JPH04343438A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH04343438A
JPH04343438A JP11517891A JP11517891A JPH04343438A JP H04343438 A JPH04343438 A JP H04343438A JP 11517891 A JP11517891 A JP 11517891A JP 11517891 A JP11517891 A JP 11517891A JP H04343438 A JPH04343438 A JP H04343438A
Authority
JP
Japan
Prior art keywords
layer
inas
alas
thickness
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11517891A
Other languages
Japanese (ja)
Other versions
JP3094500B2 (en
Inventor
Yasunobu Nashimoto
梨本 泰信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP03115178A priority Critical patent/JP3094500B2/en
Publication of JPH04343438A publication Critical patent/JPH04343438A/en
Application granted granted Critical
Publication of JP3094500B2 publication Critical patent/JP3094500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To raise a Schottky junction barrier to a metal gate electrode by so alternately laminating an AlAs thin film and an InAs thin film that the former becomes gradually thin and the latter becomes gradually thick. CONSTITUTION:A lattice-matching InGaAs current channel layer 3 is epitaxially grown on a semi-insulating InP substrate 1. A superlattice layer 4 in which InAs thin films 9 each having a thickness t<1> and AlAs films 10 each having a thickness t2 are so alternately laminated that a thickness ratio t<1>/t<2> is reduced toward an upper layer, is grown. A Schottky junction barrier is raised, and a withstand voltage of a gate electrode 6 is improved. Since no crystalline defect is generated in a hetero junction boundary, a gate leakage current can be remarkably reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はヘテロ接合電界効果トラ
ンジスタに関するものである。
FIELD OF THE INVENTION This invention relates to heterojunction field effect transistors.

【0002】0002

【従来の技術】InP基板と格子整合するIn0.53
Ga0.47Asは、電子の移動度および飽和速度がG
aAsよりも大きい。1GHZ 以上の高周波帯で動作
する電界効果トランジスタ(FET)に適した半導体材
料であることが、種々の構造のFETによって確かめら
れている。
[Prior Art] In0.53 lattice-matched to an InP substrate
Ga0.47As has electron mobility and saturation velocity of G
larger than aAs. It has been confirmed by using FETs of various structures that it is a semiconductor material suitable for field effect transistors (FETs) that operate in high frequency bands of 1 GHz or higher.

【0003】In0.52Al0.48AsはIn0.
53Ga0.47Asと格子整合し、InPまたはIn
0.53Ga0.47As上にエピタキシャル成長でき
る。しかもIn0.53Ga0.47Asよりも電子親
和力が小さいので、N型のIn0.52Al0.48A
sとアンドープのIn0.53Ga0.47Asとを接
合させると、In0.53Ga0.47As内の接合面
近傍に二次元電子ガス層が形成される。
In0.52Al0.48As is In0.52Al0.48As.
lattice matched with 53Ga0.47As, InP or In
It can be epitaxially grown on 0.53Ga0.47As. Moreover, since the electron affinity is smaller than that of In0.53Ga0.47As, N-type In0.52Al0.48A
When s and undoped In0.53Ga0.47As are bonded, a two-dimensional electron gas layer is formed near the bonding surface within the In0.53Ga0.47As.

【0004】この二次元電子ガス層を電流チャネルとし
たFETが試作され、優れた性能が確認されている。従
来例として日経マイクロデバイスの1985年11月号
、61ページに紹介されているFETについて、図3を
参照して説明する。
An FET using this two-dimensional electron gas layer as a current channel has been prototyped and its excellent performance has been confirmed. As a conventional example, an FET introduced on page 61 of the November 1985 issue of Nikkei Microdevices will be explained with reference to FIG.

【0005】分子線エピタキシャル成長法(MBE)に
より半絶縁性InP基板1上にアンドープIn0.52
Al0.48Asバッファ層2、アンドープIn0.5
3Ga0.47As電流チャネル層3、アンドープIn
0.52Al0.48Asスペーサ層13、N型Siド
ープIn0.52Al0.48As層14、アンドープ
In0.52Al0.48As層15を順次成長する。
Undoped In0.52 was deposited on a semi-insulating InP substrate 1 by molecular beam epitaxial growth (MBE).
Al0.48As buffer layer 2, undoped In0.5
3Ga0.47As current channel layer 3, undoped In
A 0.52Al0.48As spacer layer 13, an N-type Si-doped In0.52Al0.48As layer 14, and an undoped In0.52Al0.48As layer 15 are sequentially grown.

