JP3243071B2 - Dielectric separated type semiconductor device - Google Patents

Dielectric separated type semiconductor device

Info

Publication number
JP3243071B2
JP3243071B2 JP18512193A JP18512193A JP3243071B2 JP 3243071 B2 JP3243071 B2 JP 3243071B2 JP 18512193 A JP18512193 A JP 18512193A JP 18512193 A JP18512193 A JP 18512193A JP 3243071 B2 JP3243071 B2 JP 3243071B2
Authority
JP
Japan
Prior art keywords
semiconductor device
silicon wafer
oxide film
semiconductor
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18512193A
Other languages
Japanese (ja)
Other versions
JPH0745699A (en
Inventor
沢 勝二郎 丹
働 祐 宗 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18512193A priority Critical patent/JP3243071B2/en
Publication of JPH0745699A publication Critical patent/JPH0745699A/en
Application granted granted Critical
Publication of JP3243071B2 publication Critical patent/JP3243071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は誘電体分離型半導体装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric isolation type semiconductor device.

【0002】[0002]

【従来の技術】半導体装置に使用される素子分離の方法
としては、従来からpn接合分離法が知られており、更
に高耐圧集積回路の完全絶縁物分離を目的とした誘電体
分離法が知られている。この誘電体分離法はpn接合分
離法に比べ、高温動作時においても漏れ電流が少なく、
寄生サイリスタによるラッチアップが少なく、高耐圧素
子を分離する場合にも分離に要する面積が少なくてす
み、さらに印加電圧の極性を考慮する必要がなく、寄生
容量が少ない等の利点がある。
2. Description of the Related Art As a method of element isolation used in a semiconductor device, a pn junction isolation method has been conventionally known, and a dielectric isolation method for the purpose of completely isolating insulators of a high withstand voltage integrated circuit has been known. Have been. This dielectric isolation method has less leakage current even at high temperature operation than the pn junction isolation method,
There are advantages in that latch-up by a parasitic thyristor is small, the area required for separation is small even when a high breakdown voltage element is separated, the polarity of an applied voltage does not need to be considered, and the parasitic capacitance is small.

【0003】誘電体分離法としては、サファイア基板上
にシリコンを気相成長させたSOS(Silicon
on Saphire)を用いる方法、絶縁膜上に非晶
質シリコンを堆積し、これを再結晶化する法、シリコン
ウエハの直接接着を利用した方法が知られている。ま
た、シリコンウエハの一部をエッチングして酸化膜を形
成し、その上に多結晶シリコンを厚く堆積し、裏側から
研磨することにより、厚い多結晶シリコンで保持され、
島状に分離された単結晶シリコンを得る方法も知られて
いる。
As a dielectric isolation method, SOS (Silicon) in which silicon is vapor-phase grown on a sapphire substrate is used.
On-Sapphire, a method of depositing amorphous silicon on an insulating film and recrystallizing the same, and a method using direct bonding of a silicon wafer are known. Also, by etching a part of the silicon wafer to form an oxide film, depositing polycrystalline silicon thickly thereon and polishing it from the back side, it is held by the thick polycrystalline silicon,
There is also known a method of obtaining island-separated single crystal silicon.

【0004】これらの方法の中で、シリコンウエハの直
接接着を利用した方法は、誘電体で分離された素子形成
部分を、厚くて良質の単結晶シリコン層として得ること
ができる。
[0004] Among these methods, the method using direct bonding of a silicon wafer can obtain an element forming portion separated by a dielectric as a thick and high quality single crystal silicon layer.

【0005】本出願人の発明者は、台側シリコンウエハ
と素子側シリコンウエハの直接接着を利用した方法によ
り、誘電体分離基板を得、素子側シリコンウエハに横型
IGBT(絶縁ゲート型バイポーラトランジスタ)とそ
の制御回路から成る半導体素子を形成した半導体装置を
製造した。この半導体装置では、横型IGBTは順方向
電圧を低下させてスイッチング特性の高速化を図るため
に、素子側シリコンウエハの台側シリコンウエハとの接
着部分近傍にボロンのイオンを注入してP型の高濃度層
を形成した。
The inventor of the present applicant has obtained a dielectric isolation substrate by a method utilizing direct bonding between a table-side silicon wafer and an element-side silicon wafer, and a horizontal IGBT (insulated gate bipolar transistor) is provided on the element-side silicon wafer. And a semiconductor device formed with a semiconductor element comprising the control circuit. In this semiconductor device, the lateral IGBT is implanted with boron ions in the vicinity of the bonded portion of the element-side silicon wafer with the table-side silicon wafer to reduce the forward voltage and increase the switching characteristics. A high concentration layer was formed.

【0006】[0006]

【発明が解決しようとする課題】横型IGBTのスイッ
チング特性を向上させるためには、ボロンのイオン注入
量を増加させることが望ましいのであるが、この半導体
装置では、イオン注入によるボロンのドーズ量を8×1
14個/cm2 以上としたところ、イオン注入量に起因し
た結晶欠陥が発生した。この結晶欠陥により半導体装置
の歩留まり、電気特性、信頼性等が低下した。
In order to improve the switching characteristics of the lateral IGBT, it is desirable to increase the amount of boron ions implanted. However, in this semiconductor device, the dose of boron due to the ion implantation is reduced by 8%. × 1
0 was 14 / cm 2 or more, crystal defects occur due to the ion implantation amount. Due to the crystal defects, the yield, electrical characteristics, reliability, and the like of the semiconductor device are reduced.

【0007】そこで,ボロンのドーズ量を7×1014
/cm2 以下にしたところ、イオン注入したP型高濃度層
の抵抗値が高くなり、やはり電気特性が低下した。
Therefore, when the dose of boron was set to 7 × 10 14 / cm 2 or less, the resistance of the ion-implanted P-type high-concentration layer increased, and the electrical characteristics also deteriorated.

【0008】従って本発明の目的は、シリコンウエハの
直接接着を利用した誘電体分離型半導体装置において、
素子側シリコンウエハの台側シリコンウエハとの接着部
分近傍に、高ドーズ量のボロンのイオンを注入してP型
の高濃度層を形成しても,結晶欠陥が生じない半導体装
置を提供することにある.
Accordingly, an object of the present invention is to provide a dielectric isolation type semiconductor device utilizing direct bonding of a silicon wafer.
To provide a semiconductor device in which crystal defects do not occur even when a high dose boron ion is implanted in the vicinity of a bonding portion between an element side silicon wafer and a table side silicon wafer to form a P-type high concentration layer. It is in.

【0009】[0009]

【課題を解決するための手段】上記問題を解決するため
に、本発明の誘電体分離型半導体装置は、少なくとも1
つの横型絶縁ゲート型バイポーラトランジスタが形成さ
れている活性領域を有する第1の半導体基板と、前記活
性領域中の第1の半導体酸化膜と接する部分を含む領域
に形成され、1.5×1015個/cm2 から3×1015
/cm2 の範囲のドーズ量のボロンがイオン注入されてい
る所定電導型の高濃度層と、前記高濃度層上に形成され
た第2の半導体酸化膜と、前記第2の半導体酸化膜に接
着され、前記第1の半導体基板を支持する第2の半導体
基板とを備える。
In order to solve the above problems, a dielectric isolation type semiconductor device according to the present invention comprises at least one semiconductor device.
One of the first semiconductor substrate having an active region lateral insulated gate bipolar transistor is formed, is formed in a region including a first portion in contact with the semiconductor oxide film in the active region, 1.5 × 10 15 and the high concentration layer of a predetermined conductivity type with boron dose ranging from pieces / cm 2 of 3 × 10 15 pieces / cm 2 is ion-implanted, a second semiconductor oxide layer formed on the high concentration layer And a second semiconductor substrate adhered to the second semiconductor oxide film and supporting the first semiconductor substrate.

【0010】[0010]

【作用】ボロンのイオン注入量が1.5×1015個/cm
2 以上と適度に多いので高濃度層の抵抗値が低くなる。
一方このイオン注入量を3×1015個/cm2 以下とした
ので結晶欠陥が発生しない。
[Action] The ion implantation amount of boron is 1.5 × 10 15 / cm
Since it is an appropriate number of 2 or more, the resistance value of the high concentration layer becomes low.
On the other hand, since the ion implantation amount is set to 3 × 10 15 / cm 2 or less, no crystal defects occur.

【0011】[0011]

【実施例】図1を参照して本発明に係る半導体装置の1
実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG.
An embodiment will be described.

【0012】図1に示すように、素子側シリコンウエハ
1の底面にシリコン酸化膜2が形成され,このシリコン
酸化膜2に、公知の直接接着法により、半導体素子を支
持するためのP型の台側シリコンウエハ3が接着され
ている。
[0012] As shown in FIG. 1, a silicon oxide film 2 is formed on the bottom surface of the element side silicon wafer 1, on the silicon oxide film 2 by a known direct bonding method, P for supporting the semiconductor element - type The base side silicon wafer 3 is bonded.

【0013】素子側シリコンウエハ1には、公知の構造
の高耐圧横型IGBT4と、低耐圧トランジスタにより
成り、高耐圧横型IGBT4を制御する制御回路5とが
形成されている。
The element-side silicon wafer 1 is provided with a high breakdown voltage lateral IGBT 4 having a known structure and a control circuit 5 composed of low breakdown voltage transistors for controlling the high breakdown voltage lateral IGBT 4.

【0014】素子側シリコンウエハ1の中央には絶縁分
離溝6が形成されており、この絶縁分離溝6により高耐
圧横型IGBT4と、その制御回路5が絶縁分離されて
いる。
An insulating isolation groove 6 is formed in the center of the element-side silicon wafer 1, and the high breakdown voltage lateral IGBT 4 and its control circuit 5 are insulated and isolated by the insulating isolation groove 6.

【0015】素子側シリコンウエハ1の両端の絶縁分離
溝7,8は、同一ウエハ上の他の半導体素子との絶縁分
離のために設けてある。
The insulating isolation grooves 7 and 8 at both ends of the element-side silicon wafer 1 are provided for insulation isolation from other semiconductor elements on the same wafer.

【0016】横型IGBT4と制御回路5の底部には各
々P型の高濃度層9a,9bが形成されている.後述
するように、本発明の半導体装置においては、P型の
高濃度層9a,9bを形成する際に、素子側シリコンウ
エハ1の高濃度層9a,9b側の表面から、ドーズ量が
1.5×1015個/cm2 から3×1015個/cm2 の範囲
のボロンがイオン注入されてる。
At the bottom of the lateral IGBT 4 and the control circuit 5, P + type high concentration layers 9a and 9b are formed respectively. As described later, in the semiconductor device of the present invention, when forming the P + -type high-concentration layers 9a and 9b, the dose amount is 1 from the surface of the element-side silicon wafer 1 on the high-concentration layers 9a and 9b side. .5 × 10 15 pieces / cm 2 from 3 × 10 15 pieces / cm 2 range boron is ion-implanted.

【0017】このボロンのイオン注入量は以下に示すよ
うに、その値を変化させて本発明の半導体装置を複数個
製造し、それらの結晶欠陥を調べた結果得られた値であ
る。
As shown below, the boron ion implantation amount is a value obtained as a result of manufacturing a plurality of semiconductor devices of the present invention by changing the value and examining crystal defects thereof.

【0018】 ドーズ量(個/cm2 ) 結晶欠陥の発生の有無 2×1014 無し 6×1014 無し 8×1014 有り 1×1015 有り 1.5×1015 無し 2×1015 無し 3×1015 無し 5×1015 有り 7×1015 有り なお、この実験結果は、図1に示す本発明の半導体装置
を、台側シリコンウエハ3側から壁開して、素子側シリ
コンウエハ1接着面側を露出させ、この露出した接着面
を2分間エッチングして、シリコン酸化膜2を切り抜き
型高濃度層9a、9bを露出させて、顕微鏡により
目視検査した結果である。
The dose (number / cm 2) occurrence of crystal defects 2 × 10 14 None 6 × 10 14 None 8 × 10 14 There 1 × 10 15 Yes 1.5 × 10 15 No 2 × 10 15 No 3 × 10 15 no 5 × 10 15 Yes 7 × 10 15 Yes it should be noted that the experimental results, a semiconductor device of the present invention shown in FIG. 1, and cleaving from the base side silicon wafer 3 side, the element side silicon wafer 1 adhere The surface side is exposed, the exposed adhesive surface is etched for 2 minutes, the silicon oxide film 2 is cut out, and the P + -type high concentration layers 9a and 9b are exposed.

【0019】横型IGBTのような半導体装置の電気的
特性を向上させるためには、その活性領域中に含まれる
型高濃度層の抵抗値を低くするために、ボロンのイ
オン注入量を増加させることが望ましいのであるが、上
記実験結果から、ボロンのイオン注入量は1.5×10
15個/cm2 から3×1015個/cm2 の範囲が半導体装置
の電気的特性が向上し、かつ結晶欠陥が発生しない適切
なイオン注入量であることがわかる。
In order to improve the electrical characteristics of a semiconductor device such as a lateral IGBT, the amount of boron ions implanted must be increased in order to lower the resistance of a P + -type high concentration layer contained in the active region. It is desirable that the ion implantation amount of boron is 1.5 × 10
It can be seen that the range of 15 ions / cm 2 to 3 × 10 15 ions / cm 2 is an appropriate ion implantation amount that improves the electrical characteristics of the semiconductor device and does not generate crystal defects.

