JPS60128656A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60128656A
JPS60128656A JP58236162A JP23616283A JPS60128656A JP S60128656 A JPS60128656 A JP S60128656A JP 58236162 A JP58236162 A JP 58236162A JP 23616283 A JP23616283 A JP 23616283A JP S60128656 A JPS60128656 A JP S60128656A
Authority
JP
Japan
Prior art keywords
drain
source
polycrystalline
metal
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236162A
Other languages
Japanese (ja)
Inventor
Yoshio Sakai
芳男 酒井
Shiyoujirou Sugashiro
菅城 象二郎
Nobuyoshi Kobayashi
伸好 小林
Yoshifumi Kawamoto
川本 佳史
Yasuo Wada
恭雄 和田
Yoshio Honma
喜夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58236162A priority Critical patent/JPS60128656A/en
Publication of JPS60128656A publication Critical patent/JPS60128656A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To attain high speeds and high integration by a method wherein polycrystalline Si is formed by self-alignment on the low-density source and drain of an MOS transistor and a lower-resistance metal or silicide layer is formed by self-alignment on said polycrystalline Si. CONSTITUTION:An oxide film is formed on a P type Si substrate 7 and the oxide film is trimmed for the formation of an activation region and a field oxide film 10. Then a gate insulating film 15 is formed in the activation region. P type impurity ions such as of B is injected under high energy into the Si substrate 7 for the formation of a P type region 16. A gate electrode 17 is composed of such a metal as W or a silicide or polycrystalline Si, whereafter ions of an N type impurity such as P or As are injected for the formation of low- density source, drain regions 19. Next, an insulating film 20 is formed, which is then subjected to etching, with a space 21 retained at the step. Densely doped N type polycrystalline Si layers 22, layers 23 of such a metal as W or a silicide are formed selectively.

Description

【発明の詳細な説明】 [発明の利用分野〕 本発明は高速化、高集積化が可能な絶縁ゲ−1・電界効
果トランジスタ(以下MO8+・ランジスタと略記する
)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an insulated gate field effect transistor (hereinafter abbreviated as MO8+ transistor) which can be operated at high speed and highly integrated.

〔発明の背景〕[Background of the invention]

Mo8)−ランジスタの性能改善のためにはチャネル長
を短くするとともに、ソース、ドレイン及びゲート電極
の寄生抵抗を減らすことが重要である。このため、第1
図に示されているように、ソース、ドレイン拡散層4の
上に選択的にタングステン等の金属やシリサイド6を形
成することが試みられている(例えば特願昭58−55
075号に報告されている)。しかし、この方法では金
属又はシリサイド層6が選択的にソース、ドレイン上に
形成された時、金属又はシリサイド層が横方向にも化学
反応で入り込み、ソース、トレイン間が短絡し、Cしま
うという問題点が生じる。さらに、金属又はシリサイド
層6とソース、トレイン層4との接触抵抗を低減するた
めには、ソース、ドレイン層4の不純物濃度は高くなけ
ればならず、このため、ソース、ドレイン拡散層の不純
物濃度を制御してMo8+−ランジスタのトレイン耐圧
を向上させるということが難しくなる。従って、第1図
に示すような従来構造でMo8+−ランジスタを高速化
、高集積化するには限界があった。
In order to improve the performance of Mo8)-transistors, it is important to shorten the channel length and reduce the parasitic resistance of the source, drain, and gate electrodes. For this reason, the first
As shown in the figure, attempts have been made to selectively form metal such as tungsten or silicide 6 on the source and drain diffusion layers 4 (for example, Japanese Patent Application No. 58-55
075). However, this method has the problem that when the metal or silicide layer 6 is selectively formed on the source and drain, the metal or silicide layer also penetrates in the lateral direction due to chemical reaction, causing a short circuit between the source and the train, resulting in C. A point occurs. Furthermore, in order to reduce the contact resistance between the metal or silicide layer 6 and the source/train layer 4, the impurity concentration of the source/drain layer 4 must be high. It becomes difficult to improve the train withstand voltage of the Mo8+- transistor by controlling it. Therefore, there is a limit to increasing the speed and integration of the Mo8+- transistor with the conventional structure shown in FIG.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来技術の問題点を改善し、高速で高集積
化が可能なMoSトランジスタ構造を提供するにある。
The present invention aims to improve the problems of the prior art described above and to provide a MoS transistor structure that is capable of high speed and high integration.

〔発明の概要〕[Summary of the invention]

本発明では上記目的を達成するために、MOSトランジ
スタの低濃度ソース、ドレイン上に多結晶シリコンを自
己整合的に形成し、さらに上記多結晶シリコン上に自己
整合的に低抵抗金属又はシリサイド層を形成することを
特徴としている。
In order to achieve the above object, the present invention forms polycrystalline silicon in a self-aligned manner on the low concentration source and drain of a MOS transistor, and further forms a low resistance metal or silicide layer on the polycrystalline silicon in a self-aligned manner. It is characterized by the formation of

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明を実施例を用いて行なう。 Hereinafter, the present invention will be explained in detail using examples.

第2図は高速で高集積化が可能な本発明によるMOSト
ランジスタの断面構造図である。同図に合深さが10〜
soonmのn形ソース、ドレイン層11があり、さら
にシリコン基板表面上には5〜50nmの薄いゲート絶
縁膜14と多結晶シリコンや金属或いはシリサイドによ
るグー1〜?!!極8が存在する。また、低濃度ソース
、ドレイン11上には高濃度のn形多結晶シリコン12
があり、さらにこの多結晶シリコン12上には低抵抗の
タングステン等の金属或いはシリサイド1′3が形成さ
れている5本構造を有するMO8I〜ランジスタの特徴
は以下の通りである。
FIG. 2 is a cross-sectional structural diagram of a MOS transistor according to the present invention, which allows high speed and high integration. In the same figure, the depth of fit is 10~
There is an n-type source/drain layer 11 of soon-to-nm type, and furthermore, on the surface of the silicon substrate, there is a thin gate insulating film 14 of 5 to 50 nm and a layer 1-?of polycrystalline silicon, metal, or silicide. ! ! There are 8 poles. Further, on the low concentration source and drain 11, a high concentration n-type polycrystalline silicon 12 is provided.
Further, on the polycrystalline silicon 12, a low resistance metal such as tungsten or silicide 1'3 is formed.The characteristics of the MO8I transistor having a five-layer structure are as follows.

1)ソース、ドレイン領域11は不純物濃度が低いため
、ドレイン領域にも空乏層が延びてきて、ゲート絶縁膜
下に形成されるチャネル領域の電界が緩和されてソース
、ドレイン間耐圧が向上する。このため、短チャネルM
O8)−ランジスタで問題となるホットキャリア・(高
エネルギーを有する電子又は正孔)がゲート絶縁膜に注
入されることがなく、M9Sl−ランジスタ動作上の信
頼度が大幅に向上する。
1) Since the impurity concentration in the source and drain regions 11 is low, a depletion layer extends to the drain region as well, and the electric field in the channel region formed under the gate insulating film is relaxed, improving the breakdown voltage between the source and drain. Therefore, the short channel M
Hot carriers (electrons or holes with high energy), which are a problem in O8) transistors, are not injected into the gate insulating film, and the operational reliability of the M9Sl transistor is greatly improved.

2)ソース、ドレイン11の上には低抵抗の金属やシリ
サイド層13が形成されているため、ソース、ドレイン
抵抗が小さくなり、MOSトランジスタの相互コンダク
タンスの劣化がなく、高速化が可能となる。
2) Since a low-resistance metal or silicide layer 13 is formed on the source and drain 11, the source and drain resistances are reduced, the mutual conductance of the MOS transistor does not deteriorate, and high speed operation is possible.

3)低抵抗金属或いはシリサイド層13は低濃度ソース
、ドレイン領域11には直接接することなく、高濃度多
結晶シリコン12を介して接している。従って、金属或
いはシリサイド層13と高濃度多結晶シリコンとの間の
接触抵抗は小さく、l)で述べた高耐圧構造とこの低抵
抗構造が整合よく形成される。
3) The low-resistance metal or silicide layer 13 does not directly contact the low-concentration source and drain regions 11 but through the high-concentration polycrystalline silicon 12 . Therefore, the contact resistance between the metal or silicide layer 13 and the highly doped polycrystalline silicon is small, and the high breakdown voltage structure described in 1) and this low resistance structure are formed with good matching.

4)低抵抗金属或いはシリサイド層13が多結晶シリコ
ン12上に形成されているため、第1図に示した従来構
造のところで述べたように金属或いはシリサイド層のゲ
ート絶縁膜下での横方向の侵入はない。従って、本構造
によりMOSトランジスタの短チヤネル化とソース、ド
レインの低抵抗化が同時に実現される。
4) Since the low resistance metal or silicide layer 13 is formed on the polycrystalline silicon 12, as described in the conventional structure shown in FIG. There is no intrusion. Therefore, with this structure, it is possible to simultaneously shorten the channel of the MOS transistor and lower the resistance of the source and drain.

5)ソース、ドレイン11上の多結晶シリコン12がゲ
ート電極8とほぼ同じ高さに形成されているため、MO
Sトランジスタの表面が平坦化され、MOSトランジス
タの製造プロセス上好ましい。
5) Since the polycrystalline silicon 12 on the source and drain 11 is formed at almost the same height as the gate electrode 8, the MO
The surface of the S transistor is flattened, which is preferable for the manufacturing process of a MOS transistor.

6)ソース、ドレイン上には低抵抗金属やシリサイド1
3が形成されているため、ソース、ドレイン上にアルミ
ニウム等による電極を形成した場合、アルミニウムとシ
リコン基板との合金反応を防ぐことができ、さらにアル
ミニム等による電極とソース、ドレインとの電極孔接触
抵抗も低減される。
6) Low resistance metal or silicide 1 on the source and drain
3 is formed, when an electrode made of aluminum or the like is formed on the source or drain, an alloy reaction between the aluminum and the silicon substrate can be prevented, and furthermore, electrode hole contact between the electrode made of aluminum or the like and the source or drain can be prevented. Resistance is also reduced.

以下に本発明によるMOS l−ランジスタの製造方法
を第3図を用いて説明する。まず、P形シリコン甚板’
7−にに厚さ0.1〜1.0μmの厚い酸化膜を形成し
た後、能動領域となるところの上記酸化膜を削除し、フ
ィールド酸化膜10を形成する。その後53〜’50n
mの薄いゲート絶縁膜15を能動領域に形成する(第3
図A)。その後、200 KeV以上の高エネルギーで
ボロン等のP形不純物を10 ”□Oc’rXフィール
ド酸化膜10及びゲート絶B1M15を通してイオン打
ち込みし、シリコン基板表面にp影領域16を形成する
(第3図B)にのp影領域16はフィールド酸化膜lo
下では寄生M 0 S トランジスタの発生を防ぐチャ
ポルストッパ−として働き、ゲーI−4!81ft(膜
15下ではMO3I−ランジスタのしきい値電圧制御と
パンチスルーストッパとして働く。次に、タングステン
等の金属やシリサイド或いは多結晶シリコンによるゲー
ト電極17を絶縁膜18をマスクとして加工形成する。
A method of manufacturing a MOS l-transistor according to the present invention will be explained below with reference to FIG. First, P-type silicone board'
After forming a thick oxide film with a thickness of 0.1 to 1.0 μm on 7-, the oxide film that will become the active region is removed, and a field oxide film 10 is formed. After that 53~'50n
m thin gate insulating film 15 is formed in the active region (third
Figure A). Thereafter, P-type impurities such as boron are ion-implanted with high energy of 200 KeV or more through the 10"□Oc'r The p shadow region 16 in B) is the field oxide film lo
Below, it acts as a chapol stopper to prevent the generation of parasitic M0S transistors, and below the gate film 15, it acts as a threshold voltage control and punch-through stopper for MO3I transistors.Next, tungsten, etc. A gate electrode 17 made of metal, silicide, or polycrystalline silicon is formed using the insulating film 18 as a mask.

その後、りんやひ素等の■!形不純物を10〜10cM
イオン打ち込みし、低濃度ソース、トレイン領域19を
形成する(第3図C)。
After that, phosphorus, arsenic, etc.■! 10-10cM of form impurities
Ion implantation is performed to form low concentration source and train regions 19 (FIG. 3C).

次に厚さ0.1〜0.5μmの絶縁膜20を化学気相反
応等により形成しく第3図D)、その後、異方性エツチ
ングにより上記絶縁膜20をエツチングして段差部にの
みスペース21として残す。次に。
Next, an insulating film 20 with a thickness of 0.1 to 0.5 μm is formed by a chemical vapor phase reaction or the like (FIG. 3D), and then the insulating film 20 is etched by anisotropic etching to form a space only in the step portion. Leave it as 21. next.

高濃度のn形多結晶シリコン22を0.1〜1.0μm
の厚さでソース、ドレイン領域19上に形成する。
Highly concentrated n-type polycrystalline silicon 22 with a thickness of 0.1 to 1.0 μm
is formed on the source and drain regions 19 to a thickness of .

この多結晶シリコン22をソース、ドレイン19上にの
み形成する方法としては、選択的化学気相反応法や、通
常の化学気相反応法による膜堆積後のドライエツチング
による自己整合形の埋め込み法がある。次に、多結晶シ
リコン層22上に選択的にタングステン等の金属やシリ
サイド層23を形成する(第3図E)。最後に、PSG
や窒化膜等による保護膜24を形成し、電極孔と電極2
5を形成する(第3図F)。
Methods for forming this polycrystalline silicon 22 only on the source and drain 19 include a selective chemical vapor phase reaction method and a self-aligned embedding method using dry etching after film deposition using a normal chemical vapor phase reaction method. be. Next, a metal such as tungsten or a silicide layer 23 is selectively formed on the polycrystalline silicon layer 22 (FIG. 3E). Finally, P.S.G.
A protective film 24 made of a nitride film or the like is formed to protect the electrode hole and the electrode 2.
5 (Figure 3F).

なお、本発明の特徴を有する他の構造としては、第4図
に示すように、フィールド酸化膜の代りにグー1−電極
と同じ構造24を形成し、これを接地電位として用いる
ことも可能である。
As another structure having the characteristics of the present invention, as shown in FIG. 4, it is also possible to form the same structure 24 as the Goo 1 electrode instead of the field oxide film and use this as the ground potential. be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MOS)−ランジスタの高耐圧化、短
チヤネル化による高速化高集デ化ソース、ドレイン抵抗
低減による高集積化が可能であり、その製造プロセスも
自己整合法を有効に用いることにより簡略化でき、製造
コストの低減化が可能である。従って、本発明により1
.0〜0.1μmの寸法を有する微細MOSトランジス
タ及びそれを用いた大規模集積回路が実現できる。
According to the present invention, it is possible to increase the breakdown voltage of a MOS transistor, shorten the channel to achieve high speed, and reduce the source and drain resistance to achieve high integration.The manufacturing process also effectively uses the self-alignment method. This makes it possible to simplify the process and reduce manufacturing costs. Therefore, according to the present invention, 1
.. Fine MOS transistors having dimensions of 0 to 0.1 μm and large-scale integrated circuits using the same can be realized.

なお、本発明は実施例に限定されることなく、本発明の
思想を逸脱しない範囲で種々変更が可能である。例えば
、本発明によるMO8+−ランジスタはCMO8栂造の
ウェルの中に形成されてもよく、又PチャネルMos+
−ランジスタであってもよい。
Note that the present invention is not limited to the embodiments, and various changes can be made without departing from the spirit of the present invention. For example, a MO8+- transistor according to the present invention may be formed in a CMO8 well, or a P-channel Mos+
- It may be a transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来構造の断面図、第2図は本発明における実
施例の断面図、第3図は本発明による実施例の製造工程
を工程順に示す断面図、第4図は本発明による他の実施
例を示す断面図である。 1−27・・・シリコン基板、2,8.17・・・ゲー
ト電極、5,14.15・・・ゲート絶縁膜、4,11
゜19・・・ソース・ドレイン領域、6,13.23・
・・低抵抗金属又はシリサイド、3,9,18,20゜
21.24・・・絶縁膜、12.22・・・多結晶シリ
コ瑳1の 2 茅 2 図 第30 第1頁の続き ■発明者 和1)恭雄 国イ 央( @発明者 水量 喜夫 国づ 央( す寺市東恋ケ窪1丁目28幡地 株式会社日立製作所中
汗究所内 す寺市東恋ケ窪1丁目28幡地 株式会社日立製作所中
斤究所内
FIG. 1 is a sectional view of a conventional structure, FIG. 2 is a sectional view of an embodiment according to the present invention, FIG. 3 is a sectional view showing the manufacturing process of an embodiment according to the present invention in order of process, and FIG. 4 is a sectional view of another embodiment according to the present invention. FIG. 1-27...Silicon substrate, 2,8.17...Gate electrode, 5,14.15...Gate insulating film, 4,11
゜19...source/drain region, 6,13.23.
...Low-resistance metal or silicide, 3,9,18,20°21.24...Insulating film, 12.22...Polycrystalline silicon paste 1-2 Kaya 2 Figure 30 Continued from page 1 ■Invention Person Kazu1) Kunizuo Kunizuo (@Inventor Yoshio Mizuno) (1-28 Hata, Higashi-Koigakubo, Tera-shi Hitachi, Ltd. Nakakankyujo 1-28 Hata, Higashi-Koigakubo, Tera-shi Hitachi, Ltd. Inside the laboratory

Claims (1)

【特許請求の範囲】[Claims] 第1導電形の半導体基板と薄いゲ・−1〜絶縁膜を介し
て設けられたゲート電極を有する絶縁ゲート電界効果ト
ランジスタにおいて、上記半導体基板表面に第2導電形
の低不純物濃度ソース、ドレインが設けられる、さらに
上記ソース、ドレイン上に第2導電形の高不純物濃度多
結晶半導体と低抵抗の金属或いはシリサイドが形成され
たことを特徴とする半導体装置。
In an insulated gate field effect transistor having a semiconductor substrate of a first conductivity type and a gate electrode provided through a thin G-1 to insulating film, a low impurity concentration source and a drain of a second conductivity type are provided on the surface of the semiconductor substrate. A semiconductor device further comprising a second conductivity type high impurity concentration polycrystalline semiconductor and a low resistance metal or silicide formed on the source and drain.
JP58236162A 1983-12-16 1983-12-16 Semiconductor device Pending JPS60128656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236162A JPS60128656A (en) 1983-12-16 1983-12-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236162A JPS60128656A (en) 1983-12-16 1983-12-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60128656A true JPS60128656A (en) 1985-07-09

Family

ID=16996684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236162A Pending JPS60128656A (en) 1983-12-16 1983-12-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60128656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164059A (en) * 1988-10-24 1990-06-25 Internatl Business Mach Corp <Ibm> Manufacture of
US5571735A (en) * 1994-06-21 1996-11-05 Nec Corporation Method of manufacturing a semiconducter device capable of easily forming metal silicide films on source and drain regions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286086A (en) * 1976-01-12 1977-07-16 Hitachi Ltd Field effect transistor
JPS57196573A (en) * 1981-05-27 1982-12-02 Toshiba Corp Manufacture of mos type semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286086A (en) * 1976-01-12 1977-07-16 Hitachi Ltd Field effect transistor
JPS57196573A (en) * 1981-05-27 1982-12-02 Toshiba Corp Manufacture of mos type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164059A (en) * 1988-10-24 1990-06-25 Internatl Business Mach Corp <Ibm> Manufacture of
US5571735A (en) * 1994-06-21 1996-11-05 Nec Corporation Method of manufacturing a semiconducter device capable of easily forming metal silicide films on source and drain regions

Similar Documents

Publication Publication Date Title
US4636822A (en) GaAs short channel lightly doped drain MESFET structure and fabrication
JPS59148369A (en) Method of producing mos transistor
JPS61156882A (en) Double-diffused igfet and manufacture thereof
JPH0557741B2 (en)
JPH07169867A (en) Semiconductor and its manufacture
JPS60128656A (en) Semiconductor device
JPH0656855B2 (en) Insulated gate type field effect transistor
JP2569171B2 (en) Semiconductor device
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPS61154172A (en) Manufacture of semiconductor device
JP2633559B2 (en) Method for manufacturing bipolar CMOS semiconductor device
JPS6158987B2 (en)
JPS61160965A (en) Semiconductor ic device
JPH067556B2 (en) MIS type semiconductor device
JP2808945B2 (en) Method of manufacturing vertical MOS field effect transistor
JPS6020571A (en) Semiconductor device
JP3031282B2 (en) Semiconductor device
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
JP2892415B2 (en) Method for manufacturing semiconductor device
JP2776891B2 (en) Semiconductor integrated circuit device
JPH0618200B2 (en) Method of manufacturing lateral transistor semiconductor device
JP2808620B2 (en) Method for manufacturing semiconductor device
JPH10242460A (en) Semiconductor integrated circuit device and its manufacture
JPH0851198A (en) Semiconductor device