JPS61156882A - Double-diffused igfet and manufacture thereof - Google Patents

Double-diffused igfet and manufacture thereof

Info

Publication number
JPS61156882A
JPS61156882A JP59276071A JP27607184A JPS61156882A JP S61156882 A JPS61156882 A JP S61156882A JP 59276071 A JP59276071 A JP 59276071A JP 27607184 A JP27607184 A JP 27607184A JP S61156882 A JPS61156882 A JP S61156882A
Authority
JP
Japan
Prior art keywords
region
base region
conductivity type
type
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59276071A
Other languages
Japanese (ja)
Inventor
Hirohito Tanabe
田辺 博仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59276071A priority Critical patent/JPS61156882A/en
Publication of JPS61156882A publication Critical patent/JPS61156882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Abstract

PURPOSE:To prevent the breakdown at the time of switch-on by the difficulty of a parasitic transistor to turn on, by a method wherein the second conductivity type region of high temperature is provided immediately under a source region in the base region of the titled device. CONSTITUTION:A P-type base region 33 of high temperature is formed in an N-type drain region 32 of low concentration which has been formed on an N-type layer 31 of high concentration, and a P-type base region 34 of low concentration serving as the channel thereon. A P-type base region 35 of high concentration is formed in the P-type base region 34, and an N-type source region 36 thereon. Since the FET is largely reduced in base resistance and is provided with a P-N diode made of the base regions 34, 35 and the drain region 32, it becomes strong to breakdown without the action of the parasitic transistor.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、ベースとソースの不純物拡散によりチャネル
の長さが決定される二重拡散形絶縁ゲート電界効果トラ
ンジスタ(以下、D−MOSFETと略記する。)及び
その製造方法に係り、特にスイッチング素子として使用
されるD−MOSFETに関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a double diffused insulated gate field effect transistor (hereinafter abbreviated as D-MOSFET) in which the length of the channel is determined by impurity diffusion in the base and source. ) and its manufacturing method, and particularly relates to a D-MOSFET used as a switching element.

[発明の技術的背景] 従来、NチャネルD−MOSFETのソース電極部は第
3図(a)に示すような構造となっている。同図に於い
て、11は半導体基板の高濃度のN型層であり、この高
濃度N型層11上にはエピタキシャル成長により形成さ
れた低濃度のN型層からなるドレイン領tJlt12が
形成されている。このドレイン領域12内には高濃度、
のP型ベース領域13が形成され、このベース領14!
13上にはチャネルとなる低濃度P型ベース領域14が
形成されている。さらに、P型ベース領域14内にはN
型ソース領域15が形成されている。ドレイン領域12
とN型ソース領域15との間のベース領域14上には、
ゲート絶RIA16を介してゲート電極となる多結晶シ
リコン膜17が形成されている。この多結晶シリコン膜
17は層間絶縁M18で覆われており、この層間絶縁!
!18に設けられたソースコンタクト開口部19を介し
てソース配線電穫20が設けられている。
[Technical Background of the Invention] Conventionally, the source electrode portion of an N-channel D-MOSFET has a structure as shown in FIG. 3(a). In the figure, 11 is a highly doped N-type layer of the semiconductor substrate, and a drain region tJlt12 made of a lightly doped N-type layer formed by epitaxial growth is formed on this highly doped N-type layer 11. There is. In this drain region 12, there is a high concentration,
A P-type base region 13 is formed, and this base region 14!
A lightly doped P-type base region 14 that becomes a channel is formed on the base region 13 . Furthermore, N is present in the P-type base region 14.
A type source region 15 is formed. drain region 12
On the base region 14 between and the N-type source region 15,
A polycrystalline silicon film 17 serving as a gate electrode is formed via a gate isolation RIA 16. This polycrystalline silicon film 17 is covered with interlayer insulation M18, and this interlayer insulation!
! A source wiring electrode 20 is provided through a source contact opening 19 provided at 18 .

第4図(a) 〜(e)は上記構造のD−MOSFET
の製造方法を示すものである。すなわち、先ず、同図(
a)に示すように高濃度のN型層11及び低濃度のN型
層のドレイン領域12を有する半導体基板の表面に酸化
膜(SiO2)21を形成する。続いて、この酸化膜2
1に開口22を形成した後、この間口22内に露出した
半導体基板にP型不純物を拡散させて高濃度のP型ベー
ス領域13を形成する。
Figures 4(a) to (e) show D-MOSFETs with the above structure.
This shows a method of manufacturing. That is, first, the same figure (
As shown in a), an oxide film (SiO2) 21 is formed on the surface of a semiconductor substrate having a highly doped N-type layer 11 and a lightly doped N-type drain region 12. Next, this oxide film 2
After forming an opening 22 in the semiconductor substrate 1, a P-type impurity is diffused into the semiconductor substrate exposed within the opening 22 to form a highly-concentrated P-type base region 13.

次に、同図(b)に示すように、酸化膜21を除去した
後、半導体基板を再度酸化することにより、この基板上
にゲート絶縁膜(SiO2)16を形成させた後、この
ゲート絶縁膜16上に多結晶シリコン1117を堆積さ
せる。
Next, as shown in FIG. 2B, after removing the oxide film 21, the semiconductor substrate is oxidized again to form a gate insulating film (SiO2) 16 on this substrate. Polycrystalline silicon 1117 is deposited on film 16.

次に、同図(C)に示すように、多結晶シリコンg!1
7に開口部23を形成した後、この開口部23内に露出
したゲート絶縁膜16を通して半導体基板にP型不純物
をイオン注入する。その後、拡散を行なうことにより、
開口部23の外側へ広がるP型のベース領域14が形成
される。このベース領域14の不純物濃度と拡散深さは
、同図(C)に示すように、先に拡散させた高濃度のP
型ベース領域13のそれらに比較して小さくなっている
Next, as shown in the same figure (C), polycrystalline silicon g! 1
After forming an opening 23 in 7, P-type impurity ions are implanted into the semiconductor substrate through the gate insulating film 16 exposed in the opening 23. After that, by performing diffusion,
A P-type base region 14 extending outward from the opening 23 is formed. The impurity concentration and diffusion depth of this base region 14 are as shown in FIG.
It is smaller than those in the mold base region 13.

次に、同図(d>に示すように開孔部23内のゲート絶
縁膜16を除去し、P E P (P hoto  L
ngraoving  已;ocess )技術により
、レジスト1124を開口部23内に残し、次いで開口
部23内に露出した半導体基板にN型不純物をイオン注
入する。続いて、拡散を行ない、同図(e)に示すよう
に開口部23直下にN型で拡散深さの浅いソース領域1
5を形成する。
Next, as shown in FIG.
The resist 1124 is left in the opening 23 and then N-type impurities are ion-implanted into the semiconductor substrate exposed in the opening 23 using a graving technique. Subsequently, diffusion is performed to form an N-type source region 1 with a shallow diffusion depth directly under the opening 23, as shown in FIG.
form 5.

その後、同図(d)に示すように、多結晶シリコン膜1
7の上に例えばCVD法により層間絶縁膜(SiO2)
を形成した後、PEPにより開口部19を形成し、ざら
にソース配線電極20を層間絶縁膜18上に形成する。
After that, as shown in FIG.
An interlayer insulating film (SiO2) is formed on 7 by, for example, the CVD method.
After forming, an opening 19 is formed by PEP, and a source wiring electrode 20 is roughly formed on the interlayer insulating film 18.

これにより、第3図<8)に示した構造のD−MOSF
ETが得られる。
As a result, the D-MOSF with the structure shown in Fig. 3<8)
ET is obtained.

[背景技術の問題点] しかしながら、従来構造のD−MOSFETに於いては
次のような問題があった。すなわち、N型ソース領域1
5、P型ベース領域13.14及びN型ドレイン領域1
2とからなるNPNiF生トランジスタTnが存在する
構造となっている。この奇生トランジスタTnの作用は
、主としてチャネルとなるベースIj域14で行われる
ので、ソース領域15直下のベース領域14の抵抗をR
aとすれば、D−MOSFETとこの奇生トランジスタ
Tnは、等価的に第3図(b)に示すようになる。すな
わち、この奇生トランジスタのエミッタは、N型ソース
領域15、ベースはP型ベース領域14゛、コレクタは
N型ドレイン領域12にそれぞれ対応する。
[Problems with Background Art] However, the D-MOSFET of the conventional structure has the following problems. That is, N type source region 1
5. P-type base region 13.14 and N-type drain region 1
It has a structure in which there is an NPNiF raw transistor Tn consisting of . Since the action of this strange transistor Tn is mainly performed in the base Ij region 14 which becomes a channel, the resistance of the base region 14 directly under the source region 15 is set to R.
a, then the D-MOSFET and this parasitic transistor Tn are equivalently shown in FIG. 3(b). That is, the emitter of this parasitic transistor corresponds to the N-type source region 15, the base corresponds to the P-type base region 14', and the collector corresponds to the N-type drain region 12, respectively.

ところで、この素子はモータドライブやスイッチングレ
ギュレータ方式の電源用として多く用いられているが、
このようなし負荷動作をしているときスイッチオフする
と、D−MOSFETのドレインとソースとの間には大
きな逆起電力が印加されることになる。また、同図(b
)の等価回路について言えば、この逆起電力は同時に奇
生トランジスタTnのコレクタとエミッタ間に印加され
ることになり、このため奇生トランジスタTrが破壊し
やすい、すなわちD−MOSFETが破壊しやすいとい
う欠点があった。寄生トランジスタTnに起因するD−
MOSFETの破壊を防止することは、この素子の高耐
圧化に極めて重要であり、このような奇生トランジスタ
の影響を阻止する方法が望まれていた。
By the way, this element is often used for motor drives and switching regulator type power supplies,
If the switch is turned off during such no-load operation, a large back electromotive force will be applied between the drain and source of the D-MOSFET. Also, the same figure (b
) Regarding the equivalent circuit of There was a drawback. D- due to parasitic transistor Tn
Preventing destruction of a MOSFET is extremely important for increasing the breakdown voltage of this element, and a method for preventing the effects of such anomalous transistors has been desired.

[発明の目的] 本発明は上記実情に鑑みてなされたもので、その目的は
、スイッチオフの動作時の破壊を防止できる高耐圧の二
重拡散形絶縁ゲート電界効果トランジスタ及びその製造
方法を提供することにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a high-voltage double diffused insulated gate field effect transistor that can prevent destruction during switch-off operation, and a method for manufacturing the same. It's about doing.

[発明の概要] 本発明は、第1導電型の半導体基板からなるドレイン領
域と、この半導体基板内に形成された第2導電型のべ、
−ス領域と、このベース領域内に形成された第1導電型
のソース領域と、前記ドレイン領域とソース領域との間
のベース領域上にグー1〜絶縁膜を介して形成されたゲ
ート電極とから構成される二重拡散形絶縁ゲート電界効
果トランジスタに於いて、前記ベース領域内のソース領
域直下に高濃度の第2導電型領域を設けるものである。
[Summary of the Invention] The present invention provides a drain region made of a first conductivity type semiconductor substrate, a second conductivity type drain region formed in the semiconductor substrate,
- a source region of a first conductivity type formed in the base region, and a gate electrode formed on the base region between the drain region and the source region via an insulating film. In the double-diffused insulated gate field effect transistor, a highly doped second conductivity type region is provided in the base region directly below the source region.

このような構造であれば、ベース抵抗を大幅に低減でき
るので、奇生トランジスタがオンしににくなり、スイッ
チオン時の破壊を防止することができる。
With such a structure, the base resistance can be significantly reduced, making it difficult for the parasitic transistor to turn on, thereby preventing destruction when the switch is turned on.

[発明の実施例] 以下、図面を参照して本発明の一実施例を説明する。第
1図(a)に於いて、31はシリコン基板の品濃度N型
層であり1.この高濃度N型層31上にはエピタキシャ
ル成長により形成された低濃度のN型層からなるドレイ
ン領域32が形成されている。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1(a), 31 is an N-type layer of silicon substrate; 1. A drain region 32 made of a lightly doped N-type layer formed by epitaxial growth is formed on this heavily doped N-type layer 31 .

このドレイン領R32内には高濃度P型ベース領域33
′が形成され、このベース領域33上にはチャネルとな
る低濃度のP型ベース領域34が形成されている。この
P型ベース領域34内には高濃度のP型ベース領域35
が形成され、さらにこのP型ベース領域35上にはN型
ソース領1136が形成されている。
In this drain region R32, there is a highly doped P-type base region 33.
' is formed, and a lightly doped P-type base region 34 serving as a channel is formed on this base region 33. In this P type base region 34, there is a highly concentrated P type base region 35.
is formed, and an N-type source region 1136 is further formed on this P-type base region 35.

ドレイン領[32とN型ソース領域36との間のベース
領域34上には、ゲート絶縁膜37を介してゲート′i
!tLaiとなる多結晶シリコン膜38が形成されてい
る。
On the base region 34 between the drain region [32 and the N-type source region 36, a gate 'i
! A polycrystalline silicon film 38 which becomes tLai is formed.

この多結晶シリコン膜38は層間絶縁膜39で覆われて
おり、この層間絶縁1I39に設けられたソースコンタ
クト開口部40を介して、例えばAI(アルミニウム)
からなるソース配線電極41が設けられている。
This polycrystalline silicon film 38 is covered with an interlayer insulating film 39, and through a source contact opening 40 provided in this interlayer insulating film 1I39, a film made of, for example, AI (aluminum)
A source wiring electrode 41 is provided.

すなわち、上記D−MO3FETに於いては、ソース領
域36の直下に高濃度のP型ベース領域35を形成した
ものである。
That is, in the above D-MO3FET, a highly doped P-type base region 35 is formed directly below the source region 36.

このような構造であれば、同図(b)に示す等価回路図
から明らかなように、ベース抵抗Raが大幅に低減され
、P型ベース領域34.35とN型のドレイン領域32
とから構成されるPNダイオードが形成される。すなわ
ち、従来のような奇生トランジスタが動作することなく
、スイッチオフ動作時の影響がなく、従って破壊に強い
ことがわかる。
With such a structure, as is clear from the equivalent circuit diagram shown in FIG.
A PN diode is formed. In other words, it can be seen that unlike the conventional transistors, the parasitic transistor does not operate, and there is no influence during switch-off operation, and therefore, it is resistant to destruction.

この作用については、次のように考えられる。This effect can be considered as follows.

すなわち、このD−MOSFETに於いては、ブレーク
ダウン模、ベース抵抗R’aが大きいと、抵抗Reの前
後に電位差■8Gが生じ、ソース領域36(エミッタに
相当)とベース領域35が順バイアスとなり、ソース領
域36より電子が注入され、その結果寄生トランジスタ
がオンする。ざらに、ベースfI4域内でアバランシェ
倍増を起こし発生したホールがソース側へ流入し、電流
が急激に増加してホットスポットを生じ、破壊に至る。
That is, in this D-MOSFET, when the base resistance R'a is large due to breakdown, a potential difference of 8G is generated across the resistance Re, and the source region 36 (corresponding to the emitter) and the base region 35 are forward biased. Therefore, electrons are injected from the source region 36, and as a result, the parasitic transistor is turned on. Roughly speaking, holes generated due to avalanche doubling within the base fI4 region flow into the source side, and the current increases rapidly, creating a hot spot, leading to destruction.

この電位差VBEは、ソース![36直下のベース領域
内の抵抗Re、すなわちベース濃度に関係する。寄生ト
ランジスタがオン動作しないためには、この抵抗Raを
小さくする、すなわちソース領域36直下のベース濃度
を高濃度とする必要がある。従来のD−MOSFETの
構造は、第3図(a)に示したように、高濃度のベース
領[13は、拡散深さが深いため、また、ベース領域1
4の濃度はD−MOSFETのしきい値電圧を決定する
ため、ソース領域15直下の濃度を上げることはできな
かった。
This potential difference VBE is the source! [It is related to the resistance Re in the base region immediately below 36, that is, the base concentration. In order to prevent the parasitic transistor from turning on, it is necessary to reduce this resistance Ra, that is, to make the base concentration directly below the source region 36 high. As shown in FIG. 3(a), the conventional D-MOSFET structure has a high concentration base region [13] due to the deep diffusion depth
Since the concentration of 4 determines the threshold voltage of the D-MOSFET, it was not possible to increase the concentration directly under the source region 15.

そこで、本発明に於いては、ソース領域36直下に高濃
度のP型ベース領域35を設け、ベース抵抗Raを減少
させるものである。ベース領R35の形成領域は、ソー
ス領域36直下全てにわたり、ソース領域36の拡散層
の側面のみがベース領域34と接していることが一番好
ましい。
Therefore, in the present invention, a highly doped P-type base region 35 is provided directly below the source region 36 to reduce the base resistance Ra. It is most preferable that the region where the base region R35 is formed extends entirely directly below the source region 36, and only the side surface of the diffusion layer of the source region 36 is in contact with the base region 34.

このため、ベース領1g35の形成方法として、本発明
ではベース領域34及びソース領域36の二重拡散マス
クとなる多結晶シリコン膜38の開口側面にCV D 
(Chemical Vapour Lepositi
on )膜を一部残すセルファライン(自己整合)法を
採用するものである。
Therefore, as a method for forming the base region 1g35, in the present invention, CVD is applied to the side surface of the opening of the polycrystalline silicon film 38, which serves as a double diffusion mask for the base region 34 and the source region 36.
(Chemical Vapor Repository
On) A self-alignment (self-alignment) method is employed in which a portion of the film is left.

以下、具体的に上記構造の製造方法について説明する。Hereinafter, a method for manufacturing the above structure will be specifically explained.

まず、第2図(a)に示すようにa!m度のN型層31
及び低濃度のN型層からなるドレインa域32を有する
シリコン基板の表面に酸化膜(Si02)51を形成す
る。続いて、この酸化膜51に開口部52を形成した後
、この開口部52内に露出したシリコン基板にP型不純
物を拡散させて高濃度のP型ベース領域33を形成する
First, as shown in FIG. 2(a), a! m degree N-type layer 31
Then, an oxide film (Si02) 51 is formed on the surface of the silicon substrate having the drain a region 32 made of a low concentration N-type layer. Subsequently, after an opening 52 is formed in this oxide film 51, a P-type impurity is diffused into the silicon substrate exposed in this opening 52 to form a heavily doped P-type base region 33.

次に、同図(b)に示すように酸化膜51を除去し、シ
リコン基板を再度酸化することにより、この基板上にゲ
ート絶縁膜(SiO2)37を形成させた後、このゲー
ト絶縁膜37上に多結晶シリコン膜38を堆積させる。
Next, as shown in FIG. 5B, the oxide film 51 is removed and the silicon substrate is oxidized again to form a gate insulating film (SiO2) 37 on this substrate. A polycrystalline silicon film 38 is deposited thereon.

次に、同図(C)に示すように多結晶シリコン膜38に
開口部53を形成した後、この開口部53内に露出した
ゲート絶縁膜31を通してシリコン基板にP型不純物を
イオン注入する。そして、イオン注入した不純物を拡散
させることにより、開口部53の外側へ広がりチャネル
となるP型のベース領域34を形成する。このベース領
域34の不純物濃度と拡散深さは、同図(C)に示すよ
うに、先に拡散させた高濃度のP型ベース領域33のそ
れらに比較して小さくなっている。ここまでは、従来工
程と同様である。
Next, as shown in FIG. 5C, an opening 53 is formed in the polycrystalline silicon film 38, and then P-type impurity ions are implanted into the silicon substrate through the gate insulating film 31 exposed in the opening 53. Then, by diffusing the ion-implanted impurity, a P-type base region 34 that spreads outside the opening 53 and becomes a channel is formed. The impurity concentration and diffusion depth of this base region 34 are smaller than those of the previously diffused high concentration P type base region 33, as shown in FIG. The process up to this point is the same as the conventional process.

次に、同図(d)に示すように開孔部53内のゲート酸
化膜37を除去し、ノンドープCVDIIとリンドープ
CV D Illからなる二層のCVDll154を形
成し、高温でメル・ドアニールすること“により、開口
部53の側面のCVD1156を他の領域よりも厚く、
滑らかに形成する。次に、反応性イオンエツチング(R
IE)によりCVD膜54を除去し、開口部53中央の
シリコン基板と多結晶シリコン膜38を露出させてエツ
チングを停止すると、同図(e)に示すようにCVD膜
5膜厚5口部53からCV D lll−54を形成し
た厚さに略等しい幅に残される。
Next, as shown in FIG. 4(d), the gate oxide film 37 in the opening 53 is removed, a two-layer CVD II 154 consisting of non-doped CVDII and phosphorus-doped CVD II is formed, and melt-door annealing is performed at a high temperature. "By making the CVD 1156 on the side of the opening 53 thicker than other areas,
Form smoothly. Next, reactive ion etching (R
When the CVD film 54 is removed by IE) to expose the silicon substrate and the polycrystalline silicon film 38 at the center of the opening 53 and the etching is stopped, the thickness of the CVD film 5 is 5 as shown in FIG. A width approximately equal to the thickness of the CVD 11-54 is left.

次に、P型不純物例えばボロンを高濃度にイオン注入し
拡散させることにより、llXIi度P型ベース領域3
5を形成する。このとき、CVD膜5膜厚5オン注入の
マスクとなり、多結晶シリコン膜38の開口部53から
CVD1lI55の膜幅にほぼ等しい距離に、P型ベー
ス領域35が自己整合的に形成される。
Next, a P-type impurity such as boron is ion-implanted at a high concentration and diffused into the P-type base region 3.
form 5. At this time, the P-type base region 35 is formed in a self-aligned manner at a distance approximately equal to the film width of the CVD1lI55 from the opening 53 of the polycrystalline silicon film 38, serving as a mask for implantation of the CVD film 5 to a thickness of 5.

次に、同図(f)に示すように、CVD膜5膜厚5去し
た後PEPによりレジスト膜56を開口部53の中央部
に残し、N型不純物例えばリンをイオン注入、拡散させ
てソース領1a36を形成する。次に、同図(Q)に示
すようにレジスト膜56を除去した後、開口部53及び
多結晶シリコン膜38上に層間絶縁1!$39を形成す
る。続いて、PEPにより層間絶縁ll39に開口部4
0を形成し、ざらにこの間口部40及び層間絶縁膜39
上に例えばA1のソース配線電極41を形成すると、第
1図(a)に示した構造が得られる。
Next, as shown in FIG. 5F, after removing the CVD film 5 to a thickness of 5, a resist film 56 is left in the center of the opening 53 by PEP, and an N-type impurity such as phosphorus is ion-implanted and diffused to form a source. Region 1a36 is formed. Next, as shown in FIG. 3(Q), after removing the resist film 56, the interlayer insulation 1! Form $39. Next, an opening 4 is formed in the interlayer insulation ll39 using PEP.
0 is formed, and the opening portion 40 and the interlayer insulating film 39 are roughly formed.
When a source wiring electrode 41 of A1, for example, is formed thereon, the structure shown in FIG. 1(a) is obtained.

このように、本発明にあっては、高濃度ベース領域35
の形成方法として、ベース領@34及びドレイン領[3
6の二重拡散マスクとなる多結晶シリコン膜38の開口
側面にCVD膜54を一部(CVD膜5膜厚5すことと
している。従って、CVDM55の厚さにより残される
CVD1156の開孔部53からの幅が自己整合的に決
定され、このためこの幅を1μ以下にすることが可能で
あり(通常のPEPでは2〜3μが限度である。)、ま
たソース領域36の直下のほぼ全面に渡ってP型ベース
領域35を形成することが可能となる。そのため、寄生
トランジスタはベース−エミッタ間電圧VBEが小さく
なり、よりオンしにくくなる。
In this way, in the present invention, the high concentration base region 35
As a method of forming base region @34 and drain region [3
A part of the CVD film 54 (the thickness of the CVD film 5 is 5) is placed on the side surface of the opening of the polycrystalline silicon film 38 which serves as a double diffusion mask in No. The width from the source region 36 is determined in a self-aligned manner, and therefore it is possible to reduce this width to 1μ or less (the limit for normal PEP is 2 to 3μ), and also to cover almost the entire surface immediately below the source region 36. It becomes possible to form the P-type base region 35 across the P-type base region 35. Therefore, the base-emitter voltage VBE of the parasitic transistor becomes smaller, making it more difficult to turn on.

尚、上記実施例に於いては、本発明をNチャネル構造の
D−MOSFETついて適用した例につ6>て説明した
が、これに限定するものではなく、Pチャネル構造のD
−MOSFETにも適用できることは勿論である。
In the above embodiments, the present invention was explained as an example in which the present invention was applied to a D-MOSFET with an N-channel structure, but the present invention is not limited to this, and
-Of course, it can also be applied to MOSFET.

[発明の効果] 以上のように本発明によれば、従来構造に比べてベース
抵抗を大幅に低減できるので、奇生トランジスタのオン
動作を防止でき、破壊に強い二重拡散型絶縁ゲート電界
トランジスタを提供することができる。
[Effects of the Invention] As described above, according to the present invention, the base resistance can be significantly reduced compared to the conventional structure, so that the on-operation of an anomalous transistor can be prevented, and the double-diffused insulated gate field transistor is resistant to destruction. can be provided.

また、本発明の製造方法によれば、高濃度ベース領域の
位置が自己整合的に決定されるため、ソース領域直下の
ほぼ全面に高濃度ベース領域を形成することができ、こ
のため奇生トランジスタはよりオンしにくくなりさらに
高耐圧化を実現できる。
Furthermore, according to the manufacturing method of the present invention, since the position of the highly doped base region is determined in a self-aligned manner, it is possible to form the highly doped base region on almost the entire surface directly under the source region. is more difficult to turn on and can achieve even higher voltage resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るD−MOSFETの構
成を示すもので、同図(a)は断面図、同図(b)は等
価回路図、第2図は第1図のD−MOSFETの製造工
程を示す断面図、第3図は従来のD−MOSFETの構
造を示すもので、同図(a)は断面図、同図(b)は等
価回路図、第4図は第3図のD−MOSFETの製造工
程を示す断面図である。 31・・・高濃度N型層、32・・・ドレイン領域、3
3・・・高濃度P型ベース領域、34・・・低濃度P型
ベース領域、35・・・高11度P型ベース領域、36
・・・ソース領域、37・・・ゲート絶縁膜、38・・
・多結晶シリコン膜、39・・・層間絶縁膜、41・・
・ソース配線電極。 出願人代理人 弁理士 鈴 江 武 彦N1!IJ (a)         (b) 第2図
FIG. 1 shows the structure of a D-MOSFET according to an embodiment of the present invention. FIG. 1(a) is a cross-sectional view, FIG. 2(b) is an equivalent circuit diagram, and FIG. - Cross-sectional view showing the manufacturing process of MOSFET, Figure 3 shows the structure of a conventional D-MOSFET, Figure (a) is a cross-sectional view, Figure (b) is an equivalent circuit diagram, Figure 4 is a FIG. 4 is a cross-sectional view showing the manufacturing process of the D-MOSFET shown in FIG. 3; 31... High concentration N type layer, 32... Drain region, 3
3...High concentration P type base region, 34...Low concentration P type base region, 35...High 11 degree P type base region, 36
... Source region, 37... Gate insulating film, 38...
・Polycrystalline silicon film, 39... Interlayer insulating film, 41...
・Source wiring electrode. Applicant's agent Patent attorney Takehiko Suzue N1! IJ (a) (b) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板からなるドレイン領域と
、この半導体基板内に形成された第2導電型のベース領
域と、このベース領域内に形成された第1導電型のソー
ス領域と、前記ドレイン領域とソース領域との間のベー
ス領域上にゲート絶縁膜を介して形成されたゲート電極
とから構成される二重拡散形絶縁ゲート電界効果トラン
ジスタに於いて、前記ベース領域内のソース領域直下に
高濃度の第2導電型領域を設けたことを特徴とする二重
拡散形絶縁ゲート電界効果トランジスタ。(2)第1導
電型の半導体基板からなるドレイン領域と、この半導体
基板内に形成された第2導電型のベース領域と、このベ
ース領域内に形成された第1導電型のソース領域と、前
記ドレイン領域とソース領域との間のベース領域上にゲ
ート絶縁膜を介して形成されたゲート電極とから構成さ
れる二重拡散形絶縁ゲート電界効果トランジスタの製造
方法に於いて、第1導電型の半導体基板からなるドレイ
ン領域内に第2導電型のベース領域を形成する工程と、
前記ベース領域内に、前記ベース領域の拡散マスク開口
部の側面に絶縁膜を残して自己整合的に高濃度の第2導
電型領域を形成する工程と、前記第2導電型領域上に第
1導電型のソース領域を形成する工程と、前記ドレイン
領域とソース領域との間のベース領域上にゲート絶縁膜
を介してゲート電極を形成する工程と、前記ゲート電極
を含む前記半導体基板全面に層間絶縁膜を形成した後、
前記ベース領域及びソース領域上の前記層間絶縁膜の一
部を選択的に除去する工程と、ソース、ゲート及びドレ
インの各電極を形成する工程とを具備したことを特徴と
する二重拡散形絶縁ゲート電界効果トランジスタの製造
方法。
(1) a drain region made of a semiconductor substrate of a first conductivity type, a base region of a second conductivity type formed in this semiconductor substrate, a source region of a first conductivity type formed in this base region, In a double diffused insulated gate field effect transistor comprising a gate electrode formed on a base region between the drain region and the source region with a gate insulating film interposed therebetween, the source region in the base region; A double diffused insulated gate field effect transistor characterized by having a highly doped second conductivity type region directly below it. (2) a drain region made of a semiconductor substrate of a first conductivity type, a base region of a second conductivity type formed in this semiconductor substrate, a source region of a first conductivity type formed in this base region; A method for manufacturing a double diffused insulated gate field effect transistor comprising a gate electrode formed on a base region between the drain region and the source region with a gate insulating film interposed therebetween. forming a second conductivity type base region in the drain region made of the semiconductor substrate;
forming a highly concentrated second conductivity type region in the base region in a self-aligned manner leaving an insulating film on the side surface of the diffusion mask opening in the base region; and forming a first conductivity type region on the second conductivity type region. a step of forming a conductive type source region, a step of forming a gate electrode on a base region between the drain region and the source region via a gate insulating film, and a step of forming an interlayer over the entire surface of the semiconductor substrate including the gate electrode. After forming the insulating film,
A double diffusion type insulation comprising the steps of selectively removing a part of the interlayer insulating film on the base region and the source region, and forming source, gate, and drain electrodes. A method of manufacturing a gate field effect transistor.
JP59276071A 1984-12-28 1984-12-28 Double-diffused igfet and manufacture thereof Pending JPS61156882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59276071A JPS61156882A (en) 1984-12-28 1984-12-28 Double-diffused igfet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59276071A JPS61156882A (en) 1984-12-28 1984-12-28 Double-diffused igfet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61156882A true JPS61156882A (en) 1986-07-16

Family

ID=17564394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59276071A Pending JPS61156882A (en) 1984-12-28 1984-12-28 Double-diffused igfet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61156882A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222677A (en) * 1986-03-06 1987-09-30 エッセヂエッセ―トムソン マイクロエレクトロニクス・エッセ・エッレ・エッレ Method of manufacturing miniature size dmos cell by self-alignment and mos device obtained by the method
JPS6410672A (en) * 1987-07-03 1989-01-13 Nissan Motor Vertical mosfet
EP0304839A2 (en) * 1987-08-24 1989-03-01 Hitachi, Ltd. Method for fabricating insulated gate semiconductor device
JPS6477157A (en) * 1987-09-18 1989-03-23 Texas Instruments Japan Insulated-gate field-effect semiconductor device
JPH01128576A (en) * 1987-11-13 1989-05-22 Matsushita Electron Corp Vertical mos field effect transistor
JPH01164068A (en) * 1987-12-21 1989-06-28 Hitachi Ltd Semiconductor device
US4898835A (en) * 1988-10-12 1990-02-06 Sgs-Thomson Microelectronics, Inc. Single mask totally self-aligned power MOSFET cell fabrication process
FR2635613A1 (en) * 1988-08-19 1990-02-23 Fuji Electric Co Ltd MOS SEMICONDUCTOR DEVICE
US4904613A (en) * 1986-12-23 1990-02-27 U.S. Philips Corporation Method of manufacturing a DMOS device
JPH02150068A (en) * 1988-11-30 1990-06-08 Fuji Electric Co Ltd Double diffused mosfet
FR2640080A1 (en) * 1988-12-01 1990-06-08 Fuji Electric Co Ltd
US4970173A (en) * 1989-07-03 1990-11-13 Motorola, Inc. Method of making high voltage vertical field effect transistor with improved safe operating area
US5045903A (en) * 1988-05-17 1991-09-03 Advanced Power Technology, Inc. Topographic pattern delineated power MOSFET with profile tailored recessed source
US5118638A (en) * 1988-03-18 1992-06-02 Fuji Electric Co., Ltd. Method for manufacturing MOS type semiconductor devices
US5179034A (en) * 1987-08-24 1993-01-12 Hitachi, Ltd. Method for fabricating insulated gate semiconductor device
US5268586A (en) * 1992-02-25 1993-12-07 North American Philips Corporation Vertical power MOS device with increased ruggedness and method of fabrication
WO1997016853A1 (en) * 1995-11-02 1997-05-09 National Semiconductor Corporation Insulated gate semiconductor devices with implants for improved ruggedness
US5670811A (en) * 1987-08-24 1997-09-23 Hitachi, Ltd. Vertical insulated gate semiconductor device having high current density and high reliability
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US6433370B1 (en) 2000-02-10 2002-08-13 Vram Technologies, Llc Method and apparatus for cylindrical semiconductor diodes
US6537921B2 (en) 2001-05-23 2003-03-25 Vram Technologies, Llc Vertical metal oxide silicon field effect semiconductor diodes
US6580150B1 (en) 2000-11-13 2003-06-17 Vram Technologies, Llc Vertical junction field effect semiconductor diodes
EP1779416A2 (en) * 2004-07-15 2007-05-02 Fairchild Semiconductor Corporation Asymmetric hetero-doped high-voltage mosfet (ah2mos)
JP2012039082A (en) * 2010-07-12 2012-02-23 Denso Corp Semiconductor device and method of manufacturing the same
WO2012073609A1 (en) * 2010-11-30 2012-06-07 富士電機株式会社 Semiconductor device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222677A (en) * 1986-03-06 1987-09-30 エッセヂエッセ―トムソン マイクロエレクトロニクス・エッセ・エッレ・エッレ Method of manufacturing miniature size dmos cell by self-alignment and mos device obtained by the method
US4904613A (en) * 1986-12-23 1990-02-27 U.S. Philips Corporation Method of manufacturing a DMOS device
JPS6410672A (en) * 1987-07-03 1989-01-13 Nissan Motor Vertical mosfet
US5032532A (en) * 1987-08-24 1991-07-16 Hitachi, Ltd. Method for fabricating insulated gate semiconductor device
EP0604392A1 (en) * 1987-08-24 1994-06-29 Hitachi, Ltd. Insulated gate semiconductor device
EP0304839A2 (en) * 1987-08-24 1989-03-01 Hitachi, Ltd. Method for fabricating insulated gate semiconductor device
US5179034A (en) * 1987-08-24 1993-01-12 Hitachi, Ltd. Method for fabricating insulated gate semiconductor device
US5670811A (en) * 1987-08-24 1997-09-23 Hitachi, Ltd. Vertical insulated gate semiconductor device having high current density and high reliability
JPS6477157A (en) * 1987-09-18 1989-03-23 Texas Instruments Japan Insulated-gate field-effect semiconductor device
JPH01128576A (en) * 1987-11-13 1989-05-22 Matsushita Electron Corp Vertical mos field effect transistor
JPH01164068A (en) * 1987-12-21 1989-06-28 Hitachi Ltd Semiconductor device
US5118638A (en) * 1988-03-18 1992-06-02 Fuji Electric Co., Ltd. Method for manufacturing MOS type semiconductor devices
US5045903A (en) * 1988-05-17 1991-09-03 Advanced Power Technology, Inc. Topographic pattern delineated power MOSFET with profile tailored recessed source
FR2635613A1 (en) * 1988-08-19 1990-02-23 Fuji Electric Co Ltd MOS SEMICONDUCTOR DEVICE
US4898835A (en) * 1988-10-12 1990-02-06 Sgs-Thomson Microelectronics, Inc. Single mask totally self-aligned power MOSFET cell fabrication process
JPH02150068A (en) * 1988-11-30 1990-06-08 Fuji Electric Co Ltd Double diffused mosfet
FR2640080A1 (en) * 1988-12-01 1990-06-08 Fuji Electric Co Ltd
US4970173A (en) * 1989-07-03 1990-11-13 Motorola, Inc. Method of making high voltage vertical field effect transistor with improved safe operating area
US5268586A (en) * 1992-02-25 1993-12-07 North American Philips Corporation Vertical power MOS device with increased ruggedness and method of fabrication
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US5897355A (en) * 1994-08-03 1999-04-27 National Semiconductor Corporation Method of manufacturing insulated gate semiconductor device to improve ruggedness
WO1997016853A1 (en) * 1995-11-02 1997-05-09 National Semiconductor Corporation Insulated gate semiconductor devices with implants for improved ruggedness
US6433370B1 (en) 2000-02-10 2002-08-13 Vram Technologies, Llc Method and apparatus for cylindrical semiconductor diodes
US6855614B2 (en) 2000-11-13 2005-02-15 Integrated Discrete Devices, Llc Sidewalls as semiconductor etch stop and diffusion barrier
US6580150B1 (en) 2000-11-13 2003-06-17 Vram Technologies, Llc Vertical junction field effect semiconductor diodes
KR100812202B1 (en) 2000-11-13 2008-03-13 인테그레이티드 디스크리트 디바이시스 엘엘씨 Vertical junction field effect semiconductor diodes
US6537921B2 (en) 2001-05-23 2003-03-25 Vram Technologies, Llc Vertical metal oxide silicon field effect semiconductor diodes
EP1779416A2 (en) * 2004-07-15 2007-05-02 Fairchild Semiconductor Corporation Asymmetric hetero-doped high-voltage mosfet (ah2mos)
EP1779416A4 (en) * 2004-07-15 2009-03-04 Fairchild Semiconductor Asymmetric hetero-doped high-voltage mosfet (ah2mos)
US20100084686A1 (en) * 2004-07-15 2010-04-08 Jun Cai Assymetric hetero-doped high-voltage mosfet (ah2mos)
JP2012039082A (en) * 2010-07-12 2012-02-23 Denso Corp Semiconductor device and method of manufacturing the same
WO2012073609A1 (en) * 2010-11-30 2012-06-07 富士電機株式会社 Semiconductor device
JP5561376B2 (en) * 2010-11-30 2014-07-30 富士電機株式会社 Semiconductor device
US8809911B2 (en) 2010-11-30 2014-08-19 Fuji Electric Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JPS61156882A (en) Double-diffused igfet and manufacture thereof
US6392275B1 (en) Semiconductor device with DMOS, BJT and CMOS structures
US5248627A (en) Threshold adjustment in fabricating vertical dmos devices
JP2835216B2 (en) Method for manufacturing semiconductor device
EP0179407A2 (en) Method for producing a DMOS semiconductor device
US20020125542A1 (en) Semiconductor device having insulated gate bipolar transistor with dielectric isolation structure and method of manufacturing the same
US5970329A (en) Method of forming power semiconductor devices having insulated gate electrodes
JPH0687504B2 (en) Semiconductor device
JPH0817849A (en) Manufacture of mos type electric power device
EP0358389A1 (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
US6030870A (en) High density MOS technology power device
JP2002124671A (en) Semiconductor device and its manufacturing method
JPH0817848A (en) Manufacture of mos type electric power device
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
US20020195654A1 (en) DMOS transistor and fabricating method thereof
US5118638A (en) Method for manufacturing MOS type semiconductor devices
JPH104187A (en) Power semiconductor device and manufacture thereof
US6451645B1 (en) Method for manufacturing semiconductor device with power semiconductor element and diode
JPH01132167A (en) Semiconductor device
JP3369862B2 (en) Method for manufacturing semiconductor device
JPS62229977A (en) Manufacture of conduction-modulation mosfet
JP2808945B2 (en) Method of manufacturing vertical MOS field effect transistor
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
JP2573303B2 (en) Method for manufacturing semiconductor device
JPH02296342A (en) Manufacture of mosfet