【0020】つぎに図2(a)〜図2(k)を参照し
て、図1に示した誘電体分離型半導体装置のための半導
体基板の製造方法を説明する。図2(a)〜図2(k)
において、図1と同一部材には同一参照番号が付与して
ある。
Next, a method of manufacturing a semiconductor substrate for the dielectric isolation type semiconductor device shown in FIG. 1 will be described with reference to FIGS. 2 (a) to 2 (k). 2 (a) to 2 (k)
1, the same members as those in FIG. 1 are denoted by the same reference numerals.

【0021】図2(a)に示すように、半導体素子を形
成するための素子側シリコンウエハ1の表面に厚さ80
0オングストロームのシリコン酸化膜2、11を熱酸化
法により形成する。
As shown in FIG. 2A, the surface of the device-side silicon wafer 1 for forming the semiconductor device has a thickness of 80 mm.
Silicon oxide films 2 and 11 each having a thickness of 0 Å are formed by a thermal oxidation method.

【0022】つぎに図2(b)に示すように、シリコン
酸化膜2の表面から、素子側シリコンウエハ1にドーズ
量1.5×1015個/cm2 から3×1015個/cm2 の範
囲のボロンをイオン注入する。窒素雰囲気中で温度11
00℃で1時間アニールしてボロンを活性化し、温度1
100℃で3時間酸化してP型高濃度層9を形成す
る。さらに酸化により、シリコン酸化膜2、11を厚さ
1μmとする。そして、素子側シリコンウエハ1に形成
される半導体素子を支持する台側シリコンウエハ3を用
意する。
Next, as shown in FIG. 2B, a dose of 1.5 × 10 15 / cm 2 to 3 × 10 15 / cm 2 is applied from the surface of the silicon oxide film 2 to the silicon wafer 1 on the element side. Is implanted in the range of boron. Temperature 11 in nitrogen atmosphere
Anneal at 00 ° C for 1 hour to activate boron,
Oxidation is performed at 100 ° C. for 3 hours to form a P + type high concentration layer 9. The silicon oxide films 2 and 11 are further oxidized to a thickness of 1 μm. Then, a table-side silicon wafer 3 that supports semiconductor elements formed on the element-side silicon wafer 1 is prepared.

【0023】つぎに図2(c)に示すように、シリコン
酸化膜2と台側シリコンウエハ3とを公知の直接接着法
により貼り合わせる。そして温度1100℃で2時間熱
処理して、素子側シリコンウエハ1と台側シリコンウエ
ハ3とを一体化する。
Next, as shown in FIG. 2C, the silicon oxide film 2 and the table-side silicon wafer 3 are bonded by a known direct bonding method. Then, heat treatment is performed at a temperature of 1100 ° C. for 2 hours to integrate the element-side silicon wafer 1 and the table-side silicon wafer 3.

【0024】つぎに図2(d)に示すように、一体化さ
れたウエハの素子側シリコンウエハ1を、シリコン酸化
膜11側から研磨して厚さ50μmとする。
Next, as shown in FIG. 2D, the device-side silicon wafer 1 of the integrated wafer is polished from the silicon oxide film 11 side to a thickness of 50 μm.

【0025】つぎに図2(e)に示すように、熱酸化法
により、台側シリコンウエハ3と素子側シリコンウエハ
1の表面にシリコン酸化膜12、13をそれぞれ形成す
る。
Next, as shown in FIG. 2E, silicon oxide films 12 and 13 are formed on the surfaces of the table-side silicon wafer 3 and the element-side silicon wafer 1, respectively, by a thermal oxidation method.

【0026】つぎに図2(f)に示すように、フォトリ
ソグラフィにより、分離溝形成部14、15、16を開
口する。
Next, as shown in FIG. 2F, the separation groove forming portions 14, 15, and 16 are opened by photolithography.

【0027】つぎに図2(g)に示すように、異方性エ
ッチングにより、分離溝形成部14、15、16表面か
らシリコン酸化膜2に達する、横方向の絶縁分離のため
の絶縁分離溝6、7、8を形成する。なお、素子側シリ
コンウエハ1は、シリコン酸化膜2によって、台側シリ
コンウエハ3と縦方向の分離がなされている。
Next, as shown in FIG. 2 (g), the insulating separation grooves for the horizontal insulation separation reaching the silicon oxide film 2 from the surfaces of the separation groove forming parts 14, 15, 16 by anisotropic etching. 6, 7, and 8 are formed. The element-side silicon wafer 1 is vertically separated from the table-side silicon wafer 3 by the silicon oxide film 2.

【0028】つぎに図2(h)に示すように、分離溝
6、7、8の側壁に、温度700〜800℃、30分の
条件でCVD(化学的気相成長法)により、ボロンを含
んだ酸化膜を形成し、さらに温度1100℃で2時間熱
処理して、P型高濃度層9に連続するP型高濃度層
17を形成する。
Next, as shown in FIG. 2H, boron (CVD) is applied to the side walls of the separation grooves 6, 7, and 8 at a temperature of 700 to 800 ° C. for 30 minutes by CVD (chemical vapor deposition). comprising an oxide film is formed but, further heat-treated for 2 hours at a temperature 1100 ° C., to form a P + -type highly-doped layer 17 contiguous to the P + -type highly-doped layer 9.

【0029】つぎに図2(i)に示すように、P型高
濃度層17が形成された分離溝6、7、8の側壁にさら
に熱酸化によりシリコン酸化膜18を形成する。
Next, as shown in FIG. 2 (i), a silicon oxide film 18 is further formed on the side walls of the isolation trenches 6, 7, 8 in which the P + type high concentration layer 17 is formed by thermal oxidation.

【0030】つぎに図2(j)に示すように、減圧CV
Dにより、シリコン酸化膜13、18上に多結晶シリコ
ン19を堆積して分離溝6、7、8を埋める。
Next, as shown in FIG.
D, polycrystalline silicon 19 is deposited on the silicon oxide films 13 and 18 to fill the isolation trenches 6, 7, and 8.

【0031】そして図2(k)に示すように、素子側基
板1表面上の余分な多結晶シリコンを研磨して、表面を
平坦化する。
Then, as shown in FIG. 2K, excess polycrystalline silicon on the surface of the element-side substrate 1 is polished to flatten the surface.

【0032】以上のようにして形成された誘電体分離型
の半導体基板に、公知の方法により、高耐圧横型IGB
T4と制御回路5を形成して図1に示す本発明の半導体
装置が得られる。
The dielectric isolation type semiconductor substrate formed as described above is provided with a high breakdown voltage lateral IGB by a known method.
By forming T4 and the control circuit 5, the semiconductor device of the present invention shown in FIG. 1 is obtained.

【0033】[0033]

【発明の効果】以上詳細に説明したように本発明によれ
ば、ボロンのイオン注入量を増加させても誘電体分離基
板に結晶欠陥が発生せず、P型高濃度層の抵抗値の低
い半導体素子が得られる。これにより、高耐圧横型IG
BTのような半導体素子の電気特性と信頼性を改善で
き、さらに歩留りが向上してコストが削減できる。
As described above in detail, according to the present invention, even if the ion implantation amount of boron is increased, no crystal defect occurs in the dielectric isolation substrate, and the resistance value of the P + -type high concentration layer is reduced. A low semiconductor element can be obtained. As a result, a high breakdown voltage horizontal IG
The electrical characteristics and reliability of a semiconductor device such as BT can be improved, and the yield can be improved and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の1実施例を示す素子断面
図。
FIG. 1 is an element sectional view showing one embodiment of a semiconductor device of the present invention.

【図2】図1に示した半導体装置の製造方法を示す工程
別素子断面図。
FIG. 2 is an element cross-sectional view illustrating steps of the method for manufacturing the semiconductor device illustrated in FIG. 1;

【符号の説明】[Explanation of symbols]

1 素子側シリコンウエハ 2 シリコン酸化膜 3 台側シリコンウエハ 4 高耐圧横型IGBT 5 制御回路 6 分離溝 7 分離溝 8 分離溝 9 P型高濃度層 9a P型高濃度層 9b P型高濃度層 11 シリコン酸化膜 12 シリコン酸化膜 13 シリコン酸化膜 14 分離溝形成部 15 分離溝形成部 16 分離溝形成部 17 P型高濃度層 18 シリコン酸化膜 19 多結晶シリコンREFERENCE SIGNS LIST 1 element side silicon wafer 2 silicon oxide film 3 table side silicon wafer 4 high breakdown voltage lateral IGBT 5 control circuit 6 separation groove 7 separation groove 8 separation groove 9 P + type high concentration layer 9 a P + type high concentration layer 9 b P + type height Concentration layer 11 Silicon oxide film 12 Silicon oxide film 13 Silicon oxide film 14 Separation groove forming part 15 Separation groove forming part 16 Separation groove forming part 17 P + type high concentration layer 18 Silicon oxide film 19 Polycrystalline silicon

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/762 H01L 27/12 H01L 29/78 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/762 H01L 27/12 H01L 29/78

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも1つの横型絶縁ゲート型バイポ
ーラトランジスタが形成されている活性領域を有する第
1の半導体基板と、 前記活性領域中の第1の半導体酸化膜と接する部分を含
む領域に形成され、1.5×1015個/cm2 から3×1
15個/cm2 の範囲のドーズ量のボロンがイオン注入さ
れている所定電導型の高濃度層と、 前記高濃度層上に形成された第2の半導体酸化膜と、 前記第2の半導体酸化膜に接着され、前記第1の半導体
基板を支持する第2の半導体基板とを備えたことを特徴
とする誘電体分離型半導体装置。
A first semiconductor substrate having an active region in which at least one lateral insulated gate bipolar transistor is formed; and a region in the active region including a portion in contact with the first semiconductor oxide film. , 1.5 × 10 15 / cm 2 to 3 × 1
A predetermined conductivity type high-concentration layer into which boron having a dose amount in the range of 0 15 / cm 2 is ion-implanted; a second semiconductor oxide film formed on the high-concentration layer; A second semiconductor substrate that is bonded to the oxide film and supports the first semiconductor substrate.
JP18512193A 1993-07-27 1993-07-27 Dielectric separated type semiconductor device Expired - Fee Related JP3243071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18512193A JP3243071B2 (en) 1993-07-27 1993-07-27 Dielectric separated type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18512193A JP3243071B2 (en) 1993-07-27 1993-07-27 Dielectric separated type semiconductor device

Publications (2)

Publication Number Publication Date
JPH0745699A JPH0745699A (en) 1995-02-14
JP3243071B2 true JP3243071B2 (en) 2002-01-07

Family

ID=16165241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18512193A Expired - Fee Related JP3243071B2 (en) 1993-07-27 1993-07-27 Dielectric separated type semiconductor device

Country Status (1)

Country Link
JP (1) JP3243071B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850146B2 (en) 1998-07-07 2006-11-29 三菱電機株式会社 Separation structure and semiconductor device having the separation structure
JP5061443B2 (en) * 2005-09-20 2012-10-31 株式会社日立製作所 Horizontal insulated gate bipolar transistor
JP4616856B2 (en) * 2007-03-27 2011-01-19 株式会社日立製作所 Semiconductor device and manufacturing method of semiconductor device
JP2011253883A (en) 2010-06-01 2011-12-15 On Semiconductor Trading Ltd Semiconductor device and manufacturing method of the same
CN107193233A (en) * 2017-06-20 2017-09-22 中国船舶重工集团公司第七研究所 A kind of functional safety current input module of mixed architecture

Also Published As

Publication number Publication date
JPH0745699A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
TWI596657B (en) Trap rich layer for semiconductor devices
US7754580B2 (en) Method for manufacturing semiconductor substrate
JP2000196103A (en) Soi element and its manufacture
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
JP3014012B2 (en) Method for manufacturing semiconductor device
JPH0783050B2 (en) Method for manufacturing semiconductor device
JP2001237403A (en) Method of manufacturing semiconductor device and ultrathin type semiconductor device
JP2958695B2 (en) Method for manufacturing semiconductor device
JPH0547726A (en) Manufacture of semiconductor device
JP3243071B2 (en) Dielectric separated type semiconductor device
JPH0888153A (en) Laminated structure wafer and formation thereof
JPH09260679A (en) Semiconductor device and manufacture thereof
JP3148766B2 (en) Semiconductor device
JPH11121757A (en) Semiconductor device and manufacture thereof
JPH11354535A (en) Semiconductor device and its manufacture
JPH06302791A (en) Semiconductor substrate and manufacture thereof
JPH06310427A (en) Manufacture of semiconductor device
JP3276168B2 (en) Manufacturing method of thin film SOI substrate
US5726089A (en) Semiconductor device and method for fabricating the same
JPS6334949A (en) Semiconductor device
JP3447592B2 (en) Semiconductor device and manufacturing method thereof
JPH0530074B2 (en)
JPH01302739A (en) Dielectric isolation semiconductor device and manufacture thereof
JP2001230392A (en) Manufacturing method of silicon-on-insulator wafer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees