JP2001230392A - Manufacturing method of silicon-on-insulator wafer - Google Patents

Manufacturing method of silicon-on-insulator wafer

Info

Publication number
JP2001230392A
JP2001230392A JP2000040581A JP2000040581A JP2001230392A JP 2001230392 A JP2001230392 A JP 2001230392A JP 2000040581 A JP2000040581 A JP 2000040581A JP 2000040581 A JP2000040581 A JP 2000040581A JP 2001230392 A JP2001230392 A JP 2001230392A
Authority
JP
Japan
Prior art keywords
wafer
silicon wafer
oxide film
manufacturing
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000040581A
Other languages
Japanese (ja)
Inventor
Katsujiro Tanzawa
勝二郎 丹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000040581A priority Critical patent/JP2001230392A/en
Publication of JP2001230392A publication Critical patent/JP2001230392A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To offer a manufacturing method of N Silicon-on-Insulator(SOI) wafer comprising a shallow heavily doped layer of N-type impurities while restraining diffusion of the heavily doped layer of N-type impurities caused by the heat treatments during a device processing step and a step of manufacturing the N+SOI wafers. SOLUTION: In this manufacturing method of silicon-on-insulator(SOI) wafer, a silicon wafer 11 on an active layer side and a silicon wafer 12 on a supporting substrate side as a base supporting the silicon wafer 11 are bonded into one body by a direct bonding method. A heavily doped of layer N-type impurity 13 is formed on a surface of the bonding side of the wafer 12 on the supporting substrate side. After that, oxide films 14 and 15 are formed on a mirror surface of the bonding side of at least one of the two wafers. The two wafers are bonded through the oxide films 14 and 15, thereby manufacturing the SOI wafers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、SOI(Silicon
On Insulator)ウェーハの製造方法に係り、特にN
型不純物の高濃度埋め込み層を形成したSOIウェーハ
の製造方法に関するものである。
[0001] The present invention relates to SOI (Silicon).
On Insulator) The method of manufacturing a wafer, especially N
The present invention relates to a method for manufacturing an SOI wafer on which a high-concentration buried layer of a type impurity is formed.

【0002】[0002]

【従来の技術】従来、N型不純物の高濃度層を埋め込み
形成したSOIウェーハ(以下、NSOIウェーハと
いう)がある。この従来の技術によるNSOIウェー
ハの製造工程につき、図4の断面図を参照して説明す
る。まず、デバイスが形成される活性層側シリコンウェ
ーハ1とこれを支持する支持基板側シリコンウェーハ2
を用意し、活性層側シリコンウェーハ1の接着側表面に
リン又はヒ素のイオン注入によりN型不純物の高濃度層
3を形成する(図4(a))。なお、使用するシリコン
ウェーハは、例えば、活性層および支持基板側ともに、
6インチ、N型、抵抗率5〜10Ω・cm、厚さ625μ
mを用いる。その後、この活性層側シリコンウェーハ1
およびこれを支持して基台となる支持基板側シリコンウ
ェーハ2を、1100℃〜1200℃、2〜3時間の条
件で熱酸化させて、両シリコンウェーハの両面にそれぞ
れ酸化シリコン膜4,5(以下、酸化膜という)を形成
する(図4(b))。次に、両シリコンウェーハを直接
接着法により貼り合わせ、1100℃〜1200℃で2
時間以上の熱処理(接着アニール)を行い、活性側ウェ
ーハ1と支持基板側ウェーハ2の両者が一体化された接
着ウェーハが出来上がる(図4(c))。
2. Description of the Related Art Conventionally, there is an SOI wafer (hereinafter, referred to as an N + SOI wafer) in which a high concentration layer of an N-type impurity is buried. A process for manufacturing an N + SOI wafer according to this conventional technique will be described with reference to a cross-sectional view of FIG. First, an active layer-side silicon wafer 1 on which devices are to be formed and a support substrate-side silicon wafer 2 that supports the active layer-side silicon wafer 2
Is prepared, and a high-concentration layer 3 of an N-type impurity is formed on the bonding-side surface of the active-layer-side silicon wafer 1 by ion implantation of phosphorus or arsenic (FIG. 4A). The silicon wafer used is, for example, both the active layer and the support substrate side,
6 inch, N type, resistivity 5-10Ω · cm, thickness 625μ
m is used. Then, this active layer side silicon wafer 1
And the supporting substrate-side silicon wafer 2 that supports it and serves as a base is thermally oxidized at 1100 ° C. to 1200 ° C. for 2 to 3 hours, so that silicon oxide films 4 and 5 ( Hereinafter, an oxide film is formed (FIG. 4B). Next, both silicon wafers are bonded by a direct bonding method,
A heat treatment (bonding annealing) is performed for more than an hour to complete a bonded wafer in which both the active wafer 1 and the support substrate wafer 2 are integrated (FIG. 4C).

【0003】前述の熱処理は酸化雰囲気中で行われ、酸
化膜4,5同士が接着された分離酸化膜6が形成される
とともに、活性層側シリコンウェーハ1および支持基板
側シリコンウェーハ2の表面にそれぞれ酸化膜4,5が
形成される。最後に、この接着ウェーハの活性層側ウェ
ーハ1をグラインダ研削および鏡面研磨加工により活性
層側の酸化膜4を除去するとともに活性層を所望の厚
さ、例えば5〜20μmの範囲(含む高濃度層3の厚
み)に仕上げ、N型不純物の高濃度層3が形成されたN
SOIウェーハが完成する(図4(d))。図5は、
この完成したNSOIウェーハを使用して活性層に各
種デバイスが作製された半導体素子(横型ダイオード)
の断面構造を示すものである。この横型ダイオードの構
成としては、支持基板102上の分離酸化膜106を介
して活性層が形成されたNSOIウェーハを用いる。
活性層としての低濃度のN型ベース層101(濃度:
5×1013atoms/cm)表面にはP型ベース領域1
10(濃度:5×1017atoms/cm)、N型バッフ
ァ領域111(濃度:〜5×1017atoms/cm)が
選択的に形成される。さらに、これらのP型ベース領域
110には高濃度のP型領域112(濃度:5×10
19atoms/cm)、N型バッファ領域111には高濃
度のN型領域113(濃度:1×1019atoms/cm
)がそれぞれ形成されるとともに、これらの各領域に
対して酸化シリコン膜(絶縁膜)114によって形成さ
れるコンタクトホールを介してアルミ(Al)のアノー
ド電極115又はカソード電極116がP型ベース領域
110、P型領域112、N型領域113とそれぞ
れコンタクトされている。
The above-mentioned heat treatment is performed in an oxidizing atmosphere to form an isolation oxide film 6 in which the oxide films 4 and 5 are adhered to each other. Oxide films 4 and 5 are formed respectively. Finally, the active layer side wafer 1 of the bonded wafer is removed from the active layer side oxide film 4 by grinding and mirror polishing, and the active layer is formed to a desired thickness, for example, in the range of 5 to 20 μm (including the high concentration layer 3), and the N-type impurity high-concentration layer 3 is formed.
+ The SOI wafer is completed (FIG. 4D). FIG.
A semiconductor device (horizontal diode) in which various devices are formed in an active layer using the completed N + SOI wafer
1 shows a cross-sectional structure of FIG. As the configuration of this lateral diode, an N + SOI wafer on which an active layer is formed via an isolation oxide film 106 on a supporting substrate 102 is used.
Low concentration N type base layer 101 as an active layer (concentration:
5 × 10 13 atoms / cm 3 ) P-type base region 1 on the surface
10 (concentration: 5 × 10 17 atoms / cm 3 ) and an N-type buffer region 111 (concentration: up to 5 × 10 17 atoms / cm 3 ) are selectively formed. Further, these P-type base regions 110 have a high-concentration P + -type region 112 (concentration: 5 × 10
19 atoms / cm 3 ), and a high concentration N + type region 113 (concentration: 1 × 10 19 atoms / cm 3)
3 ) are formed, and an aluminum (Al) anode electrode 115 or a cathode electrode 116 is connected to the P-type base region through a contact hole formed by a silicon oxide film (insulating film) 114 for each of these regions. 110, P + type region 112 and N + type region 113 are in contact with each other.

【0004】また、P型領域112とN型領域11
3との間には、各素子を分離するLOCOS(Local O
xidation of Silicon)膜117,118が選択的に
形成され、LOCOS膜118と分離酸化膜106との
間にはポリシリコンが埋め込まれたトレンチ119が形
成される。
A P + type region 112 and an N + type region 11
LOCOS (Local O) that separates each element
xidation of Silicon) films 117 and 118 are selectively formed, and a trench 119 in which polysilicon is buried is formed between the LOCOS film 118 and the isolation oxide film 106.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来法
によるNSOIウェーハは、活性層側ウェーハの接着
面となる鏡面にN型不純物の高濃度層を形成している関
係上、NSOIウェーハの製造工程における接着アニ
ールや、デバイス製造工程におけるウェル拡散、ベース
拡散などの各熱処理によって、活性層側に形成されるN
型不純物の高濃度層の厚みが拡散により広くなってしま
う。このため、NSOIウェーハを使用して各種半導
体デバイスが作製された半導体素子の電気特性(耐圧)
が大きく低下してしまうという問題を生じていた。本発
明は、上記した課題に鑑みてなされたもので、NSO
Iウェーハの製造工程とデバイス工程の各熱処理におけ
るN型不純物の高濃度層の拡散を抑え、SOIウェーハ
のSOI層底面に浅いN型不純物の高濃度層を有するN
SOIウェーハの製造方法を提供することを目的とす
る。
[SUMMARY OF THE INVENTION However, N + SOI wafer according to the conventional method, the active layer side wafer bonding surface to become on the relationship between form a high concentration layer of N-type impurities to a mirror, N + SOI wafer Formed on the active layer side by adhesive annealing in the manufacturing process of the above, and heat treatments such as well diffusion and base diffusion in the device manufacturing process.
The thickness of the high-concentration layer of the mold impurity is increased by diffusion. For this reason, the electrical characteristics (withstand voltage) of a semiconductor element in which various semiconductor devices are manufactured using an N + SOI wafer
Has been greatly reduced. The present invention has been made in view of the above problems, and has been made in consideration of N + SO
The diffusion of the high concentration layer of the N-type impurity in each heat treatment in the manufacturing process of the I-wafer and the device process is suppressed, and the N-type impurity having a shallow N-type impurity high-concentration layer on the bottom surface of the SOI layer of the SOI wafer.
+ To provide a method for manufacturing an SOI wafer.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明に係るSOIウェーハの製造方法は、活性層側
シリコンウェーハと、これを支持して基台となる支持基
板側シリコンウェーハを直接接着法で貼り合わせて一体
化する接着SOIウェーハの製造方法において、支持基
板側ウェーハの接着面側となる表面にN型不純物の高濃
度層を形成した後、少なくとも一方のウェーハ接着面に
酸化膜を形成し、この酸化膜を介して両ウェーハ同士を
貼り合わせたことを特徴とする。両ウェーハの接着面に
それぞれ酸化膜が形成される場合、活性層側シリコンウ
ェーハに形成される酸化膜は、支持基板側シリコンウェ
ーハに形成される酸化膜よりも薄い膜厚とする。
In order to achieve the above-mentioned object, a method of manufacturing an SOI wafer according to the present invention comprises directly forming an active-layer-side silicon wafer and a supporting-substrate-side silicon wafer that supports the active-layer-side silicon wafer. In the method for manufacturing a bonded SOI wafer which is bonded and integrated by a bonding method, a high concentration layer of N-type impurities is formed on a surface to be a bonding surface side of a support substrate side wafer, and then an oxide film is formed on at least one of the wafer bonding surfaces. Is formed, and both wafers are bonded to each other via the oxide film. When an oxide film is formed on each of the bonding surfaces of the two wafers, the oxide film formed on the active-layer-side silicon wafer is thinner than the oxide film formed on the support-substrate-side silicon wafer.

【0007】[0007]

【発明の実施の形態】以下、本発明に係るSOIウェー
ハの製造方法につき、図面を参照しながら説明する。な
お、この各実施形態で使用するシリコンウェーハは、従
来例と同様に、例えば、活性層および支持基板側とも
に、6インチ、N型、抵抗率5〜10Ω・cm、厚さ6
25μmを用いる。 (第1の実施形態)図1は、本発明の第1の実施形態に
係る各工程(a)〜(d)の断面図を示している。ま
ず、デバイスを形成するための活性層側シリコンウェー
ハ11と、これを支持して基台となる支持基板側シリコ
ンウェーハ12を用意し、支持基板側シリコンウェーハ
12の接着側の鏡面にリンをイオン注入(ドーズ量1.
3×1012個/cm、50KeV)した後、アニー
ル処理(800℃、30分)を行い、N型不純物の高濃
度層13を形成する(図1(a))。次に、熱酸化法に
より、活性層側シリコンウェーハ11の接着面側の鏡面
に、0.05〜0.1μmの酸化シリコン膜を形成す
る。同様に、支持基板側シリコンウェーハ12の接着側
の鏡面にも熱酸化法により、1μmの酸化シリコン膜を
形成することで両ウェーハにそれぞれ酸化シリコン膜1
4,15が形成される(図1(b))。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing an SOI wafer according to the present invention will be described with reference to the drawings. The silicon wafer used in each of the embodiments is, for example, 6 inches, N-type, having a resistivity of 5 to 10 Ω · cm and a thickness of 6
25 μm is used. (First Embodiment) FIG. 1 is a sectional view of each of the steps (a) to (d) according to a first embodiment of the present invention. First, an active layer-side silicon wafer 11 for forming devices and a support substrate-side silicon wafer 12 that supports the active layer-side silicon wafer 12 are prepared. Injection (dose amount 1.
After 3 × 10 12 / cm 2 , 50 KeV, an annealing process (800 ° C., 30 minutes) is performed to form a high concentration layer 13 of N-type impurities (FIG. 1A). Next, a silicon oxide film having a thickness of 0.05 to 0.1 μm is formed on the mirror surface on the bonding surface side of the silicon wafer 11 on the active layer side by a thermal oxidation method. Similarly, a 1 μm silicon oxide film is formed on the bonding-side mirror surface of the support substrate side silicon wafer 12 by a thermal oxidation method, so that the silicon oxide film 1 is formed on both wafers.
4 and 15 are formed (FIG. 1B).

【0008】次に、これらの両ウェーハの酸化シリコン
膜14,15同士を密着させ、1150〜1250℃、
2〜5時間の熱処理(接着アニール)を行い、活性層側
ウェーハ11と支持基板側ウェーハ12の両者が直接接
着法によって貼り合わされた接着ウェーハが出来上がる
(図1(c))。この直接接着法による熱処理は酸化雰
囲気中で行われ、活性層側シリコンウェーハ11の上側
(裏面)および支持基板側シリコンウェーハ12の下側
(裏面)にはそれぞれ酸化膜17,18が形成されると
ともに、貼り合わせ面には酸化膜14,15同士が接着
された分離酸化膜16が形成される。なお、このとき、
支持基板側シリコンウェーハ12の下側に形成された酸
化膜18はNSOIウェーハの反りを矯正する働きを
もっている。また、図1(c)に示すように、接着アニ
ールによってN型不純物の高濃度層13は拡散されて広
がり、分離酸化膜16の上側(活性層側)にも拡散して
N型不純物の高濃度層19が新たに形成される。最後
に、接着ウェーハの活性層側シリコンウェーハ11をグ
ラインダ研削により除去し、さらに鏡面研磨加工を行っ
て活性層11'の厚さが15μmとなるように仕上げ、
分離酸化膜16の厚さが1.05〜1.1μm、N型不
純物の高濃度層19の厚みが1.4μmからなるN
OIウェーハが完成する。
Next, the silicon oxide films 14 and 15 of these two wafers are brought into close contact with each other,
Heat treatment (bonding annealing) is performed for 2 to 5 hours, and a bonded wafer in which both the active layer side wafer 11 and the support substrate side wafer 12 are directly bonded to each other is obtained (FIG. 1C). The heat treatment by the direct bonding method is performed in an oxidizing atmosphere, and oxide films 17 and 18 are formed on the upper side (back side) of the active layer side silicon wafer 11 and the lower side (back side) of the support substrate side silicon wafer 12, respectively. At the same time, an isolation oxide film 16 in which the oxide films 14 and 15 are bonded to each other is formed on the bonding surface. At this time,
The oxide film 18 formed below the supporting substrate side silicon wafer 12 has a function of correcting the warpage of the N + SOI wafer. Further, as shown in FIG. 1C, the high-concentration layer 13 of the N-type impurity is diffused and spread by the adhesion annealing, and is also diffused above the isolation oxide film 16 (on the side of the active layer), thereby increasing the concentration of the N-type impurity. A concentration layer 19 is newly formed. Lastly, the active layer side silicon wafer 11 of the bonded wafer is removed by grinding, and mirror polishing is further performed to finish the active layer 11 'to a thickness of 15 μm.
N + S in which the thickness of the isolation oxide film 16 is 1.05 to 1.1 μm and the thickness of the high concentration layer 19 of N-type impurity is 1.4 μm.
The OI wafer is completed.

【0009】次いで、この完成したNSOIウェーハ
に図5に示す半導体素子(横型ダイオード)を作製した
ところ、図6の実施形態(1)に示すように、N型不純
物の高濃度層19の厚みは、3.3μmを示し、耐圧は
510Vと良好な耐圧特性を得ることができた。また、
従来法を用いて、この第1の実施形態と同仕様(不純
物:リン、イオン注入のドーズ量1.3×1012個/
cm、50KeV)によりNSOIウェーハを作製
したところ、図6の比較例(1)に示すように、不純物
の高濃度層厚みは4.5μmを示し、半導体素子(デバ
イス)完成時の高濃度層厚みは9.8μmと大きくなっ
た。その結果、素子の耐圧についても360Vに低下し
た。さらに、この第1の実施形態において、高濃度層を
形成する不純物をリンに代えて、ヒ素のイオン注入(ド
ーズ量1.3×1012個/cm、50KeV)を用
いて同仕様のNSOIウェーハ(SOI厚15μm/
分離酸化膜厚1.05〜1.1μm)を作製した場合に
あっては、図6の実施形態(1)の変形例に示すよう
に、N型不純物の高濃度層の厚みは0.6μmを示し
た。さらに、半導体素子(デバイス)完成時の高濃度層
厚みは1.4μmを示し、590Vと良好な耐圧結果を
得ることができた。したがって、不純物をリンからヒ素
に変更したことによる耐圧の低下は見られなかった。
Next, when a semiconductor device (horizontal diode) shown in FIG. 5 was manufactured on the completed N + SOI wafer, as shown in an embodiment (1) of FIG. The thickness was 3.3 μm, and the withstand voltage was 510 V, and good withstand voltage characteristics were obtained. Also,
Using the conventional method, the same specifications as the first embodiment (impurity: phosphorus, dose of ion implantation: 1.3 × 10 12 /
When an N + SOI wafer was manufactured at a pressure of 50 cm2 (cm 2 , 50 KeV), the thickness of the high-concentration layer of the impurity was 4.5 μm, as shown in Comparative Example (1) in FIG. The concentration layer thickness increased to 9.8 μm. As a result, the breakdown voltage of the device was also reduced to 360V. Further, in the first embodiment, the impurity for forming the high concentration layer is replaced with phosphorus, and arsenic ion implantation (dose amount: 1.3 × 10 12 / cm 2 , 50 KeV) is used, and the same specification of N is used. + SOI wafer (SOI thickness 15 μm /
In the case where an isolation oxide film thickness of 1.05 to 1.1 μm) is formed, as shown in a modification of the embodiment (1) in FIG. showed that. Further, the thickness of the high concentration layer when the semiconductor element (device) was completed was 1.4 μm, and a good withstand voltage result of 590 V was obtained. Therefore, no decrease in the breakdown voltage due to the change of the impurity from phosphorus to arsenic was observed.

【0010】また、従来法を用いて同仕様(不純物:ヒ
素、イオン注入のドーズ量1.3×1012個/c
、50KeV)のNSOIウェーハを作製したと
ころ、図6の比較例(1)変形例に示すように、不純物
の高濃度層厚みは、2.4μmを示した。さらに、半導
体素子(デバイス)完成時の高濃度層厚みは3.7μm
を示し、素子の耐圧についても420Vに低下し、十分
な耐圧を得ることができなかった。 (第2の実施形態)図2は、第2の実施形態に係る各工
程(a)〜(d)を示すものであり、接着面に形成され
る分離酸化膜は、支持基板側シリコンウェーハのみに形
成し、その後、両ウェーハを直接接着法で貼り合わせて
一体化したものである。まず、デバイスを形成するため
の活性層側シリコンウェーハ11と、これを支持して基
台となる支持基板側シリコンウェーハ12を用意し、支
持基板側シリコンウェーハ12の接着側の鏡面にリンを
イオン注入(ドーズ量1.3×1012個/cm、5
0KeV)と後処理(800℃、30分)を行い、N型
不純物の高濃度層13を形成する(図2(a))。次
に、熱酸化法により支持基板側シリコンウェーハ12の
接着面側の鏡面に、1μmの酸化膜を形成して、分離酸
化膜14が形成される(図2(b))。この分離酸化膜
14中にはリンが多量に含まれている。
The conventional method (impurity: arsenic, ion implantation dose: 1.3 × 10 12 / c)
When an N + SOI wafer (m 2 , 50 KeV) was produced, the thickness of the high-concentration layer of the impurity was 2.4 μm as shown in a comparative example (1) modification of FIG. Further, the thickness of the high concentration layer at the time of completion of the semiconductor element (device) is 3.7 μm.
And the withstand voltage of the element also dropped to 420 V, and a sufficient withstand voltage could not be obtained. (Second Embodiment) FIGS. 2A to 2D show steps (a) to (d) according to a second embodiment, and the separation oxide film formed on the bonding surface is only the silicon wafer on the support substrate side. Then, both wafers are directly bonded by a bonding method to be integrated. First, an active layer-side silicon wafer 11 for forming devices and a support substrate-side silicon wafer 12 that supports the active layer-side silicon wafer 12 are prepared. Implantation (dose amount: 1.3 × 10 12 / cm 2 , 5
(0 KeV) and post-treatment (800 ° C., 30 minutes) to form a high concentration layer 13 of N-type impurities (FIG. 2A). Next, an oxide film of 1 μm is formed on the mirror surface on the bonding surface side of the silicon wafer 12 on the support substrate side by a thermal oxidation method, and an isolation oxide film 14 is formed (FIG. 2B). This isolation oxide film 14 contains a large amount of phosphorus.

【0011】次に、これらの両ウェーハ同士11,12
を密着させ、1000〜1100℃、1〜2時間の熱処
理(接着アニール)を行い、活性層側ウェーハ11と支
持基板側ウェーハ12の両者が直接接着法によって貼り
合わされた接着ウェーハが出来上がるとともに分離酸化
膜中のリンが活性層側ウェーハに拡散してN型高濃度層
19が新たに形成される(図2(c))。直接接着法に
よる熱処理は酸化雰囲気中で行われ、活性層側シリコン
ウェーハ11の上側(裏面)および支持基板側シリコン
ウェーハ12の下側(裏面)にはそれぞれ酸化膜17,
18が形成される。最後に、接着ウェーハの活性層側シ
リコンウェーハ11をグラインダ研削により除去し、さ
らに鏡面研磨加工を行って活性層11'の厚さが15μ
mとなるように仕上げ、分離酸化膜14の厚さが1μ
m、N型不純物の高濃度層19の厚みが0.8〜1.0
μmからなるNSOIウェーハが完成する。次いで、
この完成したNSOIウェーハを用いて図5に示す半
導体素子(横型ダイオード)を作製したところ、図6の
実施形態(2)に示すようにN型不純物の厚みは3.3
μmを示し、このときの耐圧は510Vとなり良好な耐
圧特性を得ることができた。
Next, these two wafers 11, 12
And a heat treatment (adhesion annealing) at 1000 to 1100 ° C. for 1 to 2 hours is performed to form a bonded wafer in which both the active layer side wafer 11 and the support substrate side wafer 12 are bonded directly by a bonding method, and separation oxidation is performed. Phosphorus in the film diffuses into the wafer on the active layer side, and an N-type high concentration layer 19 is newly formed (FIG. 2C). The heat treatment by the direct bonding method is performed in an oxidizing atmosphere, and an oxide film 17, an upper surface (back surface) of the active layer side silicon wafer 11 and a lower surface (back surface) of the support substrate side silicon wafer 12 are respectively provided.
18 are formed. Finally, the silicon wafer 11 on the active layer side of the bonded wafer is removed by grinding, and mirror polishing is performed to reduce the thickness of the active layer 11 ′ to 15 μm.
m, and the thickness of the isolation oxide film 14 is 1 μm.
m, the thickness of the N-type impurity high concentration layer 19 is 0.8 to 1.0.
An N + SOI wafer of μm is completed. Then
Using the completed N + SOI wafer, a semiconductor device (horizontal diode) shown in FIG. 5 was manufactured. As shown in the embodiment (2) of FIG. 6, the thickness of the N-type impurity was 3.3.
μm, and the withstand voltage at this time was 510 V, and good withstand voltage characteristics could be obtained.

【0012】(第3の実施形態)図3は、本発明の第3
の実施形態に係る各工程(a)〜(d)を示している。
前述した各々の実施形態では支持基板側シリコンウェー
ハに形成されるN型不純物の高濃度層はイオン注入法を
用いているが、この第3の実施形態では固相拡散法を用
いたものである。まず、デバイスを形成するための活性
層側シリコンウェーハ11と、これを支持して基台とな
る支持基板側シリコンウェーハ12を用意し、支持基板
側シリコンウェーハの接着側の鏡面にアンチモンの固相
拡散(東京応化製アンチモン塗布材:1180℃、60
分)を施してN型不純物の高濃度層13を形成する(図
3(a))。次に、酸素と水素の燃焼酸化法により支持
基板側シリコンウェーハ22の接着面側の鏡面に、1μ
mの酸化膜25を形成する。活性層側シリコンウェーハ
21の接着面側の鏡面にも、熱酸化法により0.01μ
mの酸化膜24を形成する(図3(b))。次に、これ
らの両ウェーハを酸化シリコン膜24,25同士を密着
させ、1150〜1250℃、2〜5時間の熱処理(接
着アニール)を行い、活性層側ウェーハ21と支持基板
側ウェーハ22の両者が直接接着法によって貼り合わさ
れた接着ウェーハが出来上がる(図3(c))。
(Third Embodiment) FIG. 3 shows a third embodiment of the present invention.
4A to 4D show the steps (a) to (d) according to the embodiment.
In each of the embodiments described above, the high-concentration layer of the N-type impurity formed on the silicon wafer on the support substrate side uses an ion implantation method. In the third embodiment, a solid phase diffusion method is used. . First, an active-layer-side silicon wafer 11 for forming a device and a support-substrate-side silicon wafer 12 that supports the active-substrate-side silicon wafer are prepared. Diffusion (Tokyo Oka antimony coating material: 1180 ° C, 60
) To form an N-type impurity high concentration layer 13 (FIG. 3A). Next, 1 μm was applied to the mirror surface on the bonding surface side of the support substrate side silicon wafer 22 by the combustion oxidation method of oxygen and hydrogen.
An oxide film 25 of m is formed. On the mirror surface on the bonding surface side of the active layer side silicon wafer 21, 0.01 μm is also applied by a thermal oxidation method.
An oxide film 24 having a thickness of m is formed (FIG. 3B). Next, both of these wafers are brought into close contact with the silicon oxide films 24 and 25, and heat treatment (adhesion annealing) is performed at 1150 to 1250 ° C. for 2 to 5 hours. Is obtained by directly bonding the wafers by the bonding method (FIG. 3C).

【0013】直接接着法による熱処理は酸化雰囲気中で
行われ、活性層側シリコンウェーハ21の上側(裏面)
および支持基板側シリコンウェーハ22の下側(裏面)
にはそれぞれ酸化シリコン膜27,28が形成されると
ともに、接着面は酸化シリコン膜24,25同士が一体
化された分離酸化膜26が形成される。この分離酸化膜
26中にはアンチモンが多量に含まれており、図3
(c)に示すように、接着アニールにより活性層側ウェ
ーハにも拡散してN型不純物の高濃度層29が新たに形
成される。最後に、接着ウェーハの活性層側シリコンウ
ェーハ21をグラインダ研削により除去し、さらに、鏡
面研磨加工を行って活性層21'の厚さが15μmとな
るように仕上げ、分離酸化膜16の厚さが1.01μ
m、N型不純物の高濃度層19の厚みが0.9μmから
なるNSOIウェーハが完成する。次いで、この完成
したNSOIウェーハを用いて図5に示す半導体素子
(横型ダイオード)を作製したところ、図6の実施形態
(3)に示すようにN型不純物の高濃度層19の厚みは
2.8μmを示し、耐圧は540Vを示して良好な結果
を得ることができた。また、従来法を用いて、この第3
の実施形態と同仕様(アンチモンの固相拡散(東京応化
製アンチモン塗布材:1180℃、60分)にて作製し
たところ、比較例(3)に示すように、N型不純物の高
濃度層厚みは6.2μmと大きくなり、その結果、素子
の耐圧についても360Vに低下した。
The heat treatment by the direct bonding method is performed in an oxidizing atmosphere, and is performed on the upper side (back side) of the silicon wafer 21 on the active layer side.
And the lower side (back side) of the silicon wafer 22 on the support substrate side
, Silicon oxide films 27 and 28 are respectively formed, and an isolation oxide film 26 in which the silicon oxide films 24 and 25 are integrated with each other is formed on the bonding surface. This isolation oxide film 26 contains a large amount of antimony.
As shown in FIG. 3C, the high-concentration layer 29 of the N-type impurity is newly formed by diffusing into the active layer side wafer by adhesion annealing. Finally, the active layer-side silicon wafer 21 of the bonded wafer is removed by grinding, and furthermore, mirror polishing is performed to finish the active layer 21 ′ to a thickness of 15 μm, and the thickness of the isolation oxide film 16 is reduced. 1.01μ
An N + SOI wafer in which the thickness of the high concentration layer 19 of m and N type impurities is 0.9 μm is completed. Next, when the semiconductor device (horizontal diode) shown in FIG. 5 was manufactured using the completed N + SOI wafer, the thickness of the N-type impurity high-concentration layer 19 was reduced as shown in the embodiment (3) of FIG. 2.8 μm, the withstand voltage was 540 V, and good results were obtained. Also, using the conventional method, this third
Of the same specifications (solid phase diffusion of antimony (antimony coating material manufactured by Tokyo Ohka: 1180 ° C., 60 minutes)), as shown in Comparative Example (3), the thickness of the high-concentration layer of the N-type impurity Was increased to 6.2 μm, and as a result, the withstand voltage of the element was also reduced to 360 V.

【0014】[0014]

【発明の効果】以上説明したように、本発明に係るSO
Iウェーハの製造法は、活性層側に形成されるN型不純
物の高濃度層の厚みを薄く形成することできる。この結
果、このSOIウェーハを使用して作製される半導体素
子の電気特性(耐圧)を大幅に向上できる。
As described above, the SO according to the present invention can be used.
According to the method of manufacturing the I wafer, the thickness of the high concentration layer of the N-type impurity formed on the active layer side can be reduced. As a result, the electrical characteristics (withstand voltage) of the semiconductor element manufactured using this SOI wafer can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係るSOIウェー
ハの製造工程を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a manufacturing process of an SOI wafer according to a first embodiment of the present invention.

【図2】 本発明の第2の実施形態に係るSOIウェー
ハの製造工程を示す断面図である。
FIG. 2 is a sectional view illustrating a manufacturing process of an SOI wafer according to a second embodiment of the present invention.

【図3】 本発明の第3の実施形態に係るSOIウェー
ハの製造工程を示す断面図である。
FIG. 3 is a cross-sectional view illustrating a manufacturing process of an SOI wafer according to a third embodiment of the present invention.

【図4】 従来法によるSOIウェーハの製造工程を示
す断面図である。
FIG. 4 is a sectional view showing a manufacturing process of an SOI wafer according to a conventional method.

【図5】 SOIウェーハを使用して作製された半導体
素子(横型ダイオード)の構造を示す断面図である。
FIG. 5 is a cross-sectional view illustrating a structure of a semiconductor element (horizontal diode) manufactured using an SOI wafer.

【図6】 本発明の実施形態と従来法(比較例)に係る
SOIウェーハのN層厚みの測定結果ならびに電気特
性(耐圧)結果を示す図である。
FIG. 6 is a diagram showing a measurement result of an N + layer thickness and an electric characteristic (breakdown voltage) result of an SOI wafer according to an embodiment of the present invention and a conventional method (comparative example).

【符号の説明】[Explanation of symbols]

1、11、21…活性層側シリコンウェーハ 2、12、22…支持基板側シリコンウェーハ 3、13、19、23、29…N型不純物の高濃度層 4、5、14、15、16、17、18、24、25、
27、29…酸化膜
1, 11, 21 ... Active layer side silicon wafer 2, 12, 22 ... Support substrate side silicon wafer 3, 13, 19, 23, 29 ... N-type impurity high concentration layer 4, 5, 14, 15, 16, 17 , 18, 24, 25,
27, 29 ... oxide film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性層側シリコンウェーハと、これを支
持して基台となる支持基板側シリコンウェーハを直接接
着法で貼り合わせて一体化するSOIウェーハの製造方
法において、支持基板側ウェーハの接着面側の表面にN
型不純物の高濃度層を形成した後、少なくとも一方のウ
ェーハ接着面に酸化膜を形成し、この酸化膜を介して両
ウェーハ同士を貼り合わせたことを特徴とするSOIウ
ェーハの製造方法。
An SOI wafer manufacturing method in which an active layer-side silicon wafer and a support substrate-side silicon wafer that supports the active layer and serve as a base are bonded and integrated by a direct bonding method. N on the surface side
A method for manufacturing an SOI wafer, comprising forming an oxide film on at least one wafer bonding surface after forming a high-concentration layer of a mold impurity, and bonding both wafers together via the oxide film.
【請求項2】 両ウェーハの接着面にそれぞれ酸化膜が
形成される場合、活性層側シリコンウェーハに形成され
る酸化膜は、支持基板側シリコンウェーハに形成される
酸化膜よりも薄い膜厚であることを特徴とする請求項1
記載のSOIウェーハの製造方法。
2. An oxide film formed on an active layer side silicon wafer having a smaller thickness than an oxide film formed on a support substrate side silicon wafer when an oxide film is formed on each of the bonding surfaces of both wafers. 2. The method according to claim 1, wherein
The manufacturing method of the SOI wafer described in the above.
JP2000040581A 2000-02-18 2000-02-18 Manufacturing method of silicon-on-insulator wafer Pending JP2001230392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040581A JP2001230392A (en) 2000-02-18 2000-02-18 Manufacturing method of silicon-on-insulator wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040581A JP2001230392A (en) 2000-02-18 2000-02-18 Manufacturing method of silicon-on-insulator wafer

Publications (1)

Publication Number Publication Date
JP2001230392A true JP2001230392A (en) 2001-08-24

Family

ID=18563941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040581A Pending JP2001230392A (en) 2000-02-18 2000-02-18 Manufacturing method of silicon-on-insulator wafer

Country Status (1)

Country Link
JP (1) JP2001230392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277702A (en) * 2007-05-07 2008-11-13 Shin Etsu Handotai Co Ltd Method of manufacturing soi substrate, and soi substrate
JP2011040729A (en) * 2009-07-16 2011-02-24 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor substrate, and semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277702A (en) * 2007-05-07 2008-11-13 Shin Etsu Handotai Co Ltd Method of manufacturing soi substrate, and soi substrate
WO2008139684A1 (en) * 2007-05-07 2008-11-20 Shin-Etsu Handotai Co., Ltd. Soi substrate manufacturing method and soi substrate
CN101675499B (en) * 2007-05-07 2012-06-13 信越半导体股份有限公司 Soi substrate manufacturing method and soi substrate
US8709911B2 (en) 2007-05-07 2014-04-29 Shin-Etsu Handotai Co., Ltd. Method for producing SOI substrate and SOI substrate
KR101486779B1 (en) 2007-05-07 2015-01-28 신에쯔 한도타이 가부시키가이샤 Soi substrate manufacturing method and soi substrate
JP2011040729A (en) * 2009-07-16 2011-02-24 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor substrate, and semiconductor device

Similar Documents

Publication Publication Date Title
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
JP2995723B2 (en) Vertical current semiconductor device using wafer bonding and method of manufacturing the same
JPH0671043B2 (en) Method for manufacturing silicon crystal structure
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
JPH05347413A (en) Manufacture of semiconductor device
JPS6159852A (en) Manufacture of semiconductor device
US4837177A (en) Method of making bipolar semiconductor device having a conductive recombination layer
JPH04283914A (en) Cladded semiconductor substrate and production method thereof
JP3864430B2 (en) Manufacturing method of semiconductor device
KR100582147B1 (en) Semiconductor ic apparatus and method for fabricating the same
JP2001230392A (en) Manufacturing method of silicon-on-insulator wafer
JP3243071B2 (en) Dielectric separated type semiconductor device
JPH01241168A (en) Bipolar transistor and manufacture thereof
JP4424277B2 (en) Semiconductor device and bonded wafer
JP3116609B2 (en) Method for manufacturing semiconductor device
JP2618873B2 (en) Method for manufacturing semiconductor device
JP2001144273A (en) Method for fabricating semiconductor device
JPS58155739A (en) Semiconductor device
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JP3237277B2 (en) Semiconductor device
JPS58107645A (en) Manufacture of semiconductor device
JPS6334949A (en) Semiconductor device
JP3312384B2 (en) Lateral bipolar transistor and manufacturing method thereof
JPH02125657A (en) Semiconductor device
JPH0547914A (en) Dielectric isolation substrate and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070330