JPS6334949A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6334949A
JPS6334949A JP17831786A JP17831786A JPS6334949A JP S6334949 A JPS6334949 A JP S6334949A JP 17831786 A JP17831786 A JP 17831786A JP 17831786 A JP17831786 A JP 17831786A JP S6334949 A JPS6334949 A JP S6334949A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
oxide film
semiconductor
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17831786A
Other languages
Japanese (ja)
Inventor
Yosuke Takagi
洋介 高木
Koichi Kitahara
北原 広一
Tamotsu Ohata
大畑 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17831786A priority Critical patent/JPS6334949A/en
Publication of JPS6334949A publication Critical patent/JPS6334949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To make it possible to reduce the collector resistance value of a bipolar transistor formed on a substrate by a method wherein a substrate whose high-density region has been formed in advance on an adhesion plane is bonded to another substrate via an insulation film by means of a wafer-bonding technique. CONSTITUTION:A thermally oxidized film 22 is formed on an adhesion plane 21 on a first semiconductor substrate 20 of N type silicon, and is etched in a manner that a portion of the adhesion plane 21 is exposed for arsenic implantation to form an N<+> type silicon layer 23. In a sufficiently clean atmosphere thermally oxidized films 26 and 27 are formed both on the adhesion plate 21 on the first semiconductor substrate 20 where the thermally oxidized film 22 has been removed and on an adhesion plane 25 on the second semiconductor substrate 24 of N<+> type silicon. The thermally oxidized films 26 and 27 are then attached closely together, and are heat-treated. Through an oxide film 28 which is formed by uniting these films, a composite substrate is obtained after the films 26 and 27 are firmly attached together in such a way that two mirror surfaces are attached. Then, a groove is formed so that it can reach the oxide film 28. After an oxide film 29 has been formed on the inside surface of the groove and polycrystalline silicon 30 has been deposited, an island region 31 having an N<+> buried layer 23 is formed.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は素子間分離を必要とする半導体装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application) The present invention relates to a semiconductor device requiring isolation between elements.

(従来の技術) 従来、1つの基板に複数個の能動素子又は受動素子を集
積する半導体装置では、素子相互を電気的に分離する必
要がある。これに用いられる素子間分離法には、逆バイ
アスされたPN接合によるもの、或いは絶縁体によるも
のがある。第4図にPN接合により分離された領域を持
つ半導体基板の1例を示す。P型の半導体基板1にN型
のエピタキシャル層2を堆積し、このエピタキシャル層
2に戸型拡散を行ない素子分離領域3を前記半導体基板
1に達するように形成する。これによりPN接合で囲ま
れた島状の領域4を得る。この島領域にNPN )ラン
ジスタを形成する場合には、通常コレクタ抵抗を低下さ
せる目的で、N+型の拡散領域5を形成した後にN型の
エピタキシャル層2の成長を行う。この素子領域4は前
記PN接合に逆バイアスを印加することによって、他の
エピタキシャル層部分とは空乏層を介して電気的に分離
される。しかし前記r型の素子分離領域3を形成する時
に、深さ方向とほぼ等しい寸法の横方向の拡散が不可避
的に発生し、この為素子分離領域3の所要面積が増大す
る難点がある。又このPN接合分離では逆バイアスを印
加して使用されるが、この際P 型素子領域3は通常接
地されるので、この領域に接する素子領域4のN型層は
常に正電位に保持する必要がある。これによシ素子領域
4内に形成される集積回路のバイアス回路は制約を受け
、例えば異なる導電製のトランジスタを形成する場合等
には極めて複雑なバイアス回路が必要になる。又PN接
合分離では一般に寄生素子が形成され易く1例えば素子
領域4に第5図のごとくペース層6.エミツタ層7、コ
レクタ電極点8を設けてNPN )ランジスタを形成し
た場合、前記ベース層をエミッタ、N型島領域及びN埋
め込み層をペースP型基板1をコレクタとする寄生トラ
ンジスタができる。
(Prior Art) Conventionally, in a semiconductor device in which a plurality of active elements or passive elements are integrated on one substrate, it is necessary to electrically isolate the elements from each other. The device isolation methods used for this purpose include those using a reverse biased PN junction and those using an insulator. FIG. 4 shows an example of a semiconductor substrate having regions separated by a PN junction. An N-type epitaxial layer 2 is deposited on a P-type semiconductor substrate 1, and a door-type diffusion is performed on this epitaxial layer 2 to form an element isolation region 3 reaching the semiconductor substrate 1. As a result, an island-like region 4 surrounded by PN junctions is obtained. When an NPN transistor is formed in this island region, an N type epitaxial layer 2 is usually grown after an N+ type diffusion region 5 is formed for the purpose of lowering the collector resistance. This element region 4 is electrically isolated from other epitaxial layer portions via a depletion layer by applying a reverse bias to the PN junction. However, when forming the r-type device isolation region 3, lateral diffusion of approximately the same size as the depth direction inevitably occurs, resulting in an increase in the required area of the device isolation region 3. In addition, this PN junction isolation is used by applying a reverse bias, but in this case the P-type element region 3 is usually grounded, so the N-type layer in the element region 4 that is in contact with this region must always be held at a positive potential. There is. This imposes restrictions on the bias circuit of the integrated circuit formed in the element region 4, and an extremely complicated bias circuit is required, for example, when forming transistors of different conductivity. Furthermore, in PN junction isolation, parasitic elements are generally likely to be formed.For example, a space layer 6 is formed in the element region 4 as shown in FIG. When an NPN transistor is formed by providing an emitter layer 7 and a collector electrode point 8, a parasitic transistor is formed in which the base layer is the emitter, the N-type island region and the N-buried layer are the base, and the P-type substrate 1 is the collector.

次に第6図に絶縁体による素子分離法の従来例の1つを
示す。
Next, FIG. 6 shows one conventional example of element isolation using an insulator.

N型半導体9、N埋め込み層10からなる素子領域は、
酸化シリコン膜1ノ及び多結晶シリコン層12により分
離保持された島領域を形成している。この方式は前記P
N接合分離に必要な逆バイアス回路が不要であシ、又寄
生素子による制約が少ない等の利点がある。しかしこの
方式では基板を多結晶シリコンで構成する形態となるの
で、非常に厚い基板が必要となり、経済性に不利であシ
、又、この半導体基板の一面は絶縁されているため、こ
れを電流退路として使用することができない。
The device region consisting of the N-type semiconductor 9 and the N-buried layer 10 is
A silicon oxide film 1 and a polycrystalline silicon layer 12 form an island region that is separated and held. This method uses the P
There are advantages such as no need for a reverse bias circuit required for N-junction isolation, and fewer restrictions due to parasitic elements. However, in this method, the substrate is made of polycrystalline silicon, which requires a very thick substrate, which is disadvantageous economically.Also, since one side of the semiconductor substrate is insulated, it is difficult to It cannot be used as an escape route.

(発明が解決しようとする問題点) 前記2種類の素子分離技術の構造的、経済的な欠点を改
善するものとしてシリコンウエノ・−接着技術がある。
(Problems to be Solved by the Invention) There is a silicone bonding technique that improves the structural and economical drawbacks of the above two types of element isolation techniques.

第7図にこのウエノ・−接着技術を用いた素子分離構造
の一例を示す。Nu半導体13とN型半導体14表面に
それぞれ鏡面の絶縁膜15,16を形成したのちに接着
をし、N型半導体13を所定の厚さに研摩する。そして
、このN型半導体13の表面の一部に少なくとも絶縁膜
15にとどく食刻部を形成し、前記食刻部内面に絶縁膜
17を形成したのちに多結晶シリコン18を堆積させる
ことによって素子領域19を得る。
FIG. 7 shows an example of an element isolation structure using this urethane bonding technique. Mirror-finished insulating films 15 and 16 are formed on the surfaces of the Nu semiconductor 13 and the N-type semiconductor 14, respectively, and then bonded, and the N-type semiconductor 13 is polished to a predetermined thickness. Then, an etched portion reaching at least the insulating film 15 is formed on a part of the surface of this N-type semiconductor 13, and after forming an insulating film 17 on the inner surface of the etched portion, polycrystalline silicon 18 is deposited, thereby forming an element. Area 19 is obtained.

この接着技術を用いた素子分離構造は寄生効果が少なく
経済的にも安価であるという利点を持っている。また、
裏面のN型シリコンの熱伝導率が大きいので、この基板
に大電力の素子を形成する場合には特に好都合である。
The element isolation structure using this adhesive technique has the advantage of having few parasitic effects and being economically inexpensive. Also,
Since the N-type silicon on the back side has a high thermal conductivity, it is particularly advantageous when a high-power device is formed on this substrate.

しかし、この素子分離領域にNPN )ランジスタを形
成した場合、Nの埋め込み層がない為にコレクタ抵抗が
増大し、飽和電圧が大きくなってしまうという欠点を持
っている。
However, when an NPN transistor is formed in this element isolation region, there is a drawback that the collector resistance increases and the saturation voltage increases because there is no N buried layer.

本発明の目的は、絶縁膜を介して2つの半導体基板を接
着して得られる絶縁物分離基板(複合半導体基板)にお
いて、基板と同一導電性の高濃度埋め込み層を具備した
構造の半導体装置を提供するものである。
An object of the present invention is to provide a semiconductor device having a structure in which an insulator-separated substrate (composite semiconductor substrate) obtained by bonding two semiconductor substrates through an insulating film is provided with a high-concentration buried layer having the same conductivity as the substrate. This is what we provide.

(問題点を改善するための手段と作用)本発明の半導体
装置は、あらかじめ接着面部に高濃度領域を形成してお
いた基板を、他の基板とウェハー接着技術を用いて絶縁
膜を介して接着することにより得られる。特に、この基
板上にパイI−ラトランジスタを形成する場合、上記高
濃度領域を有することにより、従来の接着型絶縁体分離
基板に比べて、コレクタ抵抗を著しく低下させる効果を
持つ等の利点がある。
(Means and effects for improving the problems) In the semiconductor device of the present invention, a substrate on which a high concentration region has been formed in advance on the bonding surface is bonded to another substrate via an insulating film using wafer bonding technology. Obtained by gluing. In particular, when forming a pie-I-La transistor on this substrate, having the above-mentioned high concentration region has advantages such as significantly lowering the collector resistance compared to a conventional bonded type insulator-separated substrate. be.

(実施例) 以下図面を参照して本発明の一実施例を説明する。第1
図は同実施例の半導体装置の製造工程の一例であシ、ま
ず第1図(4)に示すようにN型シリコンの第1半導体
基板200表面粗さ5001以下の鏡面に仕上げられた
被接合面2ノに熱酸化膜22を形成し、公知の写真食刻
技術を用いることによって前記熱酸化膜22を食刻し、
N型シリコン基板20の被接合面2ノの一部を露出させ
る。
(Example) An example of the present invention will be described below with reference to the drawings. 1st
The figure shows an example of the manufacturing process of the semiconductor device of the same embodiment. First, as shown in FIG. A thermal oxide film 22 is formed on the surface 2, and the thermal oxide film 22 is etched using a known photo-etching technique,
A part of the surface 2 of the N-type silicon substrate 20 to be bonded is exposed.

次に前記N型シリコン基板20の被接合面21にたとえ
ば公知のイオン注入法を用いて砒素を加速電圧40 k
Vで5×1015m−2注入することによって、N+型
シリコン層23を形成する。前記N+型シリコン層23
を形成する場合に砒素またはアンチモンの熱拡散法を用
いてもよい。次に第1図(B)に示すように熱酸化膜2
2を除去した第1半導体基板20の被接合部21と、N
型シリコンの第2半導体基板240表面粗さ5001以
下の鏡面に仕上げられた被接合面25に、十分に清浄な
雰囲気中で熱酸化膜(絶縁膜)26.27を約lNL程
度形成する。次に十分に清浄な雰囲気中で第1半導体2
0の被接合面21に形成された熱酸化膜26と、第2半
導体24の被接合面25に形成された熱酸化膜27を密
着し、熱処理を行なうことによって第1図(C)に示す
ように酸化膜(絶縁膜)26゜27が一体化したことに
よ多形成された酸化膜(絶縁膜)28を介して強固に鏡
面接合した複合基板が得られる。この複合基板の第1半
導体基板20側の面を研摩し、この複合基板上に形成す
る素子の耐圧に応じて第一半導体基板20の厚さaを調
整する。更に第1図(Qに示す複合基板に素子分離技術
を適用し、第1図(D)に示す望ましい実施態様の絶縁
体分離基板を得る。この実施例では20#L厚の第一半
導体基板20の表面よりRIE(Reactive I
on Etching)法によって幅4〜5μmの−続
きの溝を少なくとも酸化膜28の部分まで形成し、次に
溝の内面に酸化膜29を形成する。
Next, arsenic is injected into the bonded surface 21 of the N-type silicon substrate 20 using, for example, a known ion implantation method at an accelerating voltage of 40 k.
An N+ type silicon layer 23 is formed by implanting 5×10 15 m −2 of V. The N+ type silicon layer 23
Thermal diffusion of arsenic or antimony may be used to form the arsenic or antimony. Next, as shown in FIG. 1(B), the thermal oxide film 2
The bonded portion 21 of the first semiconductor substrate 20 from which N.
A thermal oxide film (insulating film) 26, 27 of approximately 1NL is formed in a sufficiently clean atmosphere on the mirror-finished surface 25 of the second semiconductor substrate 240 of type silicon with a surface roughness of 5001 or less. Next, the first semiconductor 2 is heated in a sufficiently clean atmosphere.
The thermal oxide film 26 formed on the surface to be bonded 21 of the second semiconductor 24 and the thermal oxide film 27 formed on the surface to be bonded 25 of the second semiconductor 24 are brought into close contact with each other, and heat treatment is performed to form the structure shown in FIG. 1C. By integrating the oxide films (insulating films) 26 and 27, a composite substrate with strong mirror surface bonding via the multi-formed oxide film (insulating film) 28 is obtained. The surface of this composite substrate on the first semiconductor substrate 20 side is polished, and the thickness a of the first semiconductor substrate 20 is adjusted depending on the withstand voltage of the element formed on this composite substrate. Furthermore, element isolation technology is applied to the composite substrate shown in FIG. 1 (Q) to obtain an insulator separation substrate of a desirable embodiment shown in FIG. RIE (Reactive I) from the surface of 20
A continuous trench having a width of 4 to 5 .mu.m is formed up to at least the oxide film 28 by the on-etching method, and then an oxide film 29 is formed on the inner surface of the trench.

続いて多結晶シリコン3υを上記溝に堆積したのちに表
面を平坦化することによってN埋め込み層23を具備し
た島領域31が形成される。
Subsequently, polycrystalline silicon 3υ is deposited in the trench and the surface is planarized to form an island region 31 having an N buried layer 23.

なお、所望によシ複数個の前記−続きの素子分離領域を
形成すれば、複数個の素子領域が得られる。又、実施例
では素子分離領域は、RIEを用いた誘電体分離法によ
り形成し素子分離領域に必要な面積の縮少を図ったが、
所望によりP型領域によるPN接合分離法、メサエッチ
式の分離法を採用してもよい。また、基板全体に高濃度
埋め込み層を形成したい場合には、さらに工程は簡単に
なシ、N高濃度領域を形成する際の写真食刻工程を省く
ことができる。第2図(A)K全面N高濃度埋め込み領
域を持つ本発明の基板を示す。また、第2図(B)に前
記基板に素子分離技術を適用した例を示す。またこの基
板に縦型の・臂ワー素子を形成する場合には第1図(C
’)の基板の表面から少なくともN+型半導体24にと
どく食刻部を形成した後に、所望の不純物濃度のシリコ
ン層をエピタキシャル成長させた後、表面を平坦化し、
前記の素子分離工程を行なえばよい。第3図にパワーM
O8FETとNPN )ランジスタとC−MOSを前記
基板上に形成した例を示す。第3図中32はNPN )
ランジスタのエミッタ、33はeN )ランジスタのペ
ース、34はNPN )ランジスタのコレクタ、35は
NチャネルMOS )ランジスタのソース、36はNチ
ャネルMOS )−yンジスタのy−ト、37はNチャ
ネルMOSトラン・ゾスタのドレイン、38はPチャネ
ルMO8)ランジスタのソース、39はPチャネルMO
Sトランジスタのダート、40はPチャネルMO8)ラ
ン・ゾスタのドレイン、41はノぐツーMOSトランジ
スタのソース、42はノぐワ−MO8)ランジスタのダ
ート、43はエピタキシャル層、44ハ裏面電極()ぐ
ワーMO8)ランジスタのドレイン)、45は絶縁膜で
ある。また、本実施例ではN型基板にN型埋め込み層を
形成する場合について述べたが、P型基板にP型埋め込
み層を形成することも容易であることは明らかである。
Incidentally, if a plurality of the above-mentioned contiguous element isolation regions are formed as desired, a plurality of element regions can be obtained. In addition, in the example, the element isolation region was formed by a dielectric isolation method using RIE to reduce the area required for the element isolation region.
If desired, a PN junction isolation method using a P-type region or a mesa etch isolation method may be employed. Furthermore, when it is desired to form a high concentration buried layer over the entire substrate, the process is further simplified and the photolithography process when forming the high N concentration region can be omitted. FIG. 2(A) shows a substrate of the present invention having a full-surface N high-concentration buried region. Further, FIG. 2(B) shows an example in which element isolation technology is applied to the substrate. In addition, when forming a vertical arm element on this substrate, as shown in Fig. 1 (C
') After forming an etched portion extending from the surface of the substrate to at least the N+ type semiconductor 24, a silicon layer with a desired impurity concentration is epitaxially grown, and the surface is planarized.
The above-described element isolation step may be performed. Figure 3 shows power M
An example is shown in which an O8FET, an NPN) transistor, and a C-MOS are formed on the substrate. 32 in Figure 3 is NPN)
Emitter of transistor, 33 is eN) Pace of transistor, 34 is NPN) Collector of transistor, 35 is N-channel MOS) Source of transistor, 36 is N-channel MOS) y-to of transistor, 37 is N-channel MOS transistor・Drain of Zostar, 38 is P-channel MO8) Source of transistor, 39 is P-channel MO
The dirt of the S transistor, 40 is the drain of the P-channel MO8) run-zoster, 41 is the source of the NOG2 MOS transistor, 42 is the dirt of the NOGWAR MO8) transistor, 43 is the epitaxial layer, 44 is the back electrode () 45 is an insulating film. Further, in this embodiment, a case has been described in which an N-type buried layer is formed on an N-type substrate, but it is obvious that a P-type buried layer can also be easily formed on a P-type substrate.

また、本実施例では、第1半導体基板と第2半導体基板
の両方に絶縁膜が存在する状態で接着を行なっているが
、どちらか一方の半導体基板のみに絶縁膜が存在し、他
方には絶縁膜が存在しない場合にも接着は可能であり、
上記方法によっても本発明の半導体装置の構造が実現で
きる。
Furthermore, in this embodiment, the bonding is performed with the insulating film present on both the first semiconductor substrate and the second semiconductor substrate, but the insulating film is present only on one of the semiconductor substrates, and on the other. Adhesion is possible even when there is no insulating film,
The structure of the semiconductor device of the present invention can also be realized by the above method.

[発明の効果] 以上、詳述したように本発明による半導体基板を用いる
ことによって、従来の接着法による絶縁体分離基板の問
題点であったバイポーラトランジスタの飽和特性を改善
することができる。また高価なエピタキシャル工程を用
いないので、経済的な長所は非常に太きい。そして本発
明の基板に絶縁体による素子分離技術を適用した場合、
 CMO8トランジスタのラッチアップを防止すること
もできる。また、裏面のN型シリコンの熱伝導率が大き
いので、大電力の素子を形成する場合にも有利である。
[Effects of the Invention] As described in detail above, by using the semiconductor substrate according to the present invention, it is possible to improve the saturation characteristics of bipolar transistors, which was a problem with insulator-separated substrates using conventional bonding methods. Furthermore, since no expensive epitaxial process is used, it has great economic advantages. When element isolation technology using an insulator is applied to the substrate of the present invention,
It is also possible to prevent latch-up of the CMO8 transistor. Furthermore, since the N-type silicon on the back surface has a high thermal conductivity, it is advantageous when forming a high-power device.

さらには裏面を電流通路としても使用できるので、縦型
の大電力素子と制御用のバイポーラ及びCMO8ICを
組み合わせたパワーIC用の基板として非常に有効であ
る。
Furthermore, since the back surface can be used as a current path, it is very effective as a substrate for a power IC that combines a vertical high-power element, a control bipolar IC, and a CMO8 IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造工程図、第2図は本発
明の他の実施例の断面図、第3図は本発明の更に異なる
実施例の断面図、第4図ないし第7図は従来装置の断面
図である。 20・・・N型第1半導体基板、22・・・酸化膜、2
3・・・N 型シリコン層、24・・・N 型第2半導
体基板、26.27・・・酸化膜、28・・・酸化膜、
29・・・酸化膜、30・・・多結晶シリコン、31・
・・N型島領域。
Fig. 1 is a manufacturing process diagram of one embodiment of the present invention, Fig. 2 is a sectional view of another embodiment of the invention, Fig. 3 is a sectional view of still another embodiment of the invention, and Figs. FIG. 7 is a sectional view of a conventional device. 20... N-type first semiconductor substrate, 22... Oxide film, 2
3... N type silicon layer, 24... N type second semiconductor substrate, 26.27... Oxide film, 28... Oxide film,
29... Oxide film, 30... Polycrystalline silicon, 31.
...N-type island region.

Claims (5)

【特許請求の範囲】[Claims] (1)第1半導体基板の一つの主面と第2半導体基板の
一つの主面を、絶縁体を介して直接接合してなる複合半
導体基板を設け、前記第1半導体基板の前記接合面側の
領域に第1半導体基板と同一導電型でそれより高濃度の
領域を具備したことを特徴とする半導体装置。
(1) A composite semiconductor substrate is provided in which one main surface of a first semiconductor substrate and one main surface of a second semiconductor substrate are directly bonded via an insulator, and the bonding surface side of the first semiconductor substrate is provided. 1. A semiconductor device comprising a region having the same conductivity type as the first semiconductor substrate and having a higher concentration than the first semiconductor substrate.
(2)前記第1半導体基板は誘電体分離で複数の領域に
分離されることを特徴とする特許請求の範囲第1項に記
載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the first semiconductor substrate is separated into a plurality of regions by dielectric separation.
(3)前記第1半導体基板はPN接合分離で複数の領域
に分離されることを特徴とする特許請求の範囲第1項に
記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the first semiconductor substrate is separated into a plurality of regions by PN junction separation.
(4)前記第1半導体基板はメサエッチによる分離で複
数の領域に分離されることを特徴とする特許請求の範囲
第1項に記載の半導体装置。
(4) The semiconductor device according to claim 1, wherein the first semiconductor substrate is separated into a plurality of regions by mesa etch.
(5)前記複合半導体基板の選択された個所で前記第1
半導体基板と第2半導体基板を連通し、パワー素子を形
成することを特徴とする特許請求の範囲第1項に記載の
半導体装置。
(5) At a selected location of the composite semiconductor substrate, the first
2. The semiconductor device according to claim 1, wherein the semiconductor substrate and the second semiconductor substrate are communicated with each other to form a power element.
JP17831786A 1986-07-29 1986-07-29 Semiconductor device Pending JPS6334949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17831786A JPS6334949A (en) 1986-07-29 1986-07-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17831786A JPS6334949A (en) 1986-07-29 1986-07-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6334949A true JPS6334949A (en) 1988-02-15

Family

ID=16046366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17831786A Pending JPS6334949A (en) 1986-07-29 1986-07-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6334949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262359A (en) * 1989-04-03 1990-10-25 Takehide Shirato Semiconductor device
US5416354A (en) * 1989-01-06 1995-05-16 Unitrode Corporation Inverted epitaxial process semiconductor devices
FR2775831A1 (en) * 1998-03-05 1999-09-03 Ind Tech Res Inst Back-etched or smart cut SOI wafer production with a buried layer especially for manufacturing bipolar junction transistor and BiCMOS ICs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502357A (en) * 1973-05-16 1975-01-10
JPS53146579A (en) * 1977-05-27 1978-12-20 Hitachi Ltd Manufacture of semiconductor device
JPS6159852A (en) * 1984-08-31 1986-03-27 Toshiba Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502357A (en) * 1973-05-16 1975-01-10
JPS53146579A (en) * 1977-05-27 1978-12-20 Hitachi Ltd Manufacture of semiconductor device
JPS6159852A (en) * 1984-08-31 1986-03-27 Toshiba Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416354A (en) * 1989-01-06 1995-05-16 Unitrode Corporation Inverted epitaxial process semiconductor devices
JPH02262359A (en) * 1989-04-03 1990-10-25 Takehide Shirato Semiconductor device
FR2775831A1 (en) * 1998-03-05 1999-09-03 Ind Tech Res Inst Back-etched or smart cut SOI wafer production with a buried layer especially for manufacturing bipolar junction transistor and BiCMOS ICs

Similar Documents

Publication Publication Date Title
US4837186A (en) Silicon semiconductor substrate with an insulating layer embedded therein and method for forming the same
US4948748A (en) Manufacture of a substrate structure for a composite semiconductor device using wafer bonding and epitaxial refill
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
US4879584A (en) Semiconductor device with isolation between MOSFET and control circuit
US5356827A (en) Method of manufacturing semiconductor device
US4985745A (en) Substrate structure for composite semiconductor device
JPH04275450A (en) Integrated circuit device
JPH04233764A (en) Vertical-type transistor
US5476809A (en) Semiconductor device and method of manufacturing the same
JPS6159852A (en) Manufacture of semiconductor device
US4199860A (en) Method of integrating semiconductor components
JP2979554B2 (en) Method for manufacturing semiconductor device
JP3250419B2 (en) Semiconductor device and manufacturing method thereof
JPS6334949A (en) Semiconductor device
JP3243071B2 (en) Dielectric separated type semiconductor device
JPH06151728A (en) Semiconductor integrated circuit device
JPS6358817A (en) Composite semiconductor crystal structure
JPH01112746A (en) Semiconductor device
JP3116609B2 (en) Method for manufacturing semiconductor device
JP3438359B2 (en) Semiconductor device
JP2678081B2 (en) Semiconductor integrated circuit device
JPH06151740A (en) Power semiconductor device
JPH05129424A (en) Semiconductor device and manufacture thereof
JP2971408B2 (en) Manufacturing method of dielectric isolation substrate
JPH0637099A (en) Semiconductor substrate and manufacture thereof