JPH01225368A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01225368A
JPH01225368A JP5216788A JP5216788A JPH01225368A JP H01225368 A JPH01225368 A JP H01225368A JP 5216788 A JP5216788 A JP 5216788A JP 5216788 A JP5216788 A JP 5216788A JP H01225368 A JPH01225368 A JP H01225368A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
doped
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5216788A
Other languages
Japanese (ja)
Inventor
Takemoto Kasahara
健資 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5216788A priority Critical patent/JPH01225368A/en
Publication of JPH01225368A publication Critical patent/JPH01225368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material

Abstract

PURPOSE:To minimize a gate leakage current, by causing this device to be composed of the first, second, and third semiconductor layers together with a gate electrode in such a way that the third semiconductor layer has a Schottky barrier which is higher than that of the second semiconductor layer; besides, a part of the third semiconductor layer is doped with an n-type impurity and then, its layer not only supplies electrons to the first semiconductor layer but also involves the gate electrode which controls the electrochannel conductivity of the first semiconductor layer. CONSTITUTION:An non-doped Al0.48In0.52As layer 12 which performs lattice matching is formed as a buffer layer on a semi-insulating InP substrate 11 and this device allows a high purity Al0.47In0.53As layer 14 which performs lattice matching to the foregoing layer 12 to grow as an operating layer on the layer 12 and, an undoped Al0.48In0.52As layer 15 which is free from lattice matching to grow further. An Si-doped n-type (n=1X10<18>cm<-3>) Al0.3Ga0.7As layer 16 grows on the layer 15 to form a two-dimensional electron gas in a Ga0.47In0.53As layer 13. Source and drain electrodes 17 and 18 are formed on crystals obtained and then, a gate electrode 19 is formed by using Al.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超高周波、超高速な半導体装置、特に電界効果
トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to ultra-high frequency and ultra-high speed semiconductor devices, particularly field effect transistors.

〔従来の技術〕[Conventional technology]

従来の電子親和力の相違するヘテロ接合を用いた電界効
果トランジスタ(以下FETという)としてシー・ワイ
・チェン(C,Y、Cben)らによってアイイーイー
イー・エレクトロン・デバイス・レターズ(IEI!E
 Electron Device Letters)
、第EDL−3巻、第152頁、1982年に報告され
ている第3図に示すような構造がとられていた。
Conventional field effect transistors (hereinafter referred to as FETs) using heterojunctions with different electron affinities were described in IEI!E Electron Device Letters (IEI!E) by C, Y, Cben et al.
Electron Device Letters)
, Vol. 3, p. 152, 1982, the structure was as shown in FIG. 3.

このFETは、半絶縁性InP基板11の上にこれと格
子整合して設けられた高純度GA0.47I n o、
 q3A 8層13と伝導帯の不連続をもってヘテロ接
合を形成するいわゆる変調ドープAfo、5sIno、
52As層21を設けることにより形成されている二次
元電子ガス14をゲート電極19によって制御するもの
である。
This FET is made of high-purity GA0.47Ino, which is provided on a semi-insulating InP substrate 11 in lattice matching with the semi-insulating InP substrate 11.
So-called modulation doped Afo, 5sIno, which forms a heterojunction with the q3A 8 layer 13 and conduction band discontinuity.
The two-dimensional electron gas 14 formed by providing the 52As layer 21 is controlled by the gate electrode 19.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の電界効果トランジスタは、少なく
とも一部にn型不純物がドープされている変調ドープさ
れた半導体層上に直接ゲート電極が設けられているので
、例えば変調ドープAfI nAs/Ga I nAs
系を例にとるとAI!■nAs層とゲート電極とのショ
ットキー障壁高さφ、が0.6eV程度と低いため、ゲ
ート耐圧が低く、ソース電極−ゲート電極間の漏れ電流
が大きいノンピンチオフ特性示す等の欠点が生じる。
However, in conventional field effect transistors, a gate electrode is provided directly on a modulation-doped semiconductor layer that is at least partially doped with an n-type impurity.
Taking the system as an example, AI! (2) Since the Schottky barrier height φ between the nAs layer and the gate electrode is as low as about 0.6 eV, there are drawbacks such as low gate breakdown voltage and non-pinch-off characteristics with large leakage current between the source electrode and the gate electrode.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、高抵抗基板上に設けられ電子チ
ャネル層となる第1の半導体層と、該第1の半導体層の
上にこれと格子整合して設けられかつ該第1の半導体層
より電子親和力が小さい第2の半導体層と、該第2の半
導体層の上に設けられ該第2の半導体層よりもショット
キー障壁が高くかつ少くとも一部にn型不純物がドープ
され前記第1の半導体層に電子を供給する第3の半導体
層と、該第3の半導体層に形成され前記第1の半導体層
の電子チャネルの導電度を制御するゲート電極とを含ん
で構成される。
The semiconductor device of the present invention includes a first semiconductor layer provided on a high-resistance substrate and serving as an electron channel layer, and a first semiconductor layer provided on the first semiconductor layer in lattice matching therewith. a second semiconductor layer having a lower electron affinity; and a second semiconductor layer provided on the second semiconductor layer and having a higher Schottky barrier than the second semiconductor layer and doped with an n-type impurity at least in part. The semiconductor device includes a third semiconductor layer that supplies electrons to the first semiconductor layer, and a gate electrode that is formed in the third semiconductor layer and controls the conductivity of the electron channel of the first semiconductor layer.

〔作用〕[Effect]

第2図は本発明によるFETの熱平衡状態におけるゲー
ト電極下のエネルギー帯図である。
FIG. 2 is an energy band diagram under the gate electrode of the FET according to the present invention in a thermal equilibrium state.

従来のA e 0.48I no、szA s / G
 ao、47I n。53A s系の変調ドープ構造を
例にとると第1の半導体層としてのG a o、 47
 I n 6.53A S層上に格子整合のとれた第2
の半導体層としてのAJ’0.48Ino、5zAs層
を形成し、所定のバンド不連続をもった良好なヘテロ界
面を得ることができ、第1の半導体層への電子供給層と
して第2の半導体層よりショットキー障壁の高い第3の
半導体層として、例えばAex Ga1−x As層を
形成すれば、AexGal−xAsはx=0.3でショ
ットキー障壁高さ1.OeVと高い値をもつため、ゲー
トリーク電流の低減、逆耐圧の向上、順方向ターンオン
電圧の向上が計られる。第1の半導体層および第2の半
導体層と第3の半導体層の格子不整合の動作層におよぼ
す影響は直接第3の半導体層を第1の半導体層上に形成
するのに比べ第2の半導体層の存在により低減すること
ができる。
Conventional A e 0.48I no, szA s/G
ao, 47I n. 53 Taking a s-based modulation doped structure as an example, Gao as the first semiconductor layer, 47
I n 6.53 A second layer with lattice matching on the S layer
By forming an AJ'0.48Ino, 5zAs layer as a semiconductor layer, a good heterointerface with a predetermined band discontinuity can be obtained. For example, if an Aex Ga1-x As layer is formed as the third semiconductor layer having a higher Schottky barrier than the third semiconductor layer, Aex Gal-x As has a Schottky barrier height of 1.0 at x=0.3. Since it has a high value of OeV, it is possible to reduce gate leakage current, improve reverse breakdown voltage, and improve forward turn-on voltage. The effect of lattice mismatch between the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer on the active layer is that compared to forming the third semiconductor layer directly on the first semiconductor layer, This can be reduced by the presence of the semiconductor layer.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

半絶縁性InP基板11にMBE法によりこれと格子整
合するノンドープA 120.48I n 0.52A
s層12をバッファ層として1μmの厚さに設け、その
上にこれと格子整合する高純度AfO,47InO,5
3AS層14を動作層として1μmを厚さに成長させ、
さらに、格子整合のとれたノンドープA e 6.4B
 I n o、 52A 9層15を3nmの厚さに成
長させる。この上にSiドープn型(n=lX1018
cm−3) Affn、s Ga0.7 As層16を
30nmの厚さに成長させG ao、4?I no、H
A s層13中に二次元電子ガスを形成する。得られた
結晶に通常の方法によるA u G e / N iに
よるソース電極17、ドレイン電極18を形成し、Af
を用いたゲート電極19を形成する。
Non-doped A 120.48I n 0.52A is lattice matched to the semi-insulating InP substrate 11 by the MBE method.
The s-layer 12 is provided as a buffer layer with a thickness of 1 μm, and high-purity AfO, 47InO, 5 lattice-matched to the s-layer 12 is provided on the s-layer 12 as a buffer layer.
The 3AS layer 14 is grown to a thickness of 1 μm as an active layer,
Furthermore, lattice-matched non-doped A e 6.4B
Ino, 52A 9 layers 15 are grown to a thickness of 3 nm. On top of this, Si-doped n-type (n=lX1018
cm-3) Affn,s Ga0.7 As layer 16 is grown to a thickness of 30 nm and Gao,4? I no, H
A two-dimensional electron gas is formed in the As layer 13. A source electrode 17 and a drain electrode 18 made of AuGe/Ni are formed on the obtained crystal by a usual method, and then Af
A gate electrode 19 is formed using.

得られたFETは、格子整合のとれたGao47I n
 6. g2A SとAln4sI nO,52ASと
の良好な界面に二次元電子ガスが形成され、ゲート電極
19は、障壁高さの高いA e o、3 G ao7A
 8層16上に形成されるので低いゲートリーク電流で
高い耐圧の高速、高周波FETが実現できる。
The obtained FET has a lattice-matched Gao47I n
6. A two-dimensional electron gas is formed at a good interface between g2A S and Aln4sI nO, 52AS, and the gate electrode 19 is made of A e o, 3 G ao7A with a high barrier height.
Since it is formed on eight layers 16, a high-speed, high-frequency FET with low gate leakage current and high breakdown voltage can be realized.

第4図に本発明によるソース・ゲート電極間のI−V特
性を従来例とともに示す。第4図により明らかなように
ゲートリーク電流の低減と逆方向耐圧の増加順方向ター
ンオン電圧の増加が見られFETも良好に動作した。
FIG. 4 shows the IV characteristics between the source and gate electrodes according to the present invention together with a conventional example. As is clear from FIG. 4, a reduction in gate leakage current, an increase in reverse breakdown voltage, and an increase in forward turn-on voltage were observed, and the FET also operated well.

本実施例において第3の半導体のAffx Ga1−X
ASの組成比x=0.3としたが、これを変えたり、各
層の膜厚を変化させることができる。
In this example, the third semiconductor Affx Ga1-X
Although the AS composition ratio x=0.3, this can be changed or the film thickness of each layer can be changed.

また、Af I nAs/I nGaAs系にこだわら
ず他の系にも応用し得る。
Moreover, it is not limited to the Af I nAs/I nGaAs system, but can be applied to other systems as well.

〔発明の効果〕〔Effect of the invention〕

本発明には、ゲートリーク電流の小さい、耐圧の高い、
二次元電子チャネルを有した良好な高周波高速のFET
が実現できるという効果がある。
The present invention has low gate leakage current, high breakdown voltage,
Good high frequency and high speed FET with two-dimensional electron channel
The effect is that it can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は第1図に
示す半導体装置のゲート電極下の熱平衡状態におけるエ
ネルギー帯図、第3図は従来のFETの一例の断面図、
第4図は本発明および従来例のゲート・ソース電極間の
電流−電圧の関係を示す特性図である。 11・・・半絶縁性InP基板、12・・・ノンドープ
Ae I nAs層、13−・・高純度Ga I nA
s層、14・・・二次元電子ガス、15・・・AN I
 nAs層、16 ・・−n型Aj’GaAs層、17
−・・ソース電極、18・・・ドレイン電極、19・・
・ゲート電極、21・・・。 n型A47I nGa層。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is an energy band diagram in a thermal equilibrium state under the gate electrode of the semiconductor device shown in FIG. 1, and FIG. 3 is a sectional view of an example of a conventional FET.
FIG. 4 is a characteristic diagram showing the current-voltage relationship between the gate and source electrodes of the present invention and the conventional example. 11... Semi-insulating InP substrate, 12... Non-doped Ae InAs layer, 13-... High purity Ga InA
s layer, 14... two-dimensional electron gas, 15... AN I
nAs layer, 16...-n type Aj'GaAs layer, 17
-... Source electrode, 18... Drain electrode, 19...
- Gate electrode, 21... n-type A47I nGa layer.

Claims (1)

【特許請求の範囲】[Claims]  高抵抗基板上に設けられ電子チャネル層となる第1の
半導体層と、該第1の半導体層の上にこれと格子整合し
て設けられかつ該第1の半導体層より電子親和力が小さ
い第2の半導体層と、該第2の半導体層の上に設けられ
該第2の半導体層よりもショットキー障壁が高くかつ少
くとも一部にn型不純物がドープされ前記第1の半導体
層に電子を供給する第3の半導体層と、該第3の半導体
層に形成され前記第1の半導体層の電子チャネルの導電
度を制御するゲート電極とを含むことを特徴とする半導
体装置。
A first semiconductor layer provided on a high-resistance substrate and serving as an electron channel layer, and a second semiconductor layer provided on the first semiconductor layer in lattice matching with the first semiconductor layer and having a smaller electron affinity than the first semiconductor layer. a semiconductor layer provided on the second semiconductor layer, which has a higher Schottky barrier than the second semiconductor layer and is doped with an n-type impurity at least in part, and which directs electrons to the first semiconductor layer. 1. A semiconductor device comprising: a third semiconductor layer; and a gate electrode formed on the third semiconductor layer to control conductivity of an electron channel of the first semiconductor layer.
JP5216788A 1988-03-04 1988-03-04 Semiconductor device Pending JPH01225368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5216788A JPH01225368A (en) 1988-03-04 1988-03-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5216788A JPH01225368A (en) 1988-03-04 1988-03-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01225368A true JPH01225368A (en) 1989-09-08

Family

ID=12907270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5216788A Pending JPH01225368A (en) 1988-03-04 1988-03-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01225368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060030A (en) * 1990-07-18 1991-10-22 Raytheon Company Pseudomorphic HEMT having strained compensation layer
JPH04346444A (en) * 1991-05-24 1992-12-02 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060030A (en) * 1990-07-18 1991-10-22 Raytheon Company Pseudomorphic HEMT having strained compensation layer
JPH04346444A (en) * 1991-05-24 1992-12-02 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP2604349B2 (en) Semiconductor device
JPS60144979A (en) Semiconductor device
JPH01225368A (en) Semiconductor device
JPS61147577A (en) Complementary semiconductor device
JP2964637B2 (en) Field effect transistor
JPS63278277A (en) Compound semiconductor device
JP3158467B2 (en) InAlAs / InGaAs heterojunction structure field effect transistor
JPH084140B2 (en) Field effect transistor
JPH09237889A (en) Semiconductor crystal laminate and semiconductor device using the laminate
JPH04343438A (en) Field effect transistor
JPS609174A (en) Semiconductor device
JP2917719B2 (en) Field effect transistor
JPH0261149B2 (en)
JP2730511B2 (en) Heterojunction field effect transistor
JP2879250B2 (en) Field effect semiconductor device
JPH04298050A (en) Heterostructure device having strained carrier supply layer
JPH06244217A (en) Heterojunction semiconductor device
JPH04214636A (en) Semiconductor device
JP2800457B2 (en) Semiconductor device
JPH03125436A (en) Hetero structure semiconductor device and manufacture thereof
JPH04324645A (en) Semiconductor transistor
JPH04214637A (en) Semiconductor device
JP2786208B2 (en) Semiconductor device
JPS63158862A (en) Semiconductor capacitive element
JPH0327537A (en) Modulation-doped field effect transistor