JPH0714054B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0714054B2
JPH0714054B2 JP59021766A JP2176684A JPH0714054B2 JP H0714054 B2 JPH0714054 B2 JP H0714054B2 JP 59021766 A JP59021766 A JP 59021766A JP 2176684 A JP2176684 A JP 2176684A JP H0714054 B2 JPH0714054 B2 JP H0714054B2
Authority
JP
Japan
Prior art keywords
region
layer
gaas
fet
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59021766A
Other languages
Japanese (ja)
Other versions
JPS60167475A (en
Inventor
利幸 宇佐川
祐一 小野
進 高橋
良史 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59021766A priority Critical patent/JPH0714054B2/en
Publication of JPS60167475A publication Critical patent/JPS60167475A/en
Publication of JPH0714054B2 publication Critical patent/JPH0714054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超高速の選択ドープヘテロ接合型FET(電界
効果トランジスタ)に係り、特に、高集積に好適なトラ
ンジスタ構造に関する。
Description: FIELD OF THE INVENTION The present invention relates to an ultra-high speed selectively doped heterojunction FET (field effect transistor), and more particularly to a transistor structure suitable for high integration.

〔発明の背景〕[Background of the Invention]

従来の選択ドープヘテロ接合型FET〔例えば特開昭56−9
4779〕のエネルギーバンド図〔第1図〕と、エンハンス
メント型FET〔E−FET〕とデプレシヨン型FET〔D−FE
T〕の断面図を第2図に示す。従来作成している例で
は、11はアンドープGaAs、12はn型AlxGa1-xAs層であつ
た。13,13′はゲート電極、17はn型GaAs層、19がソー
ス・ドレイン電極、16がイオン化した不純物EFはフエル
ミルベル、EDはAlxGa1-xAsの伝導帯の底と不純物準位と
のエネルギー間隔を各々示す。15は2次元状電子ガス層
である。
Conventional selectively-doped heterojunction FETs [eg, JP-A-56-9
4779] energy band diagram [FIG. 1], enhancement type FET [E-FET] and depletion type FET [D-FE]
FIG. 2 shows a sectional view of [T]. In the conventional example, 11 is undoped GaAs and 12 is an n-type Al x Ga 1-x As layer. 13, 13 'is a gate electrode, 17 is an n-type GaAs layer, 19 is a source / drain electrode, 16 is an ionized impurity E F is Fermi-Millbell, E D is the bottom of the conduction band of Al x Ga 1-x As The energy intervals between the positions are shown. 15 is a two-dimensional electron gas layer.

従来のこのFETにおいては、AlxGa1-xAsとGaAsとの格子
マツチングを良くする(xを小さくする)ことと二次元
状担体15をより効果的にヘテロ界面に蓄積される(xを
大きくする)ことの相矛盾する要請のためにAlの混晶化
xとには0.3前後にとるのが通例であつた。
In this conventional FET, the lattice matching between Al x Ga 1-x As and GaAs is improved (x is reduced), and the two-dimensional carrier 15 is more effectively accumulated at the hetero interface (x is Due to the contradictory requirements of (increasing), it was customary to set the mixed crystal x of Al to around 0.3.

ところが、不純物レベルEDはAlの混晶化xに大きく依存
することが実験によつて確認されている(例えばSiにつ
いては、J.J.A.P.11(1982)L675−L676,Teについては
H.C.Casey,M.B.Panis“Heterostructure Lasers"Academ
ic Press 1978 PART A P200を参照)。
However, it has been experimentally confirmed that the impurity level E D largely depends on the mixed crystal x of Al (for example, for Si, JJAP 11 (1982) L675-L676, Te.
HCCasey, MBPanis “Heterostructure Lasers” Academ
See ic Press 1978 PART A P200).

一方、このFETは、AlxGa1-xAs層12の膜厚dが500Å程度
で不純物濃度NDとしては1018cm-3をとるのが普通であ
る。
On the other hand, in this FET, it is usual that the film thickness d of the Al x Ga 1-x As layer 12 is about 500 Å and the impurity concentration N D is 10 18 cm -3 .

FETの閾値制御という点からみると AlxGa1-xAs層の誘電率をε、電子の単位電荷をqとする
という形がしきい値電圧Vthの中にあらわれてくる。
From the viewpoint of FET threshold control, if the dielectric constant of the Al x Ga 1-x As layer is ε and the unit charge of electrons is q Appears in the threshold voltage V th .

事情はGaAsMESFETでも同様で、dとして能導層厚とする
ば、ND〜1017cm-3程度d〜1000Åである。
The situation is the same for GaAs MESFETs, and if the thickness of the conductive layer is d, then N D ˜10 17 cm −3 d ˜1000 Å.

閾値電圧VTが(1)式にあらわれる量は選択ドープFET
の場合がGaAsMESFETに比べ2.5倍大きい値となる。この
ことは大略、GaAsMESFETに比べて閾値制御がGaAsMESFET
に比べ2.5倍も難かしいことを意味している。
The amount that the threshold voltage V T appears in the equation (1) depends on the selective doping FET
In this case, the value is 2.5 times larger than that of GaAs MESFET. This is because the threshold control is almost the same as GaAs MESFET compared to GaAs MESFET.
It means that it is 2.5 times more difficult than.

〔発明の目的〕[Object of the Invention]

本発明の目的は、選択ドープヘテロ接合型FETにおい
て、閾値制御が容易で、エンハンスメント型FETとデプ
レシヨン型FETを同一基板内に作成するのに好適な構造
をもつ選択ドープヘテロ接合型FETを提供することにあ
る。
An object of the present invention is to provide a selective doping heterojunction FET having a structure suitable for forming an enhancement type FET and a depletion type FET in the same substrate because the threshold control is easy in the selective doping heterojunction FET. is there.

〔発明の概要〕[Outline of Invention]

発明者たちは、ヘテロ接合界面に蓄積する電子シート濃
度nsと不純物準位ED、閾値電圧Vthの間の関係を研究し
ているうちに次の様な事実を見出した。
The inventors found the following facts while studying the relationship between the electron sheet concentration n s accumulated at the heterojunction interface, the impurity level E D , and the threshold voltage V th .

価電子帯から測つたフエルミレベルをEF、不純物レベル
をEVDとし、統計力学の要請により電気的に活性になり
うるn型不純物の数をND、イオン化した不純物の数をND
+とすると でTは電子温度である。
The Fuerumireberu was Hakatsu from the valence band to E F, the impurity level E VD, the number of n-type impurities that may be electrically active at the request of statistical mechanics N D, the number of N D of ionized impurities
+ Where T is the electron temperature.

ところで簡単な考察から閾値電圧Vthに関与するのはND +
ではなくNDであることがわかる。
By the way, from a simple consideration, it is N D + that contributes to the threshold voltage V th.
It turns out that it is not N D.

一方、ヘテロ接合界面に蓄積する電子シート濃度ns ただし、 k:ボルツマン常数 T:絶対温度 ΔEg:AlGaAsとGaAのエネルギーギヤツプの差 (NcNv)GaAs:GaAsの電子有効状態密度と正孔有効状態
密度 (NcNv)AlGaAs:AlGaAsの電子有効状態密度と正孔有効
状態密度 として与えられ、ND +の関数である。
On the other hand, the electron sheet concentration n s accumulated at the heterojunction interface is Where k: Boltzmann's constant T: absolute temperature ΔEg: difference in energy gap between AlGaAs and GaA (NcNv) electron effective state density and hole effective state density (NcNv) AlGaAs: AlGaAs And hole effective density of states, which is a function of N D + .

即ち、不純物準位EDが小さいほど、同一のNDに対し多く
の電子を蓄積できることを見出した。
That is, it was found that the smaller the impurity level E D , the more electrons can be stored in the same N D.

従来技術のところで示した様にn型ドーパントとして
は、Si,Teを用いるのが通例で、その場合、EDはAlの混
晶比xに大きく依存していることが知られていた。即
ち、 である。〔たとえばJ.J.A.P.11(1982)L675−L676〕 今までの論議から、同一のND、即ち、同一のVThに対し
て有効にnsを増やすには、Alのmole fraction xを小さ
くする方が良いことになる。
As shown in the prior art, Si and Te are usually used as the n-type dopant, and in this case, it has been known that E D largely depends on the mixed crystal ratio x of Al. That is, Is. [For example, JJAP 11 (1982) L675-L676] From the discussion so far, in order to effectively increase n s for the same N D , that is, the same V Th , it is better to reduce the mole fraction x of Al. It will be good.

しかし今までの議論ではヘテロ接合界面での伝導帯のエ
ネルギーの“とび”ΔEcの大きさを無視していた。ΔEc
は大きいほど良いので、この場合はAl mole fraction x
が大きい方がよいことになる。
However, in the discussion so far, the magnitude of the “deep” ΔE c of the conduction band energy at the heterojunction interface was ignored. ΔE c
Is the better, so in this case Al mole fraction x
The larger is better.

つまり、以上をまとめると同一のVThを与えたときに
は、ヘテロ接合界面ではΔEcの大きいノンドープAlxGa
1-xAs層を用い、界面から離れたところではAlの混晶比
の小さいn型AlxGs1-xAs層を形成してFETを作ると最も
よいFETができることになる。
That is, to summarize the above, when the same V Th is given, non-doped Al x Ga with large ΔE c at the heterojunction interface.
The best FET can be obtained by using a 1-x As layer and forming an n-type Al x Gs 1-x As layer having a small Al mixed crystal ratio away from the interface to form a FET.

即ち、本発明は上記の構造のヘテロ接合を用いて選択ド
ープヘテロ接合型FETを設計すると、同一の閾値電圧を
与えたときに最大の電流をとることができる。
That is, according to the present invention, when a selectively doped heterojunction FET is designed by using the heterojunction having the above structure, the maximum current can be obtained when the same threshold voltage is applied.

別の言い方をすれば、同一の電流をとるには少ない量の
不純物ドーピングで良いために、閾値制御がGaAsMESFET
と同程度にまでなる。
In other words, the threshold control is a GaAs MESFET because a small amount of impurity doping is required to obtain the same current.
It will be about the same as.

本発明の半導体装置の断面図を第3図(a)に示す。10
は半絶縁性GaAs基板又はp型GaAs基板、11はアンドープ
GaAs層、12′はAlの混晶比xで0.25≦x≦0.4の範囲の
ノンドープAlxGa1-xAs層、22はAlの混晶比xが0.05≦x
≦0.2の範囲のn型AlxGa1-xAs層、19はソース・ドレイ
ン電極、13はゲート電極。第13(b)は、断面A−Bで
のAlの混晶比の範囲を示すグラフである。
A sectional view of the semiconductor device of the present invention is shown in FIG. Ten
Is a semi-insulating GaAs substrate or p-type GaAs substrate, 11 is undoped
GaAs layer, 12 'is an undoped Al x Ga 1-x As layer with an Al mixed crystal ratio x in the range of 0.25 ≤ x ≤ 0.4, and 22 has an Al mixed crystal ratio x of 0.05 ≤ x
N-type Al x Ga 1-x As layer in the range of ≦ 0.2, 19 is a source / drain electrode, and 13 is a gate electrode. The 13th (b) is a graph showing the range of the mixed crystal ratio of Al in the cross section AB.

〔発明の実施例〕Example of Invention

以下本発明を第4図に示す実施例を用いて要に詳しく説
明する。
The present invention will be described in detail below with reference to the embodiment shown in FIG.

実施例1 半絶縁性GaAs基板10の上に、分子線エピタキシー法(MB
E)を用いて、不純物を故意にはドープしない高純度GaA
s層11を約1μm、同じく不純物を故意にはドープしな
いAlxGa1-xAs層12′(x〜0.3)を60Å成長させた。通
常このAlxGa1-xAs層12′は、Alの混合比を0.28≦x≦0.
40の範囲で用いる。次にAlの混晶比を0.22にしたAlxGa
1-xAs層22を400Å成長させ、このときSi原子を1×1018
cm-3の濃度でドープした。次に、GaAs層17を200Å成長
させ、このときSi原子を1×1018cm-3の濃度でドープし
た(第4図(a)。このn型GaAs層の不純物濃度は、あ
まり高くすると、シヨツトキーゲート電極の順方向バリ
アを小さくし、逆耐圧を小さくするという効果をもつ。
Example 1 On a semi-insulating GaAs substrate 10, molecular beam epitaxy (MB
High purity GaA that is not intentionally doped with impurities using E)
The s layer 11 was grown to a thickness of about 1 μm, and an Al x Ga 1-x As layer 12 ′ ( x to 0.3) which was not intentionally doped with impurities was grown to 60 Å. Usually, the Al x Ga 1-x As layer 12 'has an Al mixing ratio of 0.28 ≦ x ≦ 0.
Used in the range of 40. Next, Al x Ga with a mixed crystal ratio of Al of 0.22
The 1-x As layer 22 is grown to 400 Å, and Si atoms are grown to 1 × 10 18
Doped at a concentration of cm -3 . Next, the GaAs layer 17 was grown to 200 Å, and Si atoms were doped at a concentration of 1 × 10 18 cm -3 at this time (Fig. 4 (a). If the impurity concentration of this n-type GaAs layer is too high, This has the effect of reducing the forward barrier of the Schottky gate electrode and reducing the reverse breakdown voltage.

ドーピングを低くしたときには、オーミツク電極を形成
するときに、イオン注入法等でn+層を形成する必要があ
る。
When the doping is lowered, it is necessary to form the n + layer by the ion implantation method or the like when forming the ohmic electrode.

結晶成長をした後、通常の工程と同じく、フオトリング
ラフイーと、リフトオフ法を用いて、ソース・ドレイン
電極19、ゲート電極13,13′を形成した。
After the crystal growth, the source / drain electrode 19 and the gate electrodes 13 and 13 'were formed by the photolithography and the lift-off method as in the usual process.

ただし、ゲート電極13′を形成するときには、CCl2F2
Heの混合ガスを用いてGaAs層17を選択的にエツチングを
した後、ゲート電極13′を形成した(第4図(b))。
FET動作の面では、13′をゲートにもつFETはエンハンス
メント型FETであり、ゲート電極13の部分は、デプリシ
ヨン型FETである。
However, when forming the gate electrode 13 ′, CCl 2 F 2
After selectively etching the GaAs layer 17 using a mixed gas of He, a gate electrode 13 'was formed (FIG. 4 (b)).
In terms of FET operation, the FET having 13 'as a gate is an enhancement type FET, and the portion of the gate electrode 13 is a depletion type FET.

ゲート電極としてはTi/Pt/Auを用い、ソース・ドレイン
電極とにはAuGe/Ni/Auを用いた。
Ti / Pt / Au was used as the gate electrode, and AuGe / Ni / Au was used as the source / drain electrodes.

本実施例では、n型AlxGa1-xAs(x〜0.22)層のAl mol
e fraction xとしては、Siドープした場合には0.05≦x
≦0.25程度の範囲で用いている。
In this example, the Al mol of the n-type Al x Ga 1-x As ( x to 0.22) layer was used.
e fraction x is 0.05 ≦ x when Si-doped
It is used in the range of ≤0.25.

閾値制御だけから考えるとAl混晶比xの小さいn型AlxG
a1-xAs層の代りにn型GaAs層の方が有利である。しかし
この構造では、同一基板内にE型とD型を構成すること
が難かしいという欠点を有している。即ち、本実施例の
様にn−GaAs/n−AlxGa1-xAsのヘテロ接合を利用した選
択エツチングを利用できるという利点がある。
Considering only the threshold control, n-type Al x G with a small Al mixed crystal ratio x
An n-type GaAs layer is advantageous in place of the a1 -x As layer. However, this structure has a drawback that it is difficult to form the E type and the D type in the same substrate. That is, there is an advantage that can utilize the selected etching utilizing heterojunction n-GaAs / n-Al x Ga 1-x As as in this embodiment.

〔発明の効果〕〔The invention's effect〕

本発明の効果をまとめると次の様になる。 The effects of the present invention can be summarized as follows.

(1)アンドープGaAs層と直接ヘテロ接合を形成するア
ンドープAlxGa1-xAs層ではAl mole faction xを0.28≦
x≦0.40程度にしたことにより、両者の伝導帯のエネル
ギー差ΔEcを大きくすることができ、ヘテロ接合界面に
多数の電子を閉じこめることができる。
(1) In the undoped Al x Ga 1-x As layer that directly forms a heterojunction with the undoped GaAs layer, Al mole faction x is 0.28 ≦
By setting x ≦ 0.40, the energy difference ΔE c between the conduction bands of the two can be increased, and a large number of electrons can be trapped at the heterojunction interface.

(2)n型AlxGa1-xAs層のAl mole fraction xでは、ド
ナーレベルの浅くなる0.05≦x≦0.25の値を選んだこと
によりn型にドープする不純物濃度を大となすことがで
き、このAlGaAs層の膜厚制御性が容易になる。その結果
として閾値電圧VThの制御性が改善された。
(2) In the Al mole fraction x of the n-type Al x Ga 1-x As layer, the concentration of impurities doped to the n-type can be made large by selecting a value of 0.05 ≦ x ≦ 0.25 where the donor level becomes shallow. Therefore, the controllability of the film thickness of this AlGaAs layer becomes easy. As a result, the controllability of the threshold voltage V Th is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の選択ドープヘテロ接合型FETのエネルギ
ーバンド構造を示す図、第2図は従来のエンハンスメン
ト型FETとデプレシヨン型FETの同一基板上への作り分け
を示す断面図、第3図(a),(b)は各々本発明トラ
ンジスタの断面図と各層のAlの混晶比を示す図、第4図
は本発明のトランジスタの製造工程の例を示す断面図で
ある。 15……2次元状担体、12……n型AlxGa1-xAs、11……ノ
ンドープGaAs、10……半絶縁性GaAs、13……ゲート電
極、19……ソース・ドレイン電極、17……n型GaAs層、
12′……ノンドープAlxGa1-xAsで0.28≦x≦0.40、22…
…n型AlxGa1-xAs(0.05≦x≦0.25)。
FIG. 1 is a diagram showing an energy band structure of a conventional selectively-doped heterojunction FET, and FIG. 2 is a sectional view showing how the conventional enhancement type FET and depletion type FET are separately formed on the same substrate. ) And (b) are cross-sectional views of the transistor of the present invention and a diagram showing the mixed crystal ratio of Al in each layer, and FIG. 15 …… two-dimensional carrier, 12 …… n type Al x Ga 1-x As, 11 …… non-doped GaAs, 10 …… semi-insulating GaAs, 13 …… gate electrode, 19 …… source / drain electrode, 17 ... n-type GaAs layer,
12 '... non-doped Al x Ga 1-x As 0.28 ≤ x ≤ 0.40, 22 ...
... n-type Al x Ga 1-x As (0.05 ≦ x ≦ 0.25).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片山 良史 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭59−968(JP,A) Jpn.J.Appl.Phys.21 [11](1982−11)PP.L675−L676 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshifumi Katayama 1-280, Higashi Koigakubo, Kokubunji, Tokyo (56) References Japanese Patent Laid-Open No. 59-968 (JP, A) Jpn. J. Appl. Phys. 21 [11] (1982-11) PP. L675-L676

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】AlGaAs領域と、GaAs領域と、これらの領域
が互いに接合して形成されるヘテロ接合界面と、このヘ
テロ接合界面に生じる2次元状担体と電気的に接続する
ソース電極及びドレイン電極と、上記2次元状担体を制
御するゲート電極とを有し、上記AlGaAs領域は上記GaAs
領域と接合し不純物を故意にはドープしない第1の領域
とこの第1の領域と接合しn型にドープされた第2の領
域とを有する半導体装置において、上記第1の領域のAl
の混晶比は0.25以上0.4以下の範囲であり、上記第2の
領域のAlの混晶比は0.05以上0.25以下の範囲であること
を特徴とする半導体装置。
1. An AlGaAs region, a GaAs region, a heterojunction interface formed by joining these regions to each other, and a source electrode and a drain electrode electrically connected to a two-dimensional carrier formed at this heterojunction interface. And a gate electrode for controlling the two-dimensional carrier, the AlGaAs region being the GaAs
In a semiconductor device having a first region that is joined to a region and is not intentionally doped with impurities, and a second region that is joined to the first region and is n-type doped, Al of the first region is provided.
The mixed crystal ratio of Al is in the range of 0.25 to 0.4, and the mixed crystal ratio of Al in the second region is in the range of 0.05 to 0.25.
JP59021766A 1984-02-10 1984-02-10 Semiconductor device Expired - Lifetime JPH0714054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021766A JPH0714054B2 (en) 1984-02-10 1984-02-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021766A JPH0714054B2 (en) 1984-02-10 1984-02-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60167475A JPS60167475A (en) 1985-08-30
JPH0714054B2 true JPH0714054B2 (en) 1995-02-15

Family

ID=12064190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021766A Expired - Lifetime JPH0714054B2 (en) 1984-02-10 1984-02-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0714054B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59968A (en) * 1982-06-25 1984-01-06 Fujitsu Ltd Semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jpn.J.Appl.Phys.21[11(1982−11)PP.L675−L676

Also Published As

Publication number Publication date
JPS60167475A (en) 1985-08-30

Similar Documents

Publication Publication Date Title
US8624667B2 (en) High electron mobility transistors with multiple channels
JP2581355B2 (en) Complementary heterojunction field-effect transistor with anisotropic N + gate for P-channel devices
US7456444B2 (en) Field effect transistor
US5300795A (en) GaAs FET with resistive AlGaAs
US5023674A (en) Field effect transistor
KR100204688B1 (en) Heterojunction field effect transistor
JPS61184887A (en) Hetero junction apparatus
JPH0815213B2 (en) Field effect transistor
JP3127874B2 (en) Field effect transistor and method of manufacturing the same
US4903091A (en) Heterojunction transistor having bipolar characteristics
JP2661556B2 (en) Field effect type semiconductor device
JPH06188271A (en) Field effect transistor
JPH118378A (en) Field effect transistor
JPH0714054B2 (en) Semiconductor device
US5583353A (en) Heterojunction field effect transistor
JP2643890B2 (en) Tunnel transistor
JP3054216B2 (en) Semiconductor device
JP2567730B2 (en) Heterojunction field effect transistor
KR970004485B1 (en) Hetero-junction field effect transistor
JPH0620142B2 (en) Semiconductor device
JP2695832B2 (en) Heterojunction field effect transistor
EP0237029A2 (en) A heterojunction field effect device operable at a high output current with a high withstand voltage
JP2581423B2 (en) Heterojunction FET
JPH05343435A (en) Semiconductor device
JPH06151469A (en) Compound semiconductor device