JPS59968A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59968A
JPS59968A JP10959982A JP10959982A JPS59968A JP S59968 A JPS59968 A JP S59968A JP 10959982 A JP10959982 A JP 10959982A JP 10959982 A JP10959982 A JP 10959982A JP S59968 A JPS59968 A JP S59968A
Authority
JP
Japan
Prior art keywords
layer
electron
region
gaas
composition ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10959982A
Other languages
Japanese (ja)
Other versions
JPH0468775B2 (en
Inventor
Tomonori Ishikawa
石川 知則
Sukehisa Hiyamizu
冷水 佐寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10959982A priority Critical patent/JPS59968A/en
Publication of JPS59968A publication Critical patent/JPS59968A/en
Publication of JPH0468775B2 publication Critical patent/JPH0468775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Abstract

PURPOSE:To prevent an electron mobility in a high electric field from decreasing in a high electron mobility transistor by increasing the difference of the electron affinity in a hetero junction between a channel layer and an electron supply layer. CONSTITUTION:A GaAs (channel) layer 12, and an AlxGa1-xAs layer which has a region 13 having no impurity and an N type region 14 are sequentially formed on a GaAs substrate 11. Si is introduced as an impurity to the region 14. Then, AuGe/Au<2> layer is deposited on the position where a source electrode 15 and a drain electrode 16 are arranged, and a resistive connection region 17 to the layer 12 is formed. Then, a gate electrode 18 is formed.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置に関し、特に本特許出願人が先に%
願昭55−82035号により提案した高電子移動度ト
ランジスタ(Hlgh Etecty□HMobiti
tyTransistor:以下HEMTと略称する)
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to semiconductor devices, and in particular,
High electron mobility transistor proposed in Application No. 55-82035
tyTransistor: hereinafter abbreviated as HEMT)
Regarding the improvement of

(b)  技術の背景 、情報処理装置の能力及びコストパフォーマンスの一層
の向上はこれに使用される半導体装置にかかっていると
目され、論理演算装置の高速化、低消費電力化及び記憶
装置の大容量化が強力に推進されている。
(b) Technology background: It is believed that further improvements in the capabilities and cost performance of information processing devices depend on the semiconductor devices used in them, and improvements in the speed and power consumption of logical arithmetic devices and the reduction in power consumption of memory devices are essential. Larger capacity is being strongly promoted.

現在は専らシリコン(Sl)半導体装置が実用化されて
いるが、St手導体装置の高速化はキャリアの移動度な
どの81の物性により制約されるために、キャリア移動
度が81より邊に大きいガリウム・砒素(GaAs)な
どの化合物半導体を用いて、高速化、低消費電力化を実
現する努力が重ねられている。
Currently, only silicon (Sl) semiconductor devices are in practical use, but the speedup of St-type conductor devices is limited by the physical properties of 81 such as carrier mobility, so carrier mobility is around 81 higher than 81. Efforts are being made to achieve higher speeds and lower power consumption using compound semiconductors such as gallium arsenide (GaAs).

従来の構造の81もしくはGaAs等の化合物を用いた
半導体装置においては、キャリアは不純物イオンが存在
している空間を移動する。この移動に際してキャリアは
格子振動および不純物イオンによって散乱を受けるが、
格子振動による散乱の確率を小さくするために温度を低
下させると、不純物イオンによる散乱の確率が大きくな
って、キャリアの移動度がこれによって制限される。
In a conventional semiconductor device using a compound such as 81 or GaAs, carriers move in a space where impurity ions are present. During this movement, carriers are scattered by lattice vibrations and impurity ions,
When the temperature is lowered to reduce the probability of scattering due to lattice vibrations, the probability of scattering due to impurity ions increases, thereby limiting carrier mobility.

この不純物散乱効果を排除するために不純物が添加され
る領域と、キャリアが移動する領域とを空間的に分離し
て、特に低温lこおけるキャリアの移動に1−増大せし
めたものが本発明の対象とする高電子移動度トランジス
タ(HKMT )である。
In order to eliminate this impurity scattering effect, the region where impurities are added and the region where carriers move are spatially separated, thereby increasing the carrier movement by 1, especially at low temperatures. The target is a high electron mobility transistor (HKMT).

(e)  従来技術と問題点 HEMTの従来知られている構造の一例を第1図(a)
に示す断面図を参照して説明する。半絶縁性GaAs基
板1上にノンドープGaAs層2とこれより電子親和力
の小さいnuアルミニウム・ガリウム・砒素(AAGa
Ai)層3とが設けられて両層の界面はへテロ接合を形
成している。n MALGaAs層3(電子供給層とい
う)からノンドープGaAs層2(チャネル層という)
へ電子が遷移されることによって生成される電子蓄積層
(2次元電子層)4の電子濃度上1ゲート電極54こ印
加される電圧によって制御することによって、ソース電
極6とドレイン電極7との間の電子蓄積層4によって形
成される伝導路のインピーダンスがfil制御される。
(e) Conventional technology and problems An example of a conventionally known structure of HEMT is shown in Figure 1 (a).
This will be explained with reference to the cross-sectional view shown in FIG. A non-doped GaAs layer 2 and a nu aluminum gallium arsenic (AAGa) layer with a smaller electron affinity are formed on a semi-insulating GaAs substrate 1.
Ai) layer 3 is provided, and the interface between both layers forms a heterojunction. n MALGaAs layer 3 (referred to as electron supply layer) to non-doped GaAs layer 2 (referred to as channel layer)
The concentration of electrons in the electron storage layer (two-dimensional electron layer) 4 generated by the transfer of electrons to the gate electrode 54 is controlled by the voltage applied between the source electrode 6 and the drain electrode 7. The impedance of the conduction path formed by the electron storage layer 4 is controlled by fil.

なお8は抵抗性接続(オー(ツクコンタクト)領域であ
る。
Note that 8 is a resistive connection (open contact) region.

従来のHEMTは先に述べた如(GaAs基板lの上に
ノンドープGaAs層2と、これ−こヘテロ接合するn
朦At*G&直−X A s層3とを有しまたこのn屋
ALxG亀1−XABABO3記接合界面側を厚さ6〔
■〕程度のノンドープ領域としてバッファとすることが
知られている。
The conventional HEMT is as described above (a non-doped GaAs layer 2 on a GaAs substrate 1, and a heterojunction n
It has a layer 3 of At*G & straight-X As, and the bonding interface side of this n-ya AL
(2) It is known that a non-doped region of about 100% is used as a buffer.

これらのnMMもしくはノンドープのAtxGal−X
AsABO3tの組成比Xは従来0.3程匿であり通常
は巣1図(&)の各層に対応させて第1図(b)に例示
する如く、7kAxGal−xA膳層全体を通じてAt
の組成比Xが一定であるような構造會もって悪化して接
合界面に乱れt生じ易い、(ロ)ALxGal−xAs
エピタキシャル層中に活性なAtに伴って酸素等不純物
が混入し、キャリアの1ラツプとして作用する深いレベ
ルが形成されて結晶の電子的特性に悪影41−与え易い
、f1ソース及びドレイン電極のオーミック接触が悪化
し易い、等の間mt−生ずるためでおる。
These nMM or non-doped AtxGal-X
Conventionally, the composition ratio
(b) ALxGal-xAs, which tends to deteriorate when the composition ratio X is constant and cause disturbances at the bonding interface.
Impurities such as oxygen are mixed into the epitaxial layer along with active At, forming a deep level that acts as a carrier wrap, which tends to adversely affect the electronic properties of the crystal. This is because contact tends to deteriorate, etc. during mt-.

Atの組成比X=0.3の場合−こはGaAs層2とA
to、8 Ga4)、yAs層3との間には約0.3(
eV、’の電子親和力の差が生じて、n型A t O,
3Q IL 0.7As層3からGaAs層2へ、キャ
リア電子が遷移して電子蓄積層4が形成される。
In the case of At composition ratio X = 0.3 - this is GaAs layer 2 and A
to, 8 Ga4) and the yAs layer 3 is approximately 0.3(
A difference in electron affinity of eV,' occurs, and n-type A t O,
3Q IL 0.7 Carrier electrons are transferred from the As layer 3 to the GaAs layer 2 to form an electron storage layer 4.

しかしながら電子親和力の差が0.3(eV)程度の場
合には、電子蓄積m4内において、ソース電極6及びド
レイン電&i介して形成される電界が低すとき1こは本
来の高電子移動度が実現されるが、実際の半導体装置と
して動作させる電界強gLにおいては電子移動度が低電
界のときより低下する。これは高電界内ではキャリア電
子が大きい運動エネルギーを得て2次元電子層の分布が
低電界のときより大きくずれ、キャリア電子がバリアを
越えて電子移動度の低いALxGal−XA11層3に
しみ出すことによる。
However, when the difference in electron affinity is about 0.3 (eV), when the electric field formed through the source electrode 6 and the drain electrode &i is lowered in the electron storage m4, the original high electron mobility However, at an electric field strength gL used to operate an actual semiconductor device, the electron mobility is lower than at a low electric field. This is because carrier electrons gain large kinetic energy in a high electric field, causing the distribution of the two-dimensional electron layer to shift more than in a low electric field, and the carrier electrons cross the barrier and leak into the ALxGal-XA11 layer 3, which has low electron mobility. It depends.

この高電界における電子移動度の低下を防止するために
はチャネル層であるGaAs層2と電子供給層であるA
LxGhl−x As屑3との電子親和力の差を一層大
きくする即ちAtの組成比Xt−0,3よりさらに大き
くすればよいが、Atの組成I 比Xt増大することに
は先に述べた問題が伴う。
In order to prevent the electron mobility from decreasing in this high electric field, the GaAs layer 2 which is the channel layer and the A layer which is the electron supply layer are required.
LxGhl-x It is sufficient to further increase the difference in electron affinity with As scrap 3, that is, to make the At composition ratio Xt-0, even larger than 3, but increasing the At composition I ratio Xt causes the problem mentioned earlier. accompanies.

(Φ 発明の目的 本発明は、高電子移動度トランジスタ(HgMT)につ
いて、チャネル層と電子供給層との間のヘテ四接合にお
ける電子親和力の差を拡大して高電界における電子移動
度の低下を防止し、かつ電子供給層の結晶状態の劣化等
を防止する構造を提供することを目的とする。
(Φ Purpose of the Invention The present invention relates to a high electron mobility transistor (HgMT) by expanding the difference in electron affinity at the heterotetrajunction between the channel layer and the electron supply layer to suppress the decrease in electron mobility in high electric fields. It is an object of the present invention to provide a structure that prevents deterioration of the crystal state of an electron supply layer.

(e)  発明の構成 本発明の前記目的は、第1の半導体層と、紋第1の半導
体層より電子親和力が小であり、かつn型不純物を含む
第2の半導体層とを有して、前記第1の半導体層と前記
第2の半導体層とかへテロ接合を形成し、前記第2の半
導体層から前記第1の半導体層に遷移する電子によって
構成される2次元電子層を電流路とする高電子移動度半
導体装置であって、前記第2の半導体装を構成する元素
の組成比が前記ヘテ四接合の近傍において電子親和力が
小となる如くされてなる半導体装置によって達成される
(e) Structure of the Invention The object of the present invention is to provide a semiconductor layer comprising a first semiconductor layer and a second semiconductor layer having a lower electron affinity than the first semiconductor layer and containing an n-type impurity. , the first semiconductor layer and the second semiconductor layer form a heterojunction, and a two-dimensional electron layer constituted by electrons transitioning from the second semiconductor layer to the first semiconductor layer is used as a current path. This is achieved by a high electron mobility semiconductor device in which the composition ratio of the elements constituting the second semiconductor device is such that the electron affinity is small in the vicinity of the tetraheterojunction.

(f)  発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(f) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.

第2図(a)はGaAs及びAtxGaI−XAI k
用いて構成された本発明の実施例の断面図、第2図(b
)は本実施例におけるAtの組成比Xの分布例を第2図
(a)の各層に対応させて示す図表である。
Figure 2(a) shows GaAs and AtxGaI-XAIk
FIG. 2(b) is a cross-sectional view of an embodiment of the present invention constructed using
) is a chart showing an example of the distribution of the At composition ratio X in this example, corresponding to each layer in FIG. 2(a).

本実施例のHE M Tは大略下記の如くに製造される
。半絶縁性のGaAs基板11上に分子線結晶成長法(
Motecutar  Beam Epitax3’S
以下MBE法と略称する)によって、実質的に不純物を
含有せず、厚さl〔μm〕程度のGaA s層(チャネ
ル層)12と、実質的に不純物全含有しない厚さ5乃至
20(nm)程度の領域13及び厚さ0.1乃至0.2
〔μm〕程度のn型領域14とよりなるAtxGal−
x As層とを順次形成する・ 本実施例においては、AtxGaI −x A ”層の
不純物を含有しない領域13については、Atの組成比
XはGaAs層12とのヘラ0接合界面近傍において選
択的に最も高く例えばX = 0.4程度とされ、接合
界面より離れるに従って次第に低下してnJJJ領域1
4と同一の組成比X=O,a程度に到っている。(第2
図(b)参照)。またn型佃域14にはMBE法による
結晶成長の際に不純物としてシリコン(Si)が導入さ
れている。
The HEMT of this example is manufactured approximately as follows. A molecular beam crystal growth method (
Motecutar Beam Epitax3'S
Hereinafter abbreviated as MBE method), a GaAs layer (channel layer) 12 containing substantially no impurities and having a thickness of approximately 1 [μm] and a GaAs layer (channel layer) 12 containing substantially no impurities and having a thickness of 5 to 20 nm (nm) are formed. ) area 13 and thickness 0.1 to 0.2
AtxGal- consisting of an n-type region 14 of about [μm]
In this example, for the impurity-free region 13 of the AtxGaI-xA'' layer, the At composition ratio For example, it is highest at about X = 0.4, and gradually decreases as the distance from the bonding interface increases, and
The composition ratio X=O, a, which is the same as that of No. 4, has been reached. (Second
(See figure (b)). Further, silicon (Si) is introduced into the n-type Tsukuda region 14 as an impurity during crystal growth by the MBE method.

前記エピタキシャル成長層を形成した後に金ゲルマニウ
b(AuGe)/金(Au)層をソース電極15及びド
レイン電極16t−配設する位置に選択的に蒸着し、更
に温度450(℃)時間3分間程度の熱処理を施してこ
れを合金化し、チャネル層であるGaAs層12との抵
抗性接続領域17を形成する0次いでゲート電極18を
例えばアルミニウム(At)を用いて従来知られている
方法によって形成する。なお19は電子蓄積層を示す。
After forming the epitaxial growth layer, a gold germanium b (AuGe)/gold (Au) layer is selectively deposited at the positions where the source electrode 15 and the drain electrode 16t are to be provided, and is further deposited at a temperature of 450 (°C) for about 3 minutes. This is alloyed by heat treatment to form a resistive connection region 17 with the GaAs layer 12 serving as a channel layer.Then, a gate electrode 18 is formed using, for example, aluminum (At) by a conventionally known method. Note that 19 indicates an electron storage layer.

以上説明した製造方法によって得られる本実施例のHE
MTのエネルギ帯を第3図に示す、ただし、第3図にお
い°Cは第2図(a)と同一符号によっc は価電子帯の従来技術によってA4xGa、−XA I
層全体についてAtの組成比Xが0.3程度の一定値で
あ′る場合を示し、領域13に示した破線は本発明の前
記実施例におい一ζ従来例と異なる状態を示す。
HE of this example obtained by the manufacturing method explained above
The energy band of MT is shown in Fig. 3. However, in Fig. 3, °C is the same sign as in Fig. 2(a), and c is A4xGa, -XA I according to the conventional technology of the valence band.
This shows a case where the At composition ratio X is a constant value of about 0.3 for the entire layer, and the broken line shown in region 13 shows a state in which the embodiment of the present invention is different from the conventional example.

第3図より明らかなる如く、本発明の構造においては、
ヘテロエピタキシャル接合界1ににおけるバリアの大き
さが従来より拡大されてキャリア電きに電子移動度は約
35.000 (eJ/v−s°〕が得られた。これに
対してAtxGal−XA21層のAt組成比をヘテロ
接合界面まで一定とした比較試料の同一条件における電
子移動度は約20.000 Wv−s)にとどまった。
As is clear from FIG. 3, in the structure of the present invention,
The size of the barrier in the heteroepitaxial junction field 1 was expanded compared to the conventional one, and an electron mobility of about 35.000 (eJ/v-s°) was obtained for the carrier charge.In contrast, the AtxGal-XA21 layer The electron mobility under the same conditions of a comparative sample in which the At composition ratio was kept constant up to the heterojunction interface remained at about 20.000 Wv-s.

なお、先に述べた如く、AAxGa、−XAI層のAt
の組成比Xt−増加することは結晶状態の劣化もしくは
オーンツク接触電極の接触抵抗の増大を招き易いが、本
発明の如く極めて薄い層状にAtの組成比Xt−増大す
る場合には前記の点が問題とならないことが前記実施例
等の試験結果によって確認された。
In addition, as mentioned earlier, the At of the AAxGa, -XAI layer
An increase in the At composition ratio Xt- tends to cause deterioration of the crystal state or an increase in the contact resistance of the orthogonal contact electrode. However, when the At composition ratio Xt- is increased in an extremely thin layer as in the present invention, the above point can be avoided. It was confirmed by the test results of the above-mentioned Examples that this was not a problem.

前記本実施例においては、ヘテロ接合界面近傍における
Atの組成比Xをノンドープ領域13において#1ソ直
線的に変化させたが、本発明の効果はAtの組成比Xの
変化が直線的に変化する場合に限られるものではなく、
曲線状もしくは階段状に変化してもよく、またAtの組
成比Xの変化する範囲がノンドープ領域13に合致する
必要はなく、両者を独立して選択する仁とができ、又、
ノンドープ領域13が必ずしも設けられなくてもよい。
In this embodiment, the At composition ratio X near the heterojunction interface was changed linearly by #1 in the non-doped region 13, but the effect of the present invention is that the At composition ratio X changes linearly. It is not limited to cases where
It may change in a curved or stepwise manner, and the range in which the At composition ratio
The non-doped region 13 does not necessarily have to be provided.

更に以上の説明はGaAs/AtGaAs  を用いた
HEMTt’例としたが、HEMTは例えばガリウム・
アンチモン(GaSb)とアルミニウム・カリウム・ア
ンチモンCAtyGaz−ysb)との組合せ等によっ
ても構成することが可能であってこの様なGaAs/A
tGaAs系以外の拐料によるHEMTについても本発
明を同様に適用することがoJ能である。
Furthermore, although the above explanation uses an example of HEMTt' using GaAs/AtGaAs, HEMT is
It can also be constructed by a combination of antimony (GaSb) and aluminum, potassium, antimony (CatyGaz-ysb), and such GaAs/A
It is also possible to apply the present invention to HEMTs using materials other than tGaAs.

(gl  発明の効果 本発明lこよれば、以上説明した如く、電子蓄積層すな
わち2次元電子層におけるキャリア電子移動度の高電界
における低下を防止し、かつ2次元電子層の形成など)
i E M Tの特性に対しては悪影Wを与えないため
に、HEMTの高密度集積化によって高速、低消費電力
の半導体装i’を実現することに大きく寄与する。
(Effects of the Invention According to the present invention, as explained above, carrier electron mobility in the electron storage layer, that is, the two-dimensional electron layer, is prevented from decreasing in a high electric field, and the two-dimensional electron layer is formed, etc.)
Since it does not have a negative influence W on the characteristics of i E MT, high-density integration of HEMTs greatly contributes to realizing a high-speed, low power consumption semiconductor device i'.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は従来例を示す断面図、第1図(b)はそ
の各層のAtの組成比Xを示す図表、第2図(a)は本
発明の実施例を示す断面図、第2図(b)はその各層の
Atの組成比Xを示す図表、第3図はそのエネルギ帯を
示す図表である。 図番こおいて、1はGaAs基板、2はG a A s
 M s3はA l x G a r −z A s層
、4は電子蓄積層、5はゲート電極、6はソース電極、
7はドレイン電極、8は抵抗性接続領域、11はGaA
s基板、1.2はノン・ドープGaAs層゛、13はA
LxGal−xA8層のノンドーグ領域、14はAlx
Ga1−xAs層のn型領域、15はソース電極、16
はドレイン電極、17は抵抗性接続領域、18はゲート
電極、19は電子蓄積層を示す。 i)tト) 竿2図 (Q−)             (い竿ヲ図
FIG. 1(a) is a sectional view showing a conventional example, FIG. 1(b) is a chart showing the At composition ratio X of each layer, and FIG. 2(a) is a sectional view showing an embodiment of the present invention. FIG. 2(b) is a chart showing the At composition ratio X of each layer, and FIG. 3 is a chart showing its energy band. In the drawing numbers, 1 is a GaAs substrate, 2 is a GaAs substrate, and 2 is a GaAs substrate.
M s3 is an Al x Gar-z As layer, 4 is an electron storage layer, 5 is a gate electrode, 6 is a source electrode,
7 is a drain electrode, 8 is a resistive connection region, 11 is GaA
s substrate, 1.2 is a non-doped GaAs layer, 13 is A
Non-doped region of LxGal-xA 8 layer, 14 is Alx
n-type region of Ga1-xAs layer, 15 is source electrode, 16
1 is a drain electrode, 17 is a resistive connection region, 18 is a gate electrode, and 19 is an electron storage layer. i) t) Rod 2 diagram (Q-) (I rod diagram

