前の所定の位置まで形成
された第4の半導体領域と、 を具備し、上記第3の半導体領域に、この第3の
半導体領域と上記第1の半導体領域とを通電する
第1の半導体素子を形成し、 上記第4の半導体領域に、この第4の半導体領
域のみを通電する第2の半導体素子を形成し、 上記第2の半導体領域を、上記第1の半導体素
子と第2の半導体素子とを互いに分離する領域と
して構成したことを特徴とする半導体装置。 2 上記第3の半導体領域は、不純物の拡散によ
り形成されていることを特徴とする特許請求の範
囲第1項記載の半導体装置。 3 上記第3の半導体領域は、 上記第1の半導体領域の表面に形成された第1
の導電型の埋め込み層と、 上記第2の半導体領域に、その表面から上記第
1の導電型の埋め込み層に至るように形成された
拡散層と、 を具備したことを特徴とする特許請求の範囲第1
項記載の半導体装置。
[Claims] 1: a first semiconductor region of a first conductivity type; a second semiconductor region of a second conductivity type formed on the first semiconductor region; and a second semiconductor region of the second conductivity type. a third semiconductor region of the first conductivity type formed in the region from the surface thereof to the first semiconductor region; and a third semiconductor region of the first conductivity type formed in the second semiconductor region from the surface to the first semiconductor region. a fourth semiconductor region formed to a predetermined position before reaching the third semiconductor region; and a first semiconductor that conducts current between the third semiconductor region and the first semiconductor region. forming a second semiconductor element in the fourth semiconductor region that conducts electricity only in the fourth semiconductor region; A semiconductor device characterized in that it is configured as a region that separates a semiconductor element from each other. 2. The semiconductor device according to claim 1, wherein the third semiconductor region is formed by diffusion of impurities. 3 The third semiconductor region includes a first semiconductor region formed on the surface of the first semiconductor region.
and a diffusion layer formed in the second semiconductor region from the surface thereof to the buried layer of the first conductivity type. Range 1
1. Semiconductor device described in Section 1.
JP62048807A 1987-03-05 1987-03-05 Semiconductor device Granted JPS63216370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048807A JPS63216370A (en) 1987-03-05 1987-03-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048807A JPS63216370A (en) 1987-03-05 1987-03-05 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63216370A JPS63216370A (en) 1988-09-08
JPH0413861B2 true JPH0413861B2 (en) 1992-03-11

Family

ID=12813479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048807A Granted JPS63216370A (en) 1987-03-05 1987-03-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63216370A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143454A (en) * 1988-11-25 1990-06-01 Hitachi Ltd Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155768A (en) * 1981-03-23 1982-09-25 Hitachi Ltd Semiconductor integrated circuit device
JPS5835978A (en) * 1981-08-28 1983-03-02 Fujitsu Ltd Semiconductor device
JPS6017943A (en) * 1983-07-08 1985-01-29 Matsushita Electronics Corp Manufacture of semiconductor device
JPS60258949A (en) * 1985-01-04 1985-12-20 Nec Corp Complementary field effect semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155768A (en) * 1981-03-23 1982-09-25 Hitachi Ltd Semiconductor integrated circuit device
JPS5835978A (en) * 1981-08-28 1983-03-02 Fujitsu Ltd Semiconductor device
JPS6017943A (en) * 1983-07-08 1985-01-29 Matsushita Electronics Corp Manufacture of semiconductor device
JPS60258949A (en) * 1985-01-04 1985-12-20 Nec Corp Complementary field effect semiconductor device

Also Published As

Publication number Publication date
JPS63216370A (en) 1988-09-08

Similar Documents

Publication Publication Date Title
KR910010220B1 (en) Compositive semiconductor crystalline structure
JPS63198367A (en) Semiconductor device
JPH0230588B2 (en)
US4884116A (en) Double diffused mosfet with potential biases
US5254864A (en) Semiconductor device
JP3161091B2 (en) Semiconductor integrated circuit device
JPH0413861B2 (en)
JPH0888290A (en) Semiconductor device and using method therefor
JP2940308B2 (en) Semiconductor device and manufacturing method thereof
KR910003275B1 (en) Semiconductor device and its manufacture method
JPS62104068A (en) Semiconductor integrated circuit device
JP3438359B2 (en) Semiconductor device
JP2751220B2 (en) Semiconductor device and manufacturing method thereof
JPS6334949A (en) Semiconductor device
JP2678081B2 (en) Semiconductor integrated circuit device
JPS601843A (en) Semiconductor integrated circuit
JP2604793B2 (en) Semiconductor device
JPS6276775A (en) Semiconductor device
JPS6348842A (en) Manufacture of semiconductor integrated circuit device
JPH04317336A (en) Semiconductor device and manufacture thereof
JPS6022358A (en) Semiconductor integrated circuit device
JPH0558256B2 (en)
JPH0346335A (en) Bipolar-type semiconductor integrated circuit
JPH08227941A (en) Composite semiconductor element
JPS63234561A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees