JPS60167475A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60167475A
JPS60167475A JP59021766A JP2176684A JPS60167475A JP S60167475 A JPS60167475 A JP S60167475A JP 59021766 A JP59021766 A JP 59021766A JP 2176684 A JP2176684 A JP 2176684A JP S60167475 A JPS60167475 A JP S60167475A
Authority
JP
Japan
Prior art keywords
layer
type
hetero junction
mixed crystal
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59021766A
Other languages
Japanese (ja)
Other versions
JPH0714054B2 (en
Inventor
Toshiyuki Usagawa
利幸 宇佐川
Yuichi Ono
祐一 小野
Susumu Takahashi
進 高橋
Yoshifumi Katayama
片山 良史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59021766A priority Critical patent/JPH0714054B2/en
Publication of JPS60167475A publication Critical patent/JPS60167475A/en
Publication of JPH0714054B2 publication Critical patent/JPH0714054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Abstract

PURPOSE:To form selective doping hetero junction type FET's easy of threshold value control having a suitable structure for preparation of an enhancement type FET and a depletion type FET in the same substrate, by having a pair of electrodes electronically connected to two-dimensional carriers on a hetero junction interface. CONSTITUTION:The titled device is composed of a semi-insulation GaAs substrate or P type GaAs substrate 10, an undoped GaAs layer 11, a nondoped AlxGa1-xAs layer 12' with the mixed crystal ratio (x) of Al in a range of 0.25<= x<=0.4, an N type AlxGa1-xAs layer 22 with the mixed crystal ratio (x) of Al in a range of 0.05<=x<=0.2, source-drain electrodes 19, and a gate electrode 13. In the layer 12' forming a hetero junction directly with the layer 11, the energy difference DELTAEc between conduction bands of both can be increased by setting the Al mol fraction (x) at 0.28<=x<=0.40, and many electrons can be confined in the hetero junction interface.

Description

【発明の詳細な説明】 〔発明の利用分野〕 直 本発明は、超高源の選択ドープヘテロ接合型FET (
電界効果トランジスタ)に係り、特に、高集積に好適な
トランジスタ構造に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ultra-high source selectively doped heterojunction FET (
The present invention relates to field effect transistors (field effect transistors), and particularly to transistor structures suitable for high integration.

〔発明の背景〕[Background of the invention]

(1) 従来の選択ドープヘテロ接合型FET (例えば特開昭
56−94779 )のエネルギーバンド図〔第1図〕
と、エンハンスメント型F E T (E−FET)と
デプレション型F E T (D−FET)の断面図を
第2図に示す。従来作成している例では、11はアンド
ープG aΔ8,12はn型へQ X G a、−、A
 s層であった。13.13’はゲート電極、17はn
型G a A s層、19がソース・ドレイン電極、1
6がイオン化した不純物Eトはフェルミレベル、EDは
A Q xG al−、A sの伝導帯の1と不純物準
位とのエネルギー間隔を各々示す。15は2次元状電子
ガス層である。
(1) Energy band diagram of a conventional selectively doped heterojunction FET (for example, Japanese Patent Application Laid-Open No. 56-94779) [Fig. 1]
FIG. 2 shows cross-sectional views of an enhancement type FET (E-FET) and a depletion type FET (D-FET). In the conventional example, 11 is undoped Ga Δ8, 12 is n-type Q
It was the s layer. 13.13' is the gate electrode, 17 is n
type GaAs layer, 19 is source/drain electrode, 1
6 is the ionized impurity Et, and ED is the Fermi level, and ED is the energy interval between the conduction band 1 and the impurity level of AQxGal- and As, respectively. 15 is a two-dimensional electron gas layer.

従来のこのFETにおいては、A Q x GaトxA
 sとG a A sとの格子マツチングを良くする(
Xを小さくする)ことと二次元状担体15をより効果的
にヘテロ界面に蓄積される(Xを大きくする)ことの相
矛盾する要請のためにAQの混晶化Xとには0.3前後
にとるのが通例であった。
In this conventional FET, A Q x Ga x A
Improve the lattice matching between s and G a A s (
Due to the contradictory demands of (reducing It was customary to take it before and after.

ところが、不純物レベルEt)はAQの混晶化Xに大き
く依存することが実験によって確認されて(2) いる(例えばSiについては、J、J、A、P、旦(1
982)L675− L676 、 Teについては1
1.c、casey、M、B、Pan1s“Heter
ostructure La5ers”Academi
c Preas 1978PART A P2O0を参
照)。
However, it has been experimentally confirmed (2) that the impurity level Et) greatly depends on the mixed crystallization X of AQ (for example, for Si, J, J, A, P, Dan(1
982) L675- L676, 1 for Te
1. c, casey, M, B, Pan1s “Heter
structure La5ers”Academi
c Preas 1978 PART A P2O0).

一方、このF E Tは、A Q X Ga、−、A 
s層12の膜厚dが500人程度で不純物濃度N0とし
ては10”cm−’ をとるのが普通である。
On the other hand, this F ET is A Q
It is normal that the film thickness d of the S layer 12 is about 500 and the impurity concentration N0 is 10"cm-'.

qとすると という形がしきい値電圧v0の中にあられれてくる。If q This form appears in the threshold voltage v0.

事情はGaAsMESFETでも同様で、dとして能導
層厚とするば、N、〜10cm−3程度d〜1000人
である。
The situation is similar for GaAs MESFETs, where d is the thickness of the conductive layer, N is about 10 cm -3 and d is about 1000.

閾値電圧vTが(1)式にあられれる量は選択ドープF
ETの場合がGaAsMESFETに比べ2,5倍大き
い値となる。このことは大略、GaAsM[ESFHT
に比(3) べて閾値制御がGaAsMESFETに比べ2.5倍も
難かしいことを意味している。
The amount by which the threshold voltage vT can be expressed in equation (1) is the selective doping F.
The value for ET is 2.5 times larger than that for GaAs MESFET. This roughly means that GaAsM[ESFHT
Compared to (3), this means that threshold control is 2.5 times more difficult than in GaAs MESFETs.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、選択ドープヘテロ接合型FETにおい
て、閾値制御が容易で、エンハンスメント型FETとデ
プレション型FETを同一基板内に作成するのに好適な
構造をもつ選択ドープヘテロ接合型FETを提供するこ
とにある。
An object of the present invention is to provide a selectively doped heterojunction FET that allows easy threshold control and has a structure suitable for manufacturing an enhancement type FET and a depletion type FET in the same substrate. It is in.

〔発明の概要〕[Summary of the invention]

発明者たちは、ヘテロ接合界面に蓄積する電子シート濃
度nsと不純物準位ED、閾値電圧v0の間の関係を研
究しているうちに次の様な事実を見出した。
The inventors discovered the following fact while studying the relationship between the electron sheet concentration ns accumulated at the heterojunction interface, the impurity level ED, and the threshold voltage v0.

価電子帯から測ったフェルミレベルをEF、不純物レベ
ルをEVDとし、統計力学の要請により電気的に活性に
なりうるn型不純物の数をNo、イオン化した不純物の
数をND十とすると(4) でTは電子温度である。
Let EF be the Fermi level measured from the valence band, EVD be the impurity level, No be the number of n-type impurities that can become electrically active as required by statistical mechanics, and let ND0 be the number of ionized impurities (4) where T is the electron temperature.

ところで簡単な逆考察から闇値電圧■3.に関与するの
はND十ではなくNoであることがわかる。
By the way, from a simple inverse consideration, the dark value voltage ■3. It can be seen that it is No that is involved in this, not ND ten.

一方、ヘテロ接合界面に蓄積する電子シート濃度n6は ただし、 h:ボルツマン常数 T:絶対温度 ΔE g : A Q G a A sとGaAのエネ
ルギーギャップの差 (Na Nv )GaAs : GaAaの電子有効状
態密度と正孔有効状態密度 (Nc Nv )AQGaAg : A Q G a 
A sの電子有効状態密度と正孔有効状態密度 (5) として与えられ、N、十の関ηである。
On the other hand, the electron sheet concentration n6 accumulated at the heterojunction interface is: h: Boltzmann constant T: absolute temperature ΔE g: A Q Ga A Difference in energy gap between s and GaA (Na Nv) GaAs: Electronic effective state of GaAa Density and hole effective state density (Nc Nv) AQGaAg: A Q Ga
It is given as the electron effective state density and hole effective state density of A s (5), and is a function η of N and 10.

即ち、不純物準位Evが小さいなど、同一のNoに対し
多くの電子を蓄積できることを見出した。
That is, it has been found that many electrons can be accumulated for the same No because the impurity level Ev is small.

従来技術のところで示した様にn型ドーパントとしては
、S t 、 T aを用いるのが通例で、その場合、
EDはAMの混晶比Xに大きく依存していることが知ら
れていた。即ち、 である。〔たとえばJ 、 J 、 A 、 P、旦(
1982)L675−L676)今までの議論から、同
一のND、即ち、同一のvTbに対して有効にμ6を増
やすには、AΩのmolr fraction xを小
さくする方が良いことになる。
As shown in the prior art section, it is customary to use S t and Ta as n-type dopants, in which case,
It was known that ED largely depends on the mixed crystal ratio X of AM. That is, [For example, J, J, A, P, Dan (
1982) L675-L676) From the discussion up to now, in order to effectively increase μ6 for the same ND, that is, the same vTb, it is better to reduce the molr fraction x of AΩ.

しかし今までの議論ではへテロ接合界面での伝導帯のエ
ネルギーの″とびΔEcの大きさを無視していた。ΔE
Cは大きいほど良いので、この場合は^Q mole 
fraction xが大きい方がよいことになる。
However, the discussion up to now has ignored the magnitude of the conduction band energy jump ΔEc at the heterojunction interface.ΔE
The larger C is, the better, so in this case ^Q mole
It follows that the larger the fraction x, the better.

(6) つまり、以上をまとめると同一の■Tbを与えたときに
は、ヘテロ接合型面ではΔEaの大きいノンドープA 
Q x G a、、、xA s層を用い、界面から離れ
たところではAQの混晶比の小さいn型A I2 x 
G s 1−、 A s層を形成してFETを作ると最
もよいFETができることになる。
(6) In other words, to summarize the above, when the same ■Tb is given, non-doped A with a large ΔEa on the heterojunction type surface
Using Q
The best FET can be produced by forming G s 1- and As layers.

即ち、本発明は上記の構造のへテロ接合を用いて選択ド
ープヘテロ接合型FETを設計すると、同一の閾値電圧
を与えたときに最大の電流をとることができる。
That is, in the present invention, if a selectively doped heterojunction FET is designed using a heterojunction having the above structure, the maximum current can be obtained when the same threshold voltage is applied.

別の言い方をすれば、同一の電流をとるには少ない量の
不純物1ニーピングで良いために、閾値制御がGuAs
肚S F Lj T端間程度にまでなる。
In other words, threshold control is better with GuAs because it only takes one kneading of a small amount of impurity to obtain the same current.
Approximately between the T edges.

本発明の半導体装置の断面図を第3図(a)に示す。1
0は半絶縁性G a A s基板又はP型GaAs基板
、11はアンドープG a A s層、12′はAQの
混晶比Xで0.25≦X≦0.4の範囲のノンドープA
QXGa1−xAs層、22はAQの混晶比Xが0.0
5≦X≦0.2の範囲のn型AQ3Gaa−8As層、
19はソース・ドレイン電極、(7) 13はゲート電極。第13(b)は、断面A−BでのA
Qの混晶比の範囲を示すグラフである。
A cross-sectional view of the semiconductor device of the present invention is shown in FIG. 3(a). 1
0 is a semi-insulating GaAs substrate or a P-type GaAs substrate, 11 is an undoped GaAs layer, and 12' is a non-doped A with a mixed crystal ratio X of AQ in the range of 0.25≦X≦0.4.
QXGa1-xAs layer, 22 has AQ mixed crystal ratio X of 0.0
n-type AQ3Gaa-8As layer in the range of 5≦X≦0.2,
19 is a source/drain electrode, (7) 13 is a gate electrode. 13(b) is A at cross section A-B.
It is a graph showing the range of the mixed crystal ratio of Q.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例を用いて要に詳しく説明する。 The present invention will be explained in detail below using examples.

実施例1 半絶縁性G a A s基板10上に、分子線エピタキ
シー法(MBE)を用いて、不純物を故意にはドープし
ない高純度G a A s層11を約1μm。
Example 1 On a semi-insulating GaAs substrate 10, a high purity GaAs layer 11 which is not intentionally doped with impurities is formed to a thickness of approximately 1 μm using molecular beam epitaxy (MBE).

同じく不純物を故意にはドープしないAQxGa、、A
ss層2’ (x〜0.3)を60人成長させた。通常
このA Q x G at−、A s層12′は、A 
D、の混合比ヲ0.28≦X≦0.40の範囲で用いる
。次にAQの混晶比を0.22にしたAQx G al
−xA s層22をI8 400人成長させ、このときSi原子を1×10cm 
”’ ”の濃度でドープした。次に、G a A s層
17を200人成長させ、このときSi原子をIXlo
cm−’の濃度でドープした(第4図(、)。
Similarly, AQxGa, which is not intentionally doped with impurities, A
Sixty ss layer 2' (x~0.3) were grown. Usually, this A Q x G at-, A s layer 12' is
The mixing ratio of D is used within the range of 0.28≦X≦0.40. Next, AQx Gal with the mixed crystal ratio of AQ set to 0.22
-xA s layer 22 is grown by I8 400 people, and at this time, Si atoms are grown to 1×10 cm.
It was doped at a concentration of ``'''. Next, 200 Ga As layers 17 are grown, and at this time, Si atoms are
cm-' concentration (Fig. 4(a)).

このn型G a A s層の不純物濃度は、あまり高く
すると、ショットキーゲート電極の順方向バリア(8) を小さくし、逆耐圧を小さくするという効果をも極を形
成するときに、イオン注入法等でn+層を形成する必要
がある。
If the impurity concentration of this n-type GaAs layer is too high, it will reduce the forward barrier (8) of the Schottky gate electrode and reduce the reverse breakdown voltage. It is necessary to form an n+ layer by a method or the like.

結晶成長をした後、通常の工程と同じく、フォトリソグ
ラフィーと、リフトオフ法を用いて、ソース・ドレイン
電極19、ゲート電極13.13’を形成した。
After crystal growth, source/drain electrodes 19 and gate electrodes 13 and 13' were formed using photolithography and a lift-off method as in the usual process.

ただし、ゲート電極13′を形成するときには、CCΩ
RF2とHeの混合ガスを用いてG a A s層17
を選択的にエツチングをした後、ゲート電極13′を形
成した(第4図(b))。FET動作の面では、13′
をゲートにもつFETはエンハンスメント型FETであ
り、ゲート電極13の部分は、デプリション型FETで
ある。
However, when forming the gate electrode 13', CCΩ
G a As layer 17 using a mixed gas of RF2 and He
After selectively etching, a gate electrode 13' was formed (FIG. 4(b)). In terms of FET operation, 13'
The FET having the gate electrode 13 is an enhancement type FET, and the gate electrode 13 is a depletion type FET.

ゲート電極としてはT i / P t / A uを
用い、ソース・ドレイン電極とにはA u G a /
 N i /Auを用いた。
Ti/Pt/Au is used as the gate electrode, and AuGa/Au is used as the source/drain electrode.
N i /Au was used.

本実施例では、n型A Q x Ga、−、As (x
−0,22)(9) 層のA Q mole fraction x として
は、Siドープした場合には0.05≦X≦0.25程
度の範囲で用いている。
In this example, n-type A Q x Ga, -, As (x
-0,22)(9) The A Q mole fraction x of the layer is used in the range of about 0.05≦X≦0.25 when Si-doped.

閾値制御だけから考えるどAQ混晶比Xの小さいn型A
 Q X G as−、As層の代りにn型G a A
 s層の方が有利である。しかしこの構造では、同一基
板内にE型とD型を構成することが難かしいという欠点
を有している。即ち、本実施例の様にn−GaAs/n
−AQXGal−、Asのへテロ接合を利用した選択エ
ツチングを利用できるという利点がある。
Considering only from threshold control, n-type A with small AQ mixed crystal ratio X
Q X G as-, n-type Ga A instead of As layer
The s-layer is more advantageous. However, this structure has the drawback that it is difficult to construct E-type and D-type in the same substrate. That is, as in this example, n-GaAs/n
-AQXGal-, has the advantage of being able to utilize selective etching using a heterojunction of As.

〔発明の効果〕〔Effect of the invention〕

本発明ま効果をまとめると次の様になる。 The effects of the present invention can be summarized as follows.

(1)アンドープGaAs層と直接へテロ接合を形成す
るアンドープAUxGa As層ではAQ−x mole faction xを0.28≦X≦0.4
0程度にしたことにより、両者の伝導帯のエネルギー差
ΔEcを大きくすることができ、ヘテロ接合界面に多数
の電子を閉じこめることができる。
(1) In the undoped AUxGaAs layer that forms a direct heterojunction with the undoped GaAs layer, AQ-x mole fraction x is 0.28≦X≦0.4.
By setting it to about 0, the energy difference ΔEc between the two conduction bands can be increased, and a large number of electrons can be confined at the heterojunction interface.

(2)n型A Q X G al−、A s層のA Q
 mol、e(10) fraction xでは、ドナーレベルの浅くなる0
、05≦X≦0.25の値を選んだことによりn型にド
ープする不純物濃度を大となすことができ、このA Q
 G a A s層の膜厚制御性が容易になる。その結
果として閾値電圧■7.の制御性が改善された。
(2) n-type AQXGal-, AQ of As layer
mol, e(10) At fraction x, the donor level becomes shallower at 0
, by selecting the value of 05≦X≦0.25, it is possible to increase the impurity concentration for n-type doping, and this A Q
The film thickness of the GaAs layer can be easily controlled. As a result, the threshold voltage ■7. Improved controllability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の選択ドープヘテロ接合型FETのエネル
ギーバンド構造を示す図、第2図は従来のエンハンスメ
ント型FETとデプレション型FETの同一基板上への
作り分けを示す断面図、第3図(a)、(b)は各々本
発明トランジスタの断面図と各層のAQの混晶比を示す
図、第4図は本発明のトランジスタの製造工程の例を示
す断面図である。 15−2次元状担体、12− n型A Q x Ga1
−xAs、11・・・ノンドープG a A s、10
・・・半絶縁性G a A s、13・・・ゲート電極
、19・・・ソース・ドレイン電極、17・・・n型G
 a A s層、12′・・・ノンドープA Q X 
G al−xA sで0.28≦X≦0.40、(11
) (12) 第1図 72図 冨3図 1ヶ?1JA−6
Figure 1 is a diagram showing the energy band structure of a conventional selectively doped heterojunction FET, Figure 2 is a cross-sectional view showing how a conventional enhancement type FET and depletion type FET are fabricated on the same substrate, and Figure 3 ( 4A and 4B are cross-sectional views of the transistor of the present invention and diagrams showing the mixed crystal ratio of AQ in each layer, respectively, and FIG. 4 is a cross-sectional view showing an example of the manufacturing process of the transistor of the present invention. 15- Two-dimensional carrier, 12- n-type A Q x Ga1
-xAs, 11...Non-doped GaAs, 10
... Semi-insulating Ga As, 13... Gate electrode, 19... Source/drain electrode, 17... N-type G
a A s layer, 12'...non-doped A Q X
Gal-xA s is 0.28≦X≦0.40, (11
) (12) Figure 1, Figure 72, Figure 3, Figure 1? 1JA-6

Claims (1)

【特許請求の範囲】 ■、不純物を故意にはドープしない(10+111cm
 −’以下の不純物濃度)GaAs層と不純物を故意に
はドープしない八Qの混晶化Xが0.25≦X≦0.4
の範囲にあるAQxGal−xAs層とがヘテロ接合を
形成し、更にn型にドープされ。 AQの混晶比Xが0.05≦X≦0.2の範囲にあるA
QXGa、−!As層からなる半導体において、fii
ti記へテロ接合界面に生じる二次元状担体を制御する
電極を有し、少なくとも1対、二次元状担体と電子的に
接続する電極をもつことを特徴とする半導体装置。
[Claims] ■. Do not intentionally dope with impurities (10+111cm
−' impurity concentration below) GaAs layer and 8Q mixed crystal that is not doped with impurities intentionally is 0.25≦X≦0.4
forms a heterojunction with the AQxGal-xAs layer in the range of , and is further doped n-type. A whose mixed crystal ratio X of AQ is in the range of 0.05≦X≦0.2
QXGa,-! In a semiconductor consisting of an As layer, fii
1. A semiconductor device comprising: an electrode for controlling a two-dimensional carrier generated at a heterojunction interface; and at least one pair of electrodes electrically connected to the two-dimensional carrier.
JP59021766A 1984-02-10 1984-02-10 Semiconductor device Expired - Lifetime JPH0714054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021766A JPH0714054B2 (en) 1984-02-10 1984-02-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021766A JPH0714054B2 (en) 1984-02-10 1984-02-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60167475A true JPS60167475A (en) 1985-08-30
JPH0714054B2 JPH0714054B2 (en) 1995-02-15

Family

ID=12064190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021766A Expired - Lifetime JPH0714054B2 (en) 1984-02-10 1984-02-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0714054B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59968A (en) * 1982-06-25 1984-01-06 Fujitsu Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59968A (en) * 1982-06-25 1984-01-06 Fujitsu Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH0714054B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JPH05251475A (en) Hemt type semiconductor device
JPS613464A (en) Semiconductor device
US4903091A (en) Heterojunction transistor having bipolar characteristics
US5227644A (en) Heterojunction field effect transistor with improve carrier density and mobility
JPS61147577A (en) Complementary semiconductor device
JPS60167475A (en) Semiconductor device
JPS6052060A (en) Heterojunction semiconductor device
JPH0682691B2 (en) Field effect transistor
JPH01119065A (en) Iii-v compound semiconductor field-effect transistor
JPH084140B2 (en) Field effect transistor
JPH04343438A (en) Field effect transistor
JPS61276269A (en) Hetero-junction type field-effect transistor
JP3054216B2 (en) Semiconductor device
JPS6330788B2 (en)
JPH01183164A (en) High electron mobility field effect transistor
JPS61171170A (en) Semiconductor device
JPS63116471A (en) Field effect transistor
JPS609174A (en) Semiconductor device
JP2655594B2 (en) Integrated semiconductor device
JP2633010B2 (en) Method for manufacturing compound semiconductor device
JPS61248569A (en) Hetrojunction field effect transistor
JPS60136380A (en) Semiconductor device
JPH0260223B2 (en)
JPH01225368A (en) Semiconductor device
JPH04333242A (en) Field-effect transistor