Claims (1)

【特許請求の範囲】[Claims] 第1の半導体層と、該第1の半導体層より電子親和力が
小であり、かつn楯不純物全含む第2の単導体層とを有
して、前記第1の半導体層と前記第2の半導体層とかへ
テロ接合を形成し、前記第2の半導体層から前記第1の
半導体層に遷移する電子によっC構成される2次元電子
層を電流路とする高電子移wJ度半導体装置であって、
前記第2の半導体層を構成する元素の組成比が前記へテ
ロ接合の近傍において電子親和力が小となる如くされて
なることを特徴とする半導体装置。
The first semiconductor layer and the second single conductor layer have a lower electron affinity than the first semiconductor layer and contain all n-shield impurities. A high electron mobility wJ semiconductor device in which a two-dimensional electron layer formed by a semiconductor layer or a heterojunction and configured by electrons transitioning from the second semiconductor layer to the first semiconductor layer is used as a current path. There it is,
A semiconductor device, wherein the composition ratio of elements constituting the second semiconductor layer is such that electron affinity is small in the vicinity of the heterojunction.
JP10959982A 1982-06-25 1982-06-25 Semiconductor device Granted JPS59968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10959982A JPS59968A (en) 1982-06-25 1982-06-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10959982A JPS59968A (en) 1982-06-25 1982-06-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59968A true JPS59968A (en) 1984-01-06
JPH0468775B2 JPH0468775B2 (en) 1992-11-04

Family

ID=14514355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10959982A Granted JPS59968A (en) 1982-06-25 1982-06-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167475A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Semiconductor device
JPS6147681A (en) * 1984-07-31 1986-03-08 アメリカン テレフォン アンド テレグラフ カムパニー Variable forbidden band device
JPS62130565A (en) * 1985-11-30 1987-06-12 Fujitsu Ltd Field effect type semiconductor device
US4740822A (en) * 1984-04-19 1988-04-26 Nec Corporation Field effect device maintaining a high speed operation in a high voltage operation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147158A (en) * 1982-02-26 1983-09-01 Oki Electric Ind Co Ltd Compound semiconductor field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147158A (en) * 1982-02-26 1983-09-01 Oki Electric Ind Co Ltd Compound semiconductor field effect transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167475A (en) * 1984-02-10 1985-08-30 Hitachi Ltd Semiconductor device
US4740822A (en) * 1984-04-19 1988-04-26 Nec Corporation Field effect device maintaining a high speed operation in a high voltage operation
US4866490A (en) * 1984-04-19 1989-09-12 Nec Corporation Field effect device maintaining a high speed operation in a high voltage operation
JPS6147681A (en) * 1984-07-31 1986-03-08 アメリカン テレフォン アンド テレグラフ カムパニー Variable forbidden band device
JPS62130565A (en) * 1985-11-30 1987-06-12 Fujitsu Ltd Field effect type semiconductor device

Also Published As

Publication number Publication date
JPH0468775B2 (en) 1992-11-04

Similar Documents

Publication Publication Date Title
JP2537852B2 (en) High mobility semiconductor device
JPH0783107B2 (en) Field effect transistor
KR920003799B1 (en) Semiconductor device
JPH0312769B2 (en)
JPS59968A (en) Semiconductor device
EP0136108B1 (en) Heterojunction semiconductor device
US5107314A (en) Gallium antimonide field-effect transistor
JPH03187269A (en) Semiconductor device
JPH0355978B2 (en)
JPS6353711B2 (en)
JPS59100577A (en) Semiconductor device
JPH0371774B2 (en)
JPS6357949B2 (en)
KR910006698B1 (en) Semiconductor device
JPH02246342A (en) Semiconductor device
JP2616634B2 (en) Field effect transistor
JP3077670B2 (en) Heterojunction field effect transistor
JPH11261054A (en) Field effect transistor
JP2834172B2 (en) Field effect transistor
JPS61210678A (en) Compound semiconductor device
JP2541280B2 (en) Semiconductor device
JP2658898B2 (en) field effect transistor
JPS62276882A (en) Semiconductor device
JPH10107274A (en) Tunnel transistor and fabrication thereof
JPS61248479A (en) Compound semiconductor device