【0006】InAlAsバッファ層2は半絶縁性In
P基板1からの不純物の拡散を防ぎ、InGaAs電流
チャネル層3の電気的特性を向上させる。
The InAlAs buffer layer 2 is made of semi-insulating In
This prevents diffusion of impurities from the P substrate 1 and improves the electrical characteristics of the InGaAs current channel layer 3.

【0007】SiドープInAlAs層14よりもIn
GaAs電流チャネル層3の方が電子親和力が大きい。 そのため電子がSiドープInAlAs層14から厚さ
20Aの薄いアンドープInAlAsスペーサ層13を
介してInGaAs電流チャネル層3へ移動する。そう
してInGaAs電流チャネル層3のInAlAsスペ
ーサ層13とのヘテロ接合界面近傍に二次元電子ガス層
5が形成される。
[0007] Rather than the Si-doped InAlAs layer 14,
The GaAs current channel layer 3 has a higher electron affinity. Therefore, electrons move from the Si-doped InAlAs layer 14 to the InGaAs current channel layer 3 via the thin undoped InAlAs spacer layer 13 with a thickness of 20 Å. Thus, a two-dimensional electron gas layer 5 is formed near the heterojunction interface between the InGaAs current channel layer 3 and the InAlAs spacer layer 13.

【0008】薄いアンドープInAlAsスペーサ層1
3は、二次元電子ガス層5とSiドープInAlAs層
14内のイオン化したSiドナーとを空間的に隔てるこ
とにより、電子のクーロン散乱が減り、二次元電子ガス
の移動度を向上させるためのものである。
Thin undoped InAlAs spacer layer 1
3 is for spatially separating the two-dimensional electron gas layer 5 and the ionized Si donor in the Si-doped InAlAs layer 14 to reduce Coulomb scattering of electrons and improve the mobility of the two-dimensional electron gas. It is.

【0009】Alのショットキゲート電極6は最上層の
アンドープInAlAs層15上に形成されており、ソ
ース電極7とドレイン電極8との間に流れる電流を制御
する。このFETのトランスコンダクタンスgm は室
温で440ms/mmが得られており、これは同じゲー
ト電極長のGaAsMESFETを上まわる性能である
An Al Schottky gate electrode 6 is formed on the uppermost undoped InAlAs layer 15 and controls the current flowing between the source electrode 7 and the drain electrode 8. This FET has a transconductance gm of 440 ms/mm at room temperature, which is superior to a GaAs MESFET with the same gate electrode length.

【0010】0010

【発明が解決しようとする課題】従来のFETはInY
 Al1−Y Asの混合比がY=0.52であり、ゲ
ート電極とのショットキ接合のショットキ障壁高さが0
.8eVと低い。正のゲートバイアスを印加してエンハ
ンスメントモードで用いると、ゲートリーク電流が10
A/cm2 以上まで増加することが問題となる。
[Problem to be solved by the invention] The conventional FET is InY
The mixing ratio of Al1-YAs is Y=0.52, and the Schottky barrier height of the Schottky junction with the gate electrode is 0.
.. It is as low as 8eV. When used in enhancement mode with a positive gate bias applied, the gate leakage current is 10
An increase to A/cm2 or higher becomes a problem.

【0011】これを解決するためショットキ障壁高さが
0.8eV以上あるAlZ Ga1−Z As(0<Z
≦1)をInAlAsの代りに用いることが考えられる
が、格子定数が違うので格子整合させることができない
。ヘテロ接合界面で格子定数の差から転位欠陥が発生し
て、FETの特性変動、不安定性が生じて新たな問題と
なる。
In order to solve this problem, AlZ Ga1-Z As (0<Z
≦1) in place of InAlAs, but since the lattice constants are different, lattice matching cannot be achieved. Dislocation defects occur due to the difference in lattice constants at the heterojunction interface, causing characteristic fluctuations and instability of the FET, posing a new problem.

【0012】0012

【課題を解決するための手段】本発明の電界効果トラン
ジスタは、InP基板の一主面上にInPと格子整合す
るInGaAsチャネル層とAlAs−InAs超格子
層とが順次形成され、前記AlAs−InAs超格子層
上にゲート電極が形成され、前記InGaAsチャネル
層上にソース電極およびドレイン電極が形成されている
。前記AlAs−InAs超格子層のAlAs薄膜の膜
厚t1とInAs薄膜の膜厚t2 との比t1 /t2
 が下層から上層にかけて次第に減少している。
Means for Solving the Problems In the field effect transistor of the present invention, an InGaAs channel layer lattice-matched to InP and an AlAs-InAs superlattice layer are successively formed on one main surface of an InP substrate, and the AlAs-InAs A gate electrode is formed on the superlattice layer, and a source electrode and a drain electrode are formed on the InGaAs channel layer. Ratio between the thickness t1 of the AlAs thin film and the thickness t2 of the InAs thin film of the AlAs-InAs superlattice layer: t1 /t2
gradually decreases from the bottom to the top.

【0013】[0013]

【作用】分子線エピタキシャル成長法(MBE)や有機
金属気相成長法(MOCVD)により格子定数の異なる
化合物半導体薄層が形成されている。各層の厚さを転位
欠陥の発生し始める臨界膜厚以内に止める。各層を交互
に積層することにより、転位欠陥を発生させることなく
、エピタキシャル成長できることが明らかになっている
[Operation] Thin layers of compound semiconductors having different lattice constants are formed by molecular beam epitaxial growth (MBE) or metal organic chemical vapor deposition (MOCVD). The thickness of each layer is kept within the critical thickness at which dislocation defects begin to occur. It has been revealed that by alternately stacking each layer, epitaxial growth can be achieved without generating dislocation defects.

【0014】格子定数の差が7%あるInAsとAlA
sとの薄層でも各層の厚さを50A以下に限定すること
により、転位欠陥を生じることなく数1000A積層さ
せることができる。またIn0.53Ga0.47As
と格子整合するInY Al1−Y AsのIn組成Y
はY=0.52であるが、このInY Al1−Y A
sと同じ性質の化合物半導体をInAsおよびAlAs
の薄層を交互に積層した超格子で作ることができる。
[0014] InAs and AlA have a 7% difference in lattice constant.
By limiting the thickness of each layer to 50 Å or less, even if the layer is thin with s, it is possible to stack several 1000 Å without generating dislocation defects. Also In0.53Ga0.47As
The In composition Y of InY Al1-Y As is lattice matched to
is Y=0.52, but this InY Al1-Y A
InAs and AlAs are compound semiconductors with the same properties as s.
It can be made from a superlattice made of alternating thin layers of .

【0015】すなわちInAsの薄層の厚さt1 とA
lAsの薄層の厚さt2 との比t1 /t2 が0.
52/0.48≒1.08とする。これらを交互に積層
した超格子はIn0.52Al0.48Asと等価にな
り、平均的な格子定数はInPの格子定数と一致すると
みなせる。
That is, the thickness t1 of the InAs thin layer and A
The ratio t1 /t2 to the thickness t2 of the thin layer of lAs is 0.
52/0.48≒1.08. A superlattice obtained by laminating these layers alternately is equivalent to In0.52Al0.48As, and the average lattice constant can be considered to match that of InP.

【0016】したがってFETの電流チャネル層となる
In0.53Ga0.47As層上にこの超格子を成長
させると、これらの半導体ヘテロ接合界面での格子定数
の違いによる転位欠陥の発生を防ぐことができる。
Therefore, if this superlattice is grown on the In0.53Ga0.47As layer which becomes the current channel layer of the FET, it is possible to prevent the generation of dislocation defects due to the difference in lattice constant at the interface of these semiconductor heterojunctions.

【0017】そのあと徐々にこの超格子におけるt1 
/t2 を減らす(InAs薄膜の割合を減らす)こと
により、超格子の平均的なバンドギャップが増加する。 こうして金属ゲート電極とのショットキ接合障壁をAl
Asの≒1.2eV付近まで容易に高めることができる
[0017] Then gradually t1 in this superlattice
By reducing /t2 (reducing the proportion of InAs thin film), the average bandgap of the superlattice increases. In this way, the Schottky junction barrier with the metal gate electrode is
It can be easily increased to around ≒1.2 eV of As.

【0018】[0018]

【実施例】本発明の第1の実施例について、図1(a)
の断面図および図1(b)の部分拡大断面図を参照して
説明する。
[Example] Regarding the first example of the present invention, FIG. 1(a)
This will be explained with reference to a cross-sectional view of FIG. 1 and a partially enlarged cross-sectional view of FIG. 1(b).

【0019】結晶面が(100)のFeドープ半絶縁性
InP基板1に、MBEにより厚さ5000Aのアンド
ープInAlAsバッファ層2および厚さ1000Aの
アンドープInGaAs電流チャネル層3を順次成長し
た。
An undoped InAlAs buffer layer 2 with a thickness of 5000 Å and an undoped InGaAs current channel layer 3 with a thickness of 1000 Å were successively grown on an Fe-doped semi-insulating InP substrate 1 having a (100) crystal plane by MBE.

【0020】InAlAsバッファ層2およびInGa
As電流チャネル層3のInAs組成比は、それぞれ0
.52および0.53とし、半絶縁性InP基板1と格
子定数を合わせて格子整合させた。
InAlAs buffer layer 2 and InGa
The InAs composition ratio of the As current channel layer 3 is 0.
.. 52 and 0.53, and the lattice constants were matched to the semi-insulating InP substrate 1 for lattice matching.

【0021】ソース電極7およびドレイン電極8はAu
Ge・Ni合金からなり、InGaAs電流チャネル層
3上にSiをドープしたInAsおよびAlAs薄層を
複数層積層した超格子4を隔てて配置され、InGaA
s電流チャネル層3と電気的に良好なオーミックコンタ
クトを形成している。
The source electrode 7 and the drain electrode 8 are made of Au.
It is made of a Ge/Ni alloy, and is arranged across a superlattice 4 in which a plurality of Si-doped InAs and AlAs thin layers are laminated on an InGaAs current channel layer 3.
A good electrical ohmic contact is formed with the s current channel layer 3.

【0022】超格子4上にはAlからなるゲート電極6
が形成され、超格子4を介してInGaAs電流チャネ
ル層3内に形成された二次元電子ガス層5の電子濃度を
制御してソース電極7とドレイン電極8間の電流を制御
する。
A gate electrode 6 made of Al is on the superlattice 4.
is formed, and controls the electron concentration of the two-dimensional electron gas layer 5 formed in the InGaAs current channel layer 3 via the superlattice 4, thereby controlling the current between the source electrode 7 and the drain electrode 8.

【0023】超格子層4は図1(b)に示すように、I
nGaAsチャネル層3上にMBEによってSiを2×
1018cm−3ドープしたInAs層9とAlAs層
10とを交互にエピタキシャル成長した。
As shown in FIG. 1(b), the superlattice layer 4 has an I
Si is deposited 2x on the nGaAs channel layer 3 by MBE.
InAs layers 9 doped with 1018 cm-3 and AlAs layers 10 were epitaxially grown alternately.

【0024】InGaAs電流チャネル層3と接する最
初のAlAs層10の厚さt2 とそのAlAs層10
と接するInAs層9の厚さt1 との比t1 /t2
 は、InGaAs電流チャネル層3(In組成0.5
3)の格子定数と、このAlAs層10およびInAs
層9の平均格子定数とが一致するように、t1 /t2
 =0.52/0.48≒1.08にできるだけ近づけ
た。
Thickness t2 of the first AlAs layer 10 in contact with the InGaAs current channel layer 3 and the AlAs layer 10
The ratio t1 /t2 of the thickness t1 of the InAs layer 9 in contact with
is an InGaAs current channel layer 3 (In composition 0.5
3) and the lattice constant of this AlAs layer 10 and InAs
t1 /t2 so that the average lattice constant of layer 9 matches
=0.52/0.48≒1.08 as close as possible.

【0025】さらにt1 ,t2 はそれぞれのヘテロ
接合界面で転位欠陥を発生させないように、臨界膜厚以
下のそれぞれ52Aおよび48Aとするよう成長をコン
トロールした。
Further, the growth was controlled so that t1 and t2 were 52A and 48A, respectively, below the critical film thickness so as not to generate dislocation defects at the respective heterojunction interfaces.

【0026】以後AlAs層10とInAs層9とは、
隣接する2層の膜厚の和が約100Aで、t1 /t2
 が上層になるにつれて徐々に小さくなり、最後にゲー
ト電極5と接する最上部でt1 /t2 =0.064
とした。 実際にはAlAs層10とInAs層9とをそれぞれ4
層ずつエピタキシャル成長し、超格子4の厚さを400
Aとした。
Hereinafter, the AlAs layer 10 and the InAs layer 9 are as follows.
The sum of the thicknesses of two adjacent layers is approximately 100A, and t1 /t2
gradually becomes smaller as it goes to the upper layer, and finally at the top where it contacts the gate electrode 5, t1 /t2 = 0.064
And so. Actually, the number of AlAs layers 10 and InAs layers 9 is 4 each.
The thickness of the superlattice 4 is 400 mm by epitaxial growth layer by layer.
I gave it an A.

【0027】図1(a)のInGaAsFETで、Al
ゲート電極6と超格子層9とのショットキゲート接合の
障壁高さは約1eVとなる。正バイアスしたゲート電極
のリーク電流はIn0.52Al0.48Asを超格子
4の代りに用いた場合と比べて大幅に減少した。
In the InGaAsFET shown in FIG. 1(a), Al
The barrier height of the Schottky gate junction between the gate electrode 6 and the superlattice layer 9 is approximately 1 eV. The leakage current of the positively biased gate electrode was significantly reduced compared to the case where In0.52Al0.48As was used instead of the superlattice 4.

【0028】例えばゲートバイアス電圧+0.5V印加
時のゲートリーク電流は10−1〜10−2A/cm2
 程度で、In0.52Al0.48Asを用いた場合
の1/100以下となった。InGaAsの二次元電子
ガスを電流チャネルとするFETの高周波帯における雑
音指数が著しく低減された。
For example, the gate leakage current when applying a gate bias voltage of +0.5V is 10-1 to 10-2 A/cm2.
It was about 1/100 or less of that when In0.52Al0.48As was used. The noise figure in the high frequency band of an FET using InGaAs two-dimensional electron gas as a current channel has been significantly reduced.

【0029】ショットキ接合の障壁高さが高くなったの
でゲート電極の逆方向耐圧も向上し、高周波帯用高出力
素子としての実用化が可能となった。
Since the barrier height of the Schottky junction is increased, the reverse breakdown voltage of the gate electrode is also improved, making it possible to put it to practical use as a high-output device for high frequency bands.

【0030】つぎに本発明の第2の実施例について、図
2を参照して説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0031】本実施例では第1の実施例の超格子層4の
上にSiを高濃度ドープしたN+ 型GaAsコンタク
ト層11を付加した。ソース電極7およびドレイン電極
8と半導体層とのコンタクト抵抗を削減する。さらにリ
セス12を形成して超格子層4上にゲート電極6を設け
てゲート電極6およびソース電極7間の直列抵抗を下げ
る構造とした。
In this embodiment, an N+ type GaAs contact layer 11 heavily doped with Si is added on top of the superlattice layer 4 of the first embodiment. The contact resistance between the source electrode 7 and drain electrode 8 and the semiconductor layer is reduced. Further, a recess 12 was formed and a gate electrode 6 was provided on the superlattice layer 4 to reduce the series resistance between the gate electrode 6 and the source electrode 7.

【0032】第1の実施例と同様にして超格子層4を成
長したのち、MBEでSiを5×1018cm−3ドー
プした厚さ200AのN+ 型GaAsコンタクト層1
1を成長する。そのあとフォトリソグラフィによりリセ
ス12を形成する。
After growing the superlattice layer 4 in the same manner as in the first embodiment, an N+ type GaAs contact layer 1 doped with 5×10 18 cm −3 of Si by MBE and having a thickness of 200 Å is grown.
Grow 1. Thereafter, a recess 12 is formed by photolithography.

【0033】本実施例のFETにおいても、第1の実施
例と同様にゲート電極のリーク電流が従来の1/100
程度まで減少し、さらにソース電極とゲート電極間の直
列抵抗が低減され、高周波特性が一層向上した。
In the FET of this embodiment as well, the leakage current of the gate electrode is 1/100 that of the conventional one, as in the first embodiment.
Furthermore, the series resistance between the source electrode and the gate electrode was reduced, and the high frequency characteristics were further improved.

【0034】[0034]

【発明の効果】FETのIn0.53Ga0.47As
電流チャネル層と接する面では実効的な格子定数が一致
し、ゲート電極とのショットキ接合障壁が大きくなるI
nAsとAlAsの薄層を交互に積層した超格子を形成
した。
[Effect of the invention] In0.53Ga0.47As for FET
The effective lattice constants match on the surface in contact with the current channel layer, and the Schottky junction barrier with the gate electrode increases
A superlattice was formed by laminating thin layers of nAs and AlAs alternately.

【0035】InGaAs電流チャネル層と超格子層と
のヘテロ接合界面で転位欠陥が発生することなく、かつ
FETのゲート電極のリーク電流を著しく減少させるこ
とができる。
[0035] Dislocation defects are not generated at the heterojunction interface between the InGaAs current channel layer and the superlattice layer, and leakage current at the gate electrode of the FET can be significantly reduced.

【0036】その結果InGaAs固有の高周波帯にお
ける優れた電気的特性を発揮する電界効果トランジスタ
の設計・製造が可能になった。
As a result, it has become possible to design and manufacture a field effect transistor that exhibits the excellent electrical characteristics inherent to InGaAs in a high frequency band.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(a)は本発明の第1の実施例を示す断面図で
ある。 (b)は超格子層を示す部分断面図である。
FIG. 1(a) is a sectional view showing a first embodiment of the present invention. (b) is a partial cross-sectional view showing a superlattice layer.

【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the invention.

【図3】従来技術によるFETの断面図である。FIG. 3 is a cross-sectional view of a FET according to the prior art.

【符号の説明】[Explanation of symbols]

1    半絶縁性InP基板 2    InAlAsバッファ層 3    InGaAsチャネル層 4    超格子層 5    二次元電子ガス層 6    ゲート電極 7    ソース電極 8    ドレイン電極 9    InAs層 10    AlAs層 11    N+ 型GaAsコンタクト層12   
 リセス 13    アンドープInAlAsスペーサ層14 
   N型InAlAs層
1 Semi-insulating InP substrate 2 InAlAs buffer layer 3 InGaAs channel layer 4 Superlattice layer 5 Two-dimensional electron gas layer 6 Gate electrode 7 Source electrode 8 Drain electrode 9 InAs layer 10 AlAs layer 11 N+ type GaAs contact layer 12
Recess 13 Undoped InAlAs spacer layer 14
N-type InAlAs layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  InP基板の一主面上にInPと格子
整合するInGaAsチャネル層とAlAs−InAs
超格子層とが順次形成され、前記AlAs−InAs超
格子層上にゲート電極が形成され、前記InGaAsチ
ャネル層上にソース電極およびドレイン電極が形成され
た電界効果トランジスタ。
Claim 1: An InGaAs channel layer and AlAs-InAs lattice-matched to InP are formed on one main surface of an InP substrate.
a superlattice layer, a gate electrode is formed on the AlAs-InAs superlattice layer, and a source electrode and a drain electrode are formed on the InGaAs channel layer.
【請求項2】  AlAs−InAs超格子層のAlA
s薄膜の膜厚t1 とInAs薄膜の膜厚t2 との比
t1 /t2 が下層から上層にかけて次第に減少する
請求項1記載の電界効果トランジスタ。
[Claim 2] AlA of AlAs-InAs superlattice layer
2. The field effect transistor according to claim 1, wherein the ratio t1/t2 of the thickness t1 of the InAs thin film to the thickness t2 of the InAs thin film gradually decreases from the lower layer to the upper layer.
【請求項3】AlAs薄膜とInAs薄膜とのうち、少
なくとも片方に不純物がドープされている請求項1記載
の電界効果トランジスタ。
3. The field effect transistor according to claim 1, wherein at least one of the AlAs thin film and the InAs thin film is doped with an impurity.
JP03115178A 1991-05-21 1991-05-21 Field effect transistor Expired - Fee Related JP3094500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03115178A JP3094500B2 (en) 1991-05-21 1991-05-21 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03115178A JP3094500B2 (en) 1991-05-21 1991-05-21 Field effect transistor

Publications (2)

Publication Number Publication Date
JPH04343438A true JPH04343438A (en) 1992-11-30
JP3094500B2 JP3094500B2 (en) 2000-10-03

Family

ID=14656284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03115178A Expired - Fee Related JP3094500B2 (en) 1991-05-21 1991-05-21 Field effect transistor

Country Status (1)

Country Link
JP (1) JP3094500B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034386A (en) * 1997-06-16 2000-03-07 Nec Corporation Field effect transistor and method of manufacturing the same
US6531414B1 (en) * 1999-05-05 2003-03-11 The United States Of America As Represented By The National Security Agency Method of oxidizing strain-compensated superlattice of group III-V semiconductor
JP2008512863A (en) * 2004-09-13 2008-04-24 ピコギガ インターナショナル HEMT piezoelectric structure without alloy disorder
EP2698823A1 (en) * 2011-04-15 2014-02-19 Advanced Power Device Research Association Semiconductor device
CN105390541A (en) * 2015-10-30 2016-03-09 江苏能华微电子科技发展有限公司 HEMT epitaxial structure and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034386A (en) * 1997-06-16 2000-03-07 Nec Corporation Field effect transistor and method of manufacturing the same
US6531414B1 (en) * 1999-05-05 2003-03-11 The United States Of America As Represented By The National Security Agency Method of oxidizing strain-compensated superlattice of group III-V semiconductor
JP2008512863A (en) * 2004-09-13 2008-04-24 ピコギガ インターナショナル HEMT piezoelectric structure without alloy disorder
EP2698823A1 (en) * 2011-04-15 2014-02-19 Advanced Power Device Research Association Semiconductor device
EP2698823A4 (en) * 2011-04-15 2014-10-01 Furukawa Electric Co Ltd Semiconductor device
CN105390541A (en) * 2015-10-30 2016-03-09 江苏能华微电子科技发展有限公司 HEMT epitaxial structure and preparation method thereof

Also Published As

Publication number Publication date
JP3094500B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
EP0477515B1 (en) Heterojunction field effect transistor with monolayer in channel region
US5596211A (en) Field effect transistor having a graded bandgap InGaAsP channel formed of a two-dimensional electron gas
JP3458349B2 (en) Semiconductor device
US20040169194A1 (en) Semiconductor device
JPH07183494A (en) Heterojunction fet
JPH08306909A (en) Ingaas field effect transistor
JPH04343438A (en) Field effect transistor
JP2964637B2 (en) Field effect transistor
JPH06188271A (en) Field effect transistor
JP2730524B2 (en) Field effect transistor and method of manufacturing the same
JP2808671B2 (en) Field effect transistor
JP3158467B2 (en) InAlAs / InGaAs heterojunction structure field effect transistor
JP2917719B2 (en) Field effect transistor
JP2730511B2 (en) Heterojunction field effect transistor
JP3122474B2 (en) Field effect transistor
JP3122471B2 (en) Field effect transistor
JPH06151469A (en) Compound semiconductor device
JPS63172A (en) Semiconductor device
JPH09283745A (en) High-electron mobility transistor
JP2800457B2 (en) Semiconductor device
JPH01205471A (en) Semiconductor device
JP3122472B2 (en) Field effect transistor
JPH0327537A (en) Modulation-doped field effect transistor
JPH09246529A (en) Field effect transistor and its manufacture
JPH07120792B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000704

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees