JPH01119065A - Iii-v compound semiconductor field-effect transistor - Google Patents

Iii-v compound semiconductor field-effect transistor

Info

Publication number
JPH01119065A
JPH01119065A JP27699387A JP27699387A JPH01119065A JP H01119065 A JPH01119065 A JP H01119065A JP 27699387 A JP27699387 A JP 27699387A JP 27699387 A JP27699387 A JP 27699387A JP H01119065 A JPH01119065 A JP H01119065A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
semiconductor
inp
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27699387A
Other languages
Japanese (ja)
Other versions
JP2571583B2 (en
Inventor
Atsushi Kudo
淳 工藤
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62276993A priority Critical patent/JP2571583B2/en
Publication of JPH01119065A publication Critical patent/JPH01119065A/en
Application granted granted Critical
Publication of JP2571583B2 publication Critical patent/JP2571583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/802Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with heterojunction gate, e.g. transistors with semiconductor layer acting as gate insulating layer, MIS-like transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable a channel to be positioned which is away from a MIS interface and to stabilize characteristics by allowing the first semiconductor layer which is adjacent to a gate insulation later to keep an energy gap which is larger than the second semiconductor layer which is positioned at a lower position and by forming the second semiconductor layer and a conformity grid or distortion grid. CONSTITUTION:A MIS-type field-effect transistor consists of a grid conformity In1-xGaxAs semiconductor layer 2 (x=0.47), InP semiconductor layer 1, a gate insulation layer 4, a gate electrode 5, and source/drain electrodes 6 and 7 on a semi-insulation InP substrate 3. When a positive voltage is applied to a gate electrode 5, energy gap (1.35eV) of InP is larger than that (0.8eV) of InGaAs and a channel is formed at the InGaAs layer side of interface between the InGaAs layer 2 and the InP layer 1.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高速で大きな電圧振幅を取り扱うことができ
、集積化等にも適したm−v化合物半導体を活性層とす
る金属絶縁層、半導体形電界効果トランジスタ(以下、
MISFETと記す)に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a metal insulating layer having an active layer of an m-v compound semiconductor that can handle large voltage amplitudes at high speed and is suitable for integration, etc. Semiconductor field effect transistor (hereinafter referred to as
MISFET).

〈従来の技術〉 +11−V族化合物半導体は、高速性、低消費電力性、
低雑音性などにおいてシリコンヲ凌ぐため、現今その開
発が活発に行なわれている。その素子形成としては、シ
リコンによって実現される。Mo5FETに相当するM
ISFETが高性能化、高集積化に適しているため望ま
しいが、現在実用化が進んでいるGaAsでは、その形
成が困難であり、ショットキーゲートな用いたME S
 F ETが一般に用いられている。しかし、MESF
ETは回路動作時の電圧振幅が小さく、駆動能力も°小
さいなど素子の高速化、高集積化の点から有利な素子構
造とは云い難かった。
<Conventional technology> +11-V group compound semiconductors have high speed, low power consumption,
In order to surpass silicon in terms of low noise, etc., its development is currently being actively carried out. The element is formed using silicon. M equivalent to Mo5FET
ISFETs are desirable because they are suitable for high performance and high integration, but they are difficult to form using GaAs, which is currently being put into practical use, and MESs using Schottky gates are difficult to form.
FET is commonly used. However, MESF
ET has a small voltage amplitude during circuit operation and a small drive capacity, so it is hard to say that it has an advantageous element structure from the viewpoint of increasing the speed and integration of the element.

〈発明が解決しようとする問題点〉 MISFETが実現されれば、その論理振幅(入力電圧
の振幅)が大きい上に、雑音や電源電圧変動に対する耐
性が高く、しかも高集積度の電子デバイスが実現すると
期待されており、その材料としてはInP、InGaA
sなどのインジウム系■−V族化合物が適している。し
かし、これらのMISFETは実用化するには界面特性
が不充分であり、また動作中に特性トリラドが生じるな
どの問題があった。
<Problems to be solved by the invention> If a MISFET is realized, it will be possible to realize a highly integrated electronic device that has a large logic amplitude (input voltage amplitude) and is highly resistant to noise and power supply voltage fluctuations. It is expected that the material will be InP, InGaA.
Indium-based ■-V group compounds such as s are suitable. However, these MISFETs have problems such as insufficient interface characteristics for practical use and the occurrence of characteristic trirad during operation.

本発明は上記の点に鑑みて創案されたものであり、上記
した技術的な問題点を解決し、動作面で安定であり、し
かも高性能なMISFETを提供することを目的として
いる。
The present invention was created in view of the above points, and aims to solve the above technical problems and provide a MISFET that is stable in operation and has high performance.

〈問題点を解決するための手段〉 上記の目的を達成するため、本発明は基板と、この基板
上に形成されたエネルギーギャップEgの異なるm−v
族化合物を積層してなる複数個の半導体層と、この半導
体積層上に形成されたゲート絶縁層とを有し、上記の基
板あるいは半導体層の少なくとも1つはIn及びPを含
むm−v族化合物からなる電界効果トランジスタであっ
て、上記のゲート絶縁層に接する第1半導体層は、その
下層の第2半導体層より大きいエネルギーギャップ?有
し、かつ、上記の第2半導体層と整合格子あるいは歪格
子を形成してなるように構成している。
<Means for Solving the Problems> In order to achieve the above-mentioned object, the present invention provides a substrate and a substrate having different energy gaps Eg formed on the substrate.
It has a plurality of semiconductor layers formed by stacking group compounds, and a gate insulating layer formed on the semiconductor stack, and at least one of the substrate or the semiconductor layer is a m-v group compound containing In and P. In a field effect transistor made of a compound, the first semiconductor layer in contact with the gate insulating layer has a larger energy gap than the second semiconductor layer below it. and forms a matched lattice or strained lattice with the second semiconductor layer.

〈作 用〉 上記のように構成することにより、キャリア捕獲や特性
ドリフト等の原因となるMIS界面から離れた位置にチ
ャネルが形成されるため、特性の安定化を計ることが出
来、またエネルギーギャップEgの異なる複数個のm−
v族化合物の組合せにより、超高速動作に適した2次元
電子ガス等を利用した高性能のトランジスタを形成する
ことが出来る。
<Function> By configuring as above, a channel is formed at a position away from the MIS interface, which causes carrier capture and characteristic drift, so characteristics can be stabilized and the energy gap can be reduced. Multiple m- with different Eg
By combining V-group compounds, it is possible to form high-performance transistors that utilize two-dimensional electron gas and the like and are suitable for ultra-high-speed operation.

更にまた、MISFETの特徴である高駆動能力、大輪
理振幅等の特性が維持されることになる。
Furthermore, the characteristics of MISFET, such as high driving ability and large ring fracture amplitude, are maintained.

〈実施例〉 以下、図面を参照して本発明の一実施例を詳到に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例 1 第1図は、本発明の一実施例のMIS形電界効果トラン
ジスタの構造を示す断面図であり、半絶縁性のInP基
板3上の格子整合I nl−X GaX As半導体層
2(x=0.47)、InP半導体層1、ゲート絶縁層
4、ゲート電ff15、ソース・ドレイン電極6.7か
らなる。
Embodiment 1 FIG. 1 is a cross-sectional view showing the structure of a MIS field effect transistor according to an embodiment of the present invention, in which a lattice-matched I nl-X GaX As semiconductor layer 2 ( x=0.47), an InP semiconductor layer 1, a gate insulating layer 4, a gate electrode ff15, and source/drain electrodes 6.7.

第2図はゲート電極5に正電圧を印加した場合のエネル
ギーバンド図を示しており、InPの、エネルギーギャ
ップ(1,35eV)はI n Ga Asのそれ(0
,8eV)より大きく、In Ga As層2とInP
層1の界面のInGaAs層側にチャネルが形成される
FIG. 2 shows an energy band diagram when a positive voltage is applied to the gate electrode 5, and the energy gap (1.35 eV) of InP is similar to that of In Ga As (0
, 8eV), and the InGaAs layer 2 and InP
A channel is formed on the InGaAs layer side of the interface of layer 1.

本実施例において、InPは例えばアンドープであり、
チャネルとMIS界面を分離するバッファ層として機能
する。
In this example, InP is undoped, for example,
It functions as a buffer layer that separates the channel and MIS interface.

E2とし、ゲート電圧をv6とすると、V6=V、+ 
v2+ v3 二E+d1+Ezd+ (ただしv3は0.IV程度であり無視するものとする
)εI El  = ’2 E2 であり、 vG ” (” dt + d 2 ) E2ε1 となり、第1半導体層(InP)1には近似的にε2 d 1 + d 2 Sl の電界が印加される。
E2 and gate voltage v6, V6=V, +
v2+ v3 2E+d1+Ezd+ (However, v3 is about 0.IV and should be ignored) εI El = '2 E2, vG ''('' dt + d 2 ) E2ε1, and the first semiconductor layer (InP) 1 An electric field of approximately ε2 d 1 + d 2 Sl is applied.

ここで、■2〉ΔE0(ΔEc: InGaAsとIn
Pの間のConduction band disco
ntinuity)となると、第1半導体層1と第2半
導体層2との界面とともに、MIS界面にもチャネル7
5;形成されて、高速性能が得られなくなる。しfc力
1つてMIS界面に新たなチャネルが形成されないため
にはE2d2くΔEoの条件が満たされることが滋まし
い。
Here, ■2〉ΔE0(ΔEc: InGaAs and In
Conduction band disco between P
ntinuity), the channel 7 is formed not only at the interface between the first semiconductor layer 1 and the second semiconductor layer 2 but also at the MIS interface.
5; formed, making it impossible to obtain high-speed performance. In order to prevent a new channel from being formed at the MIS interface due to a single fc force, it is desirable that the conditions of E2d2 and ΔEo be satisfied.

となり、 (ここでvG)ΔEo、電圧の多くは絶!&層4に印加
される)となる。
So, (here vG)ΔEo, most of the voltage is absolute! & applied to layer 4).

上記した(1)式からも明らかなように、第1半導体層
1の厚みは、材料の組合せや素子の動作電圧にもよるが
、高々1000Å程度、あるいはそれ以下が望ましい。
As is clear from the above equation (1), the thickness of the first semiconductor layer 1 is desirably about 1000 Å at most or less, although it depends on the combination of materials and the operating voltage of the device.

例えばゲート絶縁層4として膜厚d 1= 1000λ
の5i02を用い、第1半導体層1としてInPを用い
、第2半導体層2としてl n Ga Asを用いた場
合、’t(S i 02) =3.9+  ’、+(I
n P ) =12゜ΔEC(InP−InGaAs、
)=0.3Vであるため、VGを1V程度とした場合、
d 241000^トナリ、VGを4.5V程度とした
場合、d2く200Aとなる。
For example, as the gate insulating layer 4, the film thickness d 1 = 1000λ
When InP is used as the first semiconductor layer 1 and l n Ga As is used as the second semiconductor layer 2, 't(S i 02) =3.9+ ', +(I
n P ) = 12° ΔEC (InP-InGaAs,
)=0.3V, so if VG is about 1V,
If d241000^tonari and VG are set to about 4.5V, then d2 will be 200A.

次に本発明の実施例のM I 5FETの製造方法につ
いて、第1図を参照して説明する。
Next, a method for manufacturing an M I 5FET according to an embodiment of the present invention will be described with reference to FIG.

まず、半絶縁性のInP基板3上にMOCVD。First, MOCVD is performed on a semi-insulating InP substrate 3.

ハライドVPEなど高純度結晶成長が可能な方法を用い
、膜厚0.2〜1μのInGaAs層2を格子整合させ
て形成する。この結晶層2はデバイス動作速度を高める
ためにできるだけ高純度n <10”c+++−2+更
に望ましくはn < 1015cm−2であることが望
ましい。次に、膜厚100〜1000人のInP層1?
引続き形成する。ゲート絶縁膜4形成以後の工程は通常
のMISFET工程に従い行なう。
Using a method capable of high-purity crystal growth such as halide VPE, an InGaAs layer 2 with a thickness of 0.2 to 1 μm is formed by lattice matching. In order to increase the device operation speed, this crystal layer 2 is preferably as high in purity as n <10" c+++-2 + more preferably n < 1015 cm-2. Next, the InP layer 1 with a film thickness of 100 to 1000 cm is used.
Continue to form. The steps after forming the gate insulating film 4 are carried out according to normal MISFET steps.

ここで、ゲート絶縁膜4は木講造の場合、MIS界面が
チャネルから離れているため通常のMISFETと比べ
るとドリフト等への影響は小さいが、それでもできるだ
け界面特性の優れた材料及び形成方法を採用することが
望ましい。好適には、光CVD法、ECRプラズマCV
D法など低照射損傷性の低温絶縁膜形成法を用い、Si
O□、SiN。
Here, when the gate insulating film 4 is made of wood, the MIS interface is far from the channel, so the influence on drift etc. is smaller compared to a normal MISFET. It is desirable to adopt it. Preferably, photo-CVD method, ECR plasma CV
Si
O□, SiN.

P ON 、 P AsO等或いはそれらの複合膜を形
成して用いる。次にゲート電fM5をEB蒸着法による
AI、或いはスパッタ法によるWなどを用いて形成し、
更にフォトリソグラフィを用いて所定のL/Wを有する
形状に加工する。本素子のソース。
A film of P ON , P AsO, etc. or a composite film thereof is formed and used. Next, a gate electrode fM5 is formed using AI by EB evaporation or W by sputtering,
Furthermore, it is processed into a shape having a predetermined L/W using photolithography. Source of this element.

ドレイン部は好適には、第1図に点線で示したように、
Sl イオン注入などの方法によって不純物ドープして
不純物ドープ領域8,8を形成した後、ゲート絶縁膜4
の当該部分全エツチングにより除去し、AuGe等によ
る電極6.7を真空蒸着法とリフトオフ法との組合せに
より形成して、素子を完成する。
The drain portion is preferably as shown by the dotted line in FIG.
After doping with impurities by a method such as Sl ion implantation to form impurity-doped regions 8, 8, the gate insulating film 4 is
The entire portion is removed by etching, and an electrode 6.7 made of AuGe or the like is formed by a combination of a vacuum evaporation method and a lift-off method to complete the device.

なお、本発明の実施例においては、InP半導体層1は
アンドープとしたが、必要に応じてドープされた結晶層
を用いるようになしても良く、またアンドープ層とドー
グ層の二層構造としても良い。
In the embodiments of the present invention, the InP semiconductor layer 1 is undoped, but a doped crystal layer may be used if necessary, or it may have a two-layer structure of an undoped layer and a doped layer. good.

この場合、そのドーピング量NDによって、トランジス
タの閾電kNnd%/2ε程度変化し、これft閾電圧
制御に用いることが出来る。
In this case, the threshold voltage of the transistor changes by about kNnd%/2ε depending on the doping amount ND, which can be used for ft threshold voltage control.

本発明■実施例によって実現されるトランジスタに於て
は、チャネル領域に誘起される電子は2次元電子ガスを
形成し、InP半導体層の膜厚、ドーピング状態によっ
てエンハンスメント型及びデイプリージョン型の動作を
させることも可能である0 更に、本実施例においては、ゲート絶縁層として非晶質
層を用いたが、InAIIP、GaAlAs等のワイド
ギャップの■−v族化合物半導体を用いることも可能で
ある。
In the transistor realized by the embodiment of the present invention, electrons induced in the channel region form a two-dimensional electron gas, and depending on the film thickness and doping state of the InP semiconductor layer, enhancement type and depletion type operation are possible. Furthermore, although an amorphous layer is used as the gate insulating layer in this example, it is also possible to use a wide gap ■-v group compound semiconductor such as InAIIP or GaAlAs. .

実施例 2 本発明においては、第1図に於てゲート絶縁膜4に接す
る半導体第1層1とその下層の半導体第2層2は格子不
整合系であってもよい。この場合のオーダとなると考え
られ、これは通常の方法で得られる非晶質絶縁膜4とI
nPlの界面の準位数よりむしろ小さい。これよりミス
マツチの許容範囲は1〜2Φ程度迄となる。従って、実
施例1においてはInPと、これと格子整合するIn□
−8GaxAs (X=0.47 )の例を示したが、
1〜2%程度のミスマツチを考慮してx=0.3〜0.
7ノI n 1− X G a X A Sを採用する
ことができる。特に望ましい構造はミスマツチ〈1%程
度の0.3<x<0.47の組成であり、この場合、x
=0.47の格子整合系に比べて更に大きな電子移動度
を得ることができ、しかも1000Å程度以内の膜厚の
第1半導体層(InP)1を歪格子の形で、ミスフィッ
トヲ弾性変形により吸収し、多くの格子欠陥を発生させ
ることなく、第2半導体層(InGaAs)2上に形成
できる。なお、本実施例2においても、その後のMIS
FETの製造工程は実施例1と同様に2なうことが出来
る。
Embodiment 2 In the present invention, the first semiconductor layer 1 in contact with the gate insulating film 4 in FIG. 1 and the second semiconductor layer 2 underlying it may be lattice mismatched. In this case, it is considered that the order of
It is rather smaller than the number of levels at the nPl interface. From this, the allowable range of mismatch is approximately 1 to 2 Φ. Therefore, in Example 1, InP and In□ which is lattice matched to this
-8GaxAs (X=0.47) was shown as an example, but
Considering mismatch of about 1-2%, x=0.3-0.
7In1-XGaXAS can be adopted. A particularly desirable structure is a composition with a mismatch of about 1%, 0.3<x<0.47; in this case, x
= 0.47, it is possible to obtain a larger electron mobility than the lattice-matched system, and in addition, the first semiconductor layer (InP) 1 with a thickness of about 1000 Å or less is elastically deformed in the form of a strained lattice. can be formed on the second semiconductor layer (InGaAs) 2 without generating many lattice defects. In addition, also in this Example 2, the subsequent MIS
The FET manufacturing process can be performed in two steps as in the first embodiment.

実施例 3 本実施例は、第1図に於て第2半導体層2をInPとし
、第1半導体層1をこnよりエネルギーギャップの大き
いInAIAkGa P等を用いて構成する。
Example 3 In this example, the second semiconductor layer 2 shown in FIG. 1 is made of InP, and the first semiconductor layer 1 is made of InAIAkGaP or the like having a larger energy gap than that of InP.

これらの半導体積層構造は、実施例1,2と同様、薄層
成長の側倒性に優n、高純度膜の得られるMBE、 ハ
ライl’VPE、MOCVD等の方法で形成できる。第
1半導体層1がIn)<AA’1−xAsの場合はx=
0.52付近にてInPと格子整合すた る/め、この組成を用いることができる。しかし、第1
図の第1半導体層1が1000Å程度と薄層る。従って
1f程度の格子不整を有するx = 0.3〜0.4の
InGaAsk用いることもできる。次に本素子の第1
半導体層1は、表面側では非晶質絶縁層4と接するため
、こルとの界面特性に優れたIn及びPを含む■−■族
化合物を用いることが更に望ましい。この場合、InP
下層とは格子不整合となるが、上記の歪超格子と同様に
1〜2形前後の格子不整を許せば、I nxkl、−X
Pにおいてx = 0.3程度の値までが使用できる。
Similar to Examples 1 and 2, these semiconductor laminated structures can be formed by methods such as MBE, VPE, MOCVD, etc., which are superior in laterality in thin layer growth and can yield highly pure films. If the first semiconductor layer 1 is In)<AA'1-xAs, then x=
This composition can be used because it has a lattice match with InP at around 0.52. However, the first
The first semiconductor layer 1 shown in the figure is as thin as about 1000 Å. Therefore, InGaAsk with x = 0.3 to 0.4 having a lattice misalignment of about 1f can also be used. Next, the first
Since the semiconductor layer 1 is in contact with the amorphous insulating layer 4 on the surface side, it is more desirable to use a ■-■ group compound containing In and P which has excellent interfacial characteristics with the amorphous insulating layer 4. In this case, InP
There will be a lattice mismatch with the lower layer, but if we allow a lattice mismatch of around 1 to 2 types like the above strained superlattice, then I nxkl, -X
In P, values up to x = 0.3 can be used.

このときのInAIPのエネルキギャップはInPに比
べ0.4eV程度大きくなり、第1半導体層として好適
な材料となり得る。
At this time, the energy gap of InAIP is approximately 0.4 eV larger than that of InP, and it can be a suitable material for the first semiconductor layer.

同様の考案から、本実施例の第2半導体層としてInG
aAs、InAsP等の歪格子系を用いることができる
ことも明らかである。
Based on a similar idea, InG was used as the second semiconductor layer in this example.
It is also clear that strained lattice systems such as aAs, InAsP etc. can be used.

本実施例に於ても半導体積層形成後のMISFET製造
工程は実施例1に準じて行なわれる。
In this embodiment as well, the MISFET manufacturing process after the formation of semiconductor stacks is carried out in accordance with the first embodiment.

上記実施例において、半導体積層ケ形成する基板につい
てはInPバルク基板、サファイア等の絶縁基板、更に
Si上にInPをヘテロエピさせた基板等を用いること
ができる。
In the above embodiments, as the substrate on which the semiconductor layer is formed, an InP bulk substrate, an insulating substrate such as sapphire, a substrate in which InP is hetero-epitched on Si, etc. can be used.

InP/Si基板を用いた場合の例を第3図に示す。な
お、こnらの基板と半導体積層の間に結晶性改善の為の
GaAs、Gap、InGaAs。
FIG. 3 shows an example using an InP/Si substrate. Note that GaAs, Gap, and InGaAs are used to improve crystallinity between these substrates and the semiconductor stack.

I n AJ As等各種のバッファ層を有するものも
勿論用いることができる。なお、第3図において、9は
エピタキシャル成長用バッファ層、10はエピタキシー
層である。
Of course, those having various buffer layers such as I n AJ As can also be used. In addition, in FIG. 3, 9 is a buffer layer for epitaxial growth, and 10 is an epitaxial layer.

〈発明の効果〉 以上のように本発明は、エネルギーギャップの異なる複
数個の111−V化合物を積層してなる半導体活性層と
、その上に形成さルたゲート絶縁膜を有する構造のMI
SFETであって、ゲート絶縁層に接するm−v化合物
第1層は、その下層の君2層より大きなバンドギャップ
を有し、かつ両層が界面特性の優れた整合格子或いは歪
格子を形成することを特徴としており、従来MISFE
Tで問題となっていた素子動作の安定性の向上が可能と
なり、更に大きな電圧振幅を取り扱えるMISFETの
特徴を維拉しつつ、2次元電子ガス等?利用した高速電
子デバイスの形成が可能になる。
<Effects of the Invention> As described above, the present invention provides an MI having a structure including a semiconductor active layer formed by stacking a plurality of 111-V compounds having different energy gaps, and a gate insulating film formed on the semiconductor active layer.
In the SFET, the first m-v compound layer in contact with the gate insulating layer has a larger band gap than the second layer below it, and both layers form a matched lattice or strained lattice with excellent interface characteristics. It is characterized by the fact that conventional MISFE
It has become possible to improve the stability of element operation, which was a problem with T, while maintaining the characteristics of MISFET that can handle even larger voltage amplitudes, while maintaining the characteristics of MISFET, such as two-dimensional electron gas? This makes it possible to form high-speed electronic devices using

特に実施例1及び2のInGaAsを含むM I 5F
ETはその高移動度特性から高速論理IC等の構成にと
って有効であり、又本実施例3に示したInPを含むM
ISFETは、InPO材料特性(高ピーク速度、高電
界耐性など)から大出力高速素子などの構成に有効に活
かすことが出来る。
In particular, the M I 5F containing InGaAs of Examples 1 and 2
ET is effective for the construction of high-speed logic ICs due to its high mobility characteristics, and is also effective for the construction of high-speed logic ICs, etc.
ISFETs can be effectively utilized in the construction of high-output, high-speed devices due to the InPO material properties (high peak velocity, high electric field resistance, etc.).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のMIS形電界効果トランジ
スタの構造を示す断面図、第2図は第1図に示した素子
に正電圧?印加した場合のエネルギバンド図、第3図は
本発明の他の実施例のMIS形電界効果トランジスタの
構造を示す図である。 1・・・ゲート絶縁層に接する第1半導体層、 2・・
・第2半導体層、 3・・・基板、 4・・・ゲート絶
縁層、 5・・・ゲート電極、  6,7・・・ソース
及びドレイン電極、 8・・・不純物ドープ領域、9・
・・エピタキシー成長用バッファ層、 10・・・エピ
タキシー層。
FIG. 1 is a cross-sectional view showing the structure of an MIS field effect transistor according to an embodiment of the present invention, and FIG. 2 shows whether a positive voltage is applied to the element shown in FIG. FIG. 3 is a diagram illustrating the structure of a MIS type field effect transistor according to another embodiment of the present invention. 1... A first semiconductor layer in contact with the gate insulating layer, 2...
- Second semiconductor layer, 3... Substrate, 4... Gate insulating layer, 5... Gate electrode, 6, 7... Source and drain electrode, 8... Impurity doped region, 9...
... Buffer layer for epitaxial growth, 10... Epitaxial layer.

Claims (1)

【特許請求の範囲】 1、基板と、該基板上に形成されたエネルギーギャップ
Egの異なるIII−V族化合物を積層してなる複数個の
半導体層と、該半導体積層上に形成されたゲート絶縁層
とを有し、上記基板あるいは半導体層の少なくとも1つ
はIn及びPを含むIII−V族化合物からなる電界効果
トランジスタであって、 上記ゲート絶縁層に接する第1半導体層は、その下層の
第2半導体層より大きいエネルギーギャップを有し、 かつ、上記第2半導体層と整合格子あるいは歪格子を形
成してなることを特徴とするIII−V族化合物半導体電
界効果トランジスタ。 2、前記ゲート絶縁層に接する第1半導体層とその下層
の第2半導体層との格子不整を2%以内となしたことを
特徴とする特許請求の範囲第1項記載のIII−V族化合
物半導外電界効果トランジスタ。 3、前記ゲート絶縁層に接する第1半導体層の層厚を1
000Å以下となしたことを特徴とする特許請求の範囲
第1項記載のIII−V族化合物半導体電界効果トランジ
スタ。 4、前記ゲート絶縁層に接する第1半導体層がInPで
あり、第2半導体層がInGaAsであることを特徴と
する特許請求の範囲第1項、第2項または第3項記載の
III−V族化合物半導体電界効果トランジスタ。 5、前記ゲート絶縁層に接する第1半導体層がIn_1
_−_XAl_XP、In_1_−_XGa_XP、I
n_1_−_XAl_XAsのいずれかであり、前記第
2半導体層がInP、In_1_−_XGa_XAs、
InAs_1_−_XP_Xのいずれかであることを特
徴とする特許請求の範囲第1項もしくは第2項記載のI
II−V族化合物半導体電界効果トランジスタ。
[Claims] 1. A substrate, a plurality of semiconductor layers formed on the substrate and formed by stacking III-V group compounds with different energy gaps Eg, and a gate insulating layer formed on the semiconductor stack. a field effect transistor having a first semiconductor layer in contact with the gate insulating layer, in which at least one of the substrate or the semiconductor layer is made of a III-V compound containing In and P; A III-V compound semiconductor field effect transistor having a larger energy gap than a second semiconductor layer and forming a matched lattice or strained lattice with the second semiconductor layer. 2. The III-V compound according to claim 1, wherein the lattice mismatch between the first semiconductor layer in contact with the gate insulating layer and the second semiconductor layer below it is within 2%. Semiconductor field effect transistor. 3. The thickness of the first semiconductor layer in contact with the gate insulating layer is 1
A III-V compound semiconductor field effect transistor according to claim 1, characterized in that the field effect transistor has a thickness of 000 Å or less. 4. The first semiconductor layer in contact with the gate insulating layer is made of InP, and the second semiconductor layer is made of InGaAs.
III-V compound semiconductor field effect transistor. 5. The first semiconductor layer in contact with the gate insulating layer is In_1
____XAl_XP, In_1_-_XGa_XP, I
n_1_-_XAl_XAs, and the second semiconductor layer is InP, In_1_-_XGa_XAs,
I according to claim 1 or 2, characterized in that it is any one of InAs_1_-_XP_X
II-V compound semiconductor field effect transistor.
JP62276993A 1987-10-30 1987-10-30 III-V compound semiconductor field effect transistor Expired - Fee Related JP2571583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276993A JP2571583B2 (en) 1987-10-30 1987-10-30 III-V compound semiconductor field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276993A JP2571583B2 (en) 1987-10-30 1987-10-30 III-V compound semiconductor field effect transistor

Publications (2)

Publication Number Publication Date
JPH01119065A true JPH01119065A (en) 1989-05-11
JP2571583B2 JP2571583B2 (en) 1997-01-16

Family

ID=17577269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276993A Expired - Fee Related JP2571583B2 (en) 1987-10-30 1987-10-30 III-V compound semiconductor field effect transistor

Country Status (1)

Country Link
JP (1) JP2571583B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156816A (en) * 2004-11-30 2006-06-15 Sharp Corp Semiconductor device
JP2011077516A (en) * 2009-09-07 2011-04-14 Sumitomo Chemical Co Ltd Field-effect transistor, semiconductor substrate, and method of manufacturing field-effect transistor
JPWO2009081584A1 (en) * 2007-12-26 2011-05-06 日本電気株式会社 Semiconductor device
JP2012514348A (en) * 2008-12-31 2012-06-21 インテル コーポレイション Quantum well MOSFET channel with uniaxial strain generated by metal source / drain and conformal regrowth source / drain

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220167235A (en) 2021-06-11 2022-12-20 주성엔지니어링(주) Method for manufacturing of power semiconductor device
KR20220167236A (en) 2021-06-11 2022-12-20 주성엔지니어링(주) Method for manufacturing of power semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117282A (en) * 1979-03-05 1980-09-09 Nippon Telegr & Teleph Corp <Ntt> 3[5 group compound semiconductor mosfet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117282A (en) * 1979-03-05 1980-09-09 Nippon Telegr & Teleph Corp <Ntt> 3[5 group compound semiconductor mosfet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156816A (en) * 2004-11-30 2006-06-15 Sharp Corp Semiconductor device
JPWO2009081584A1 (en) * 2007-12-26 2011-05-06 日本電気株式会社 Semiconductor device
JP2012514348A (en) * 2008-12-31 2012-06-21 インテル コーポレイション Quantum well MOSFET channel with uniaxial strain generated by metal source / drain and conformal regrowth source / drain
JP2011077516A (en) * 2009-09-07 2011-04-14 Sumitomo Chemical Co Ltd Field-effect transistor, semiconductor substrate, and method of manufacturing field-effect transistor

Also Published As

Publication number Publication date
JP2571583B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US11031399B2 (en) Semiconductor device and manufacturing method of the same
US8969881B2 (en) Power transistor having segmented gate
US7964896B2 (en) Buried channel MOSFET using III-V compound semiconductors and high k gate dielectrics
JP3209270B2 (en) Heterojunction field effect transistor
US9991172B2 (en) Forming arsenide-based complementary logic on a single substrate
JP2001230407A (en) Semiconductor device
WO2006001369A1 (en) Semiconductor device
JPS63252478A (en) Insulated-gate semiconductor device
US7187045B2 (en) Junction field effect metal oxide compound semiconductor integrated transistor devices
US6989556B2 (en) Metal oxide compound semiconductor integrated transistor devices with a gate insulator structure
WO2011094382A2 (en) Normally-off gallium nitride-based semiconductor devices
JPH01119065A (en) Iii-v compound semiconductor field-effect transistor
WO2022190414A1 (en) Normally-off polarization super junction gan-based field-effect transistor and electrical appliance
US8575595B2 (en) P-type semiconductor devices
WO2022172588A1 (en) Nitride semiconductor device and method for producing nitride semiconductor device
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JP2787589B2 (en) Semiconductor device
JP2808671B2 (en) Field effect transistor
JP2655594B2 (en) Integrated semiconductor device
JP2616634B2 (en) Field effect transistor
JPH025438A (en) Insulated-gate field-effect transistor
JPS609174A (en) Semiconductor device
JP2658898B2 (en) field effect transistor
KR20230090573A (en) AlGaN/GaN hetero-junction structure of HEMT Device of having multi-strain matching structure
JPS60136380A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees