JPS62229977A - Manufacture of conduction-modulation mosfet - Google Patents

Manufacture of conduction-modulation mosfet

Info

Publication number
JPS62229977A
JPS62229977A JP7115986A JP7115986A JPS62229977A JP S62229977 A JPS62229977 A JP S62229977A JP 7115986 A JP7115986 A JP 7115986A JP 7115986 A JP7115986 A JP 7115986A JP S62229977 A JPS62229977 A JP S62229977A
Authority
JP
Japan
Prior art keywords
layer
base layer
type
mask
type base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7115986A
Other languages
Japanese (ja)
Inventor
Akio Nakagawa
明夫 中川
Kiminori Watanabe
渡辺 君則
Yoshihiro Yamaguchi
好広 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7115986A priority Critical patent/JPS62229977A/en
Publication of JPS62229977A publication Critical patent/JPS62229977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors

Abstract

PURPOSE:To manufacture a conduction-modulation MOSFET having excellent characteristics at a high yield by a method wherein a high-impurity concentration layer, which brings a base layer into a low-resistance state and is used for preventing a latch-up, is formed at the central part of the base layer in a self-matching manner. CONSTITUTION:Gate electrodes 51 consisting of a poly Si film are formed on the substrate of a structure; wherein an n-type high-resistance layer 3 is formed on a p<+> drain layer 1 through an n<+> buffer layer 2; through a gate insulating film 4. After this, masking materials 6 for covering the intervals between the gate electrodes 51 and first masking materials 52 are formed of a photo resist, for example, and boron, for example, is ion-implanted to form a p<+> layer 7. After a heat treatment is performed and activation and diffusion of the impurity of the p<+> layer 7 are performed, an impurity is doped using the gate electrodes 51 as masks to form a p-type base layer 8 and moreover, a mask is formed on the central part of the p-type base layer 8 and an impurity is doped using this mask and the gate electrodes 51 as masks to form n<+> source layers g. Thereby, the p<+> layer 7 for bringing the p-type base layer 8 into a low-resistance state can be formed at the center of the p-type base layer 8 in a slef-matching manner.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、導電変調型MOSFETの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a conductivity modulation type MOSFET.

(従来の技術) 従来の一般的な導電変調型MOSFETの構造を第3図
に示す。21はp+型トド942層22はn+型バッフ
ァ層、23はn型高抵抗層である。高抵抗層23表面に
ゲート絶縁膜24を介してゲート電極25が形成され、
このゲート21!極25に自己整合されてp型ベース層
26およびn++ソース1127が形成されている。p
型ベース層26表面のn++ソース層27とn型高抵抗
!123に挟まれた領域がチャネル領域となっている。
(Prior Art) The structure of a conventional general conductivity modulation type MOSFET is shown in FIG. Reference numeral 21 indicates a p + -type layer 22 is an n + -type buffer layer, and reference numeral 23 indicates an n-type high resistance layer. A gate electrode 25 is formed on the surface of the high resistance layer 23 via a gate insulating film 24,
This gate 21! A p-type base layer 26 and an n++ source 1127 are formed self-aligned to the pole 25. p
N++ source layer 27 on the surface of type base layer 26 and n-type high resistance! The region sandwiched by 123 is a channel region.

p型ベースM26の中央部にはその低抵抗化のためにp
+型層28が深く拡散形成されている。
There is a p-type base in the center of the p-type base M26 to reduce its resistance.
A + type layer 28 is formed by deep diffusion.

ゲート電極25および拡散層が形成された基板上はCv
D絶縁膜29により覆われ、これにコンタクト孔が開け
られてn′″型ソース層27およびp型ベース唐26に
同時にコンタクトするソース電極30が形成されている
。基板裏面のドレイン層21にはドレイン電極31が形
成されている。
On the substrate on which the gate electrode 25 and the diffusion layer are formed, Cv
It is covered with a D insulating film 29, and a contact hole is formed in this to form a source electrode 30 that contacts the n'' type source layer 27 and the p type base layer 26 at the same time. A drain electrode 31 is formed.

この様な導電変調型MOSFETにおける大きい問題は
、n+型ソース層27−p型ベース唐26−n型高抵抗
11!23−p+型ドレイン!21で構成される寄生サ
イリスタがラッチアップすることである。寄生サイリス
タを構成するnエミッタおよびpベースとなるn+型ソ
ース層27およびp型ベース唐26はソース電極30に
より短絡されているが、ドレイン層21から流れて来る
正孔電流がp型ベース!I26に入り込みソース電極2
7に扱ける時、p型ベース層26内で電圧降下が生じ、
この電圧降下でn+型ソースWI27とp型ベース層2
6間が順バイアスされるとラッチアップを生じる。この
状態ではゲート電圧を零にしても素子をターンオフでき
なくなる。この様な寄生サイリスタのラッチアップを防
止するために、p型ベース層26中央部に深くp+型層
28を形成して、p型ベース唐26の抵抗を小さくして
いるのである。
The big problem with such a conductivity modulation type MOSFET is the n+ type source layer 27-p type base layer 26-n type high resistance layer 11!23-p+ type drain! The problem is that the parasitic thyristor composed of 21 latches up. Although the n+ type source layer 27 and the p type base layer 26, which constitute the n emitter and p base constituting the parasitic thyristor, are short-circuited by the source electrode 30, the hole current flowing from the drain layer 21 flows into the p type base! Source electrode 2 enters I26
7, a voltage drop occurs within the p-type base layer 26,
With this voltage drop, the n+ type source WI27 and the p type base layer 2
6 is forward biased, latch-up occurs. In this state, the device cannot be turned off even if the gate voltage is reduced to zero. In order to prevent such latch-up of the parasitic thyristor, a p + -type layer 28 is formed deeply in the center of the p-type base layer 26 to reduce the resistance of the p-type base layer 26 .

ところで従来、ラッチアップ防止用のp+型層28は、
マスク合わせによりp型ベース唐26の中央部に位置す
るように形成されているが、これを完全にp型ベース唐
26の中央に形成することは難しかった。そしてp+型
[128がp型ベース唐26の中央からずれて形成され
ると、p+型層28を形成したことの意味がなくなるだ
けでなく、新たな問題が生じる。
By the way, conventionally, the p+ type layer 28 for latch-up prevention is
Although it is formed so as to be located in the center of the p-type base plate 26 by mask alignment, it was difficult to form it completely in the center of the p-type base plate 26. If the p+ type layer 128 is formed offset from the center of the p type base layer 26, not only the formation of the p+ type layer 28 becomes meaningless, but also a new problem arises.

第4図は、p4″型WI28がp型ベース1!26の中
央部からずれて形成された様子を示している。
FIG. 4 shows how the p4'' type WI 28 is formed offset from the center of the p type base 1!26.

この状態では、図の右側のn+型ソース層27下のp型
ベース唐26の抵抗が低下せず、p+型層28を入れた
効果が出ない。また図の左側のn+型ソース層27につ
いて見ると、p4′4層型8がこのソース層27を越え
て形成された場合、チャネル領域の不純物濃度が上昇す
る結果、MO8FE下のしきい値電圧が上がってしまう
In this state, the resistance of the p-type base layer 26 under the n+-type source layer 27 on the right side of the figure does not decrease, and the effect of inserting the p+-type layer 28 is not produced. Also, looking at the n+ type source layer 27 on the left side of the figure, if the p4'4 layer type 8 is formed beyond this source layer 27, the impurity concentration in the channel region increases, resulting in a lower threshold voltage under MO8FE. will rise.

(発明が解決しようとする問題点) 以上のように従来の導電変調型MOSFETでは、ラッ
チアップ防止用のp+型層をマスク合わせで形成してい
るために、位置あわせが難しく、僅かのマスク合わせず
れにより所望の素子特性が得られなくなり、歩留りが低
いものとなる欠点があった。
(Problems to be Solved by the Invention) As described above, in the conventional conductivity modulation type MOSFET, the p+ type layer for latch-up prevention is formed by mask alignment, so alignment is difficult and slight mask alignment is required. Due to the misalignment, desired device characteristics cannot be obtained, resulting in a low yield.

本発明はこの様な従来の問題を解決して、優れた素子特
性を歩留りよく得ることを可能とした導電変調型MOS
FETの製造方法を提供することを目的とする。
The present invention solves these conventional problems and provides a conductive modulation type MOS that makes it possible to obtain excellent device characteristics at a high yield.
The present invention aims to provide a method for manufacturing an FET.

「発明の構成」 (問題点を解決するための手段) 本発明は、M1導電型ドレイン層上に第2導電型の高抵
抗層を有する基板上にゲート絶縁膜を介して多結晶シリ
コン膜によりゲート電極を形成する際に、同じ多結晶シ
リコン膜によりゲート電極に隣接して第1のマスク材を
形成し、この第2のマスク材とゲート電極の間を第2の
マスク材で覆って、これら第1.第2のマスク材および
ゲート電極をマスクとして用いて不純物をドープして第
1導電型ベース層の低抵抗化のための第1導電型の高不
純物濃度層を形成する。この後第2のマスク相続いて第
1のマスク材を除去して、従来と同様にゲート電極をマ
スクとして用いて不純物をドープして第1導電型ベース
層および第2導電型ソース層を形成する。なお第1導電
型ベース層形成のための不純物ドーピングは、ゲート電
極と第1のマスク材を形成した後、第2のマスク材を形
成する前に行ってもよい。
"Structure of the Invention" (Means for Solving Problems) The present invention provides a structure in which a polycrystalline silicon film is formed on a substrate having a high resistance layer of a second conductivity type on a drain layer of an M1 conductivity type via a gate insulating film. When forming the gate electrode, a first mask material is formed adjacent to the gate electrode using the same polycrystalline silicon film, and the space between the second mask material and the gate electrode is covered with a second mask material, These first. Using the second mask material and the gate electrode as a mask, impurities are doped to form a first conductivity type high impurity concentration layer for lowering the resistance of the first conductivity type base layer. Thereafter, the second mask is applied, the first mask material is removed, and impurities are doped using the gate electrode as a mask to form a first conductivity type base layer and a second conductivity type source layer. . Note that impurity doping for forming the first conductivity type base layer may be performed after forming the gate electrode and the first mask material and before forming the second mask material.

(作用) 本発明の方法を用いれば、ベース層の低抵抗化のための
高不純物濃度層は、ゲート電極と同時にパターン形成さ
れる第1のマスク材により端部が定義されて、ベース層
中央部にセルファラインされて形成される。従って、優
れた特性の導電変調型MOSFETを歩留りよく得るこ
とができる。
(Function) When the method of the present invention is used, the ends of the high impurity concentration layer for reducing the resistance of the base layer are defined by the first mask material that is patterned at the same time as the gate electrode, and It is formed by self-lining in the area. Therefore, conductivity modulation type MOSFETs with excellent characteristics can be obtained with a high yield.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図(a)〜(d)は一実施例の製造工程断面図であ
る。(a)に示すように、p++ドレイン層1上にn“
型バラフッ層2を介してn型高抵抗113が形成された
基板に、ゲート絶縁lI4を介して多結晶シリコン膜に
よりゲート電極51を形成する。このときゲート電極5
1と同じ多結晶シリコン膜により、ゲート1ff151
から所定距離離れた島状の第1のマスク材52を形成す
る。図では、平面パターンは特定されていないが、ソー
ス領域をストライブ状のものとする場合は、この第1の
マスク材52はゲート電ti5t と並行して走るスト
ライブ状のパターンになり、またソース領域を島状のも
のとする場合は第1のマスク材52はゲート電極51で
囲まれた領域内に閉路をなして形成されることになる。
FIGS. 1(a) to 1(d) are cross-sectional views of the manufacturing process of one embodiment. As shown in (a), n“ is formed on the p++ drain layer 1.
A gate electrode 51 is formed of a polycrystalline silicon film on a substrate on which an n-type high resistance 113 is formed with a gate insulating lI4 interposed therebetween. At this time, the gate electrode 5
The gate 1ff151 is made of the same polycrystalline silicon film as in 1.
An island-shaped first mask material 52 is formed at a predetermined distance from the substrate. Although the planar pattern is not specified in the figure, if the source region is made into a stripe-like pattern, this first mask material 52 will have a stripe-like pattern running parallel to the gate electrode ti5t, and When the source region is formed into an island shape, the first mask material 52 is formed in a closed circuit within the region surrounded by the gate electrode 51.

これらゲート電極51および第1のマスク材52は同じ
PEP工程でパターン形成されるから、その相対位置関
係はPEPのマスク合わせずれの影響がなく、一定に保
たれる。この後(b)に示すように、ゲート電極51と
第1のマスク材52の間を覆う第2のマスク材を例えば
フォトレジストにより形成し、例えばボロンをイオン注
入してp++層7を形成する。このときイオンはゲート
絶縁II!4のみの部分は通過するが、第1.第2のマ
スク材52,6およびゲート電極51のある部分は通過
できない。
Since the gate electrode 51 and the first mask material 52 are patterned in the same PEP process, their relative positional relationship is not affected by misalignment of the PEP mask and is kept constant. After this, as shown in (b), a second mask material covering between the gate electrode 51 and the first mask material 52 is formed using, for example, a photoresist, and a p++ layer 7 is formed by ion-implanting boron, for example. . At this time, the ions are gate insulation II! Only the part 4 passes through, but the part 1. Certain portions of the second mask materials 52 and 6 and the gate electrode 51 cannot pass through.

こうしてゲート電極51のエツジから所定距離離れた領
域にイオン注入が行なわれる。この後筒2のマスク材6
を除去し、改めてゲート電極51を覆うレジストを形成
して第1のマスク材52をエツチング除去し、熱処理を
行ってp++層7の不純物の活性化と拡散を行う。そし
て(C)に示すように、従来と同様の二重拡散法により
p型ベース層8およびn++ソース層9を形成する。即
ち先ず、ゲート電N 5 Lをマスクとして不純物をド
ープしてp型ベース層8を形成し、更にp型ベース層8
中央部にマスクを形成してこのマスクとゲートN極51
をマスクとして不純物をドープしてn++ソース層9を
形成する。この後(d)に示すように、全面をCvD絶
縁膜10で覆い、コンタクト孔を開けてA2膜を蒸着し
、nゝ型ソース層9とp型ベース層8に同時にコンタク
トするソース1極11を形成する。ドレイン111側に
は、V−N t−Auの3層金属の蒸着によりドレイン
電極12を形成する。
In this way, ion implantation is performed in a region a predetermined distance away from the edge of gate electrode 51. This mask material 6 of the rear tube 2
is removed, a resist is again formed to cover the gate electrode 51, the first mask material 52 is etched away, and a heat treatment is performed to activate and diffuse impurities in the p++ layer 7. Then, as shown in (C), a p-type base layer 8 and an n++ source layer 9 are formed by the conventional double diffusion method. That is, first, the p-type base layer 8 is formed by doping impurities using the gate electrode N 5 L as a mask, and then the p-type base layer 8 is doped with impurities.
A mask is formed in the center and this mask and the gate N pole 51 are connected to each other.
An n++ source layer 9 is formed by doping impurities using as a mask. After that, as shown in (d), the entire surface is covered with a CvD insulating film 10, a contact hole is opened, an A2 film is deposited, and a source 1 pole 11 is formed, which contacts the n-type source layer 9 and the p-type base layer 8 at the same time. form. On the drain 111 side, a drain electrode 12 is formed by evaporating a three-layer metal layer of V-Nt-Au.

こうしてこの実施例によれば、p型ベース層8の低抵抗
化のためのp++層7を、自己整合的にp型ベースWI
8の中央に形成することができる。
In this way, according to this embodiment, the p++ layer 7 for lowering the resistance of the p-type base layer 8 is formed by the p-type base WI in a self-aligned manner.
It can be formed in the center of 8.

従って優れた素子特性を歩留りよく得ることができる。Therefore, excellent device characteristics can be obtained with a high yield.

実際にこのp++層7を、チャネル領域に達しない程度
に幅広く拡散形成することによって、この導電変調型M
OSFETの最大ターンオフ電流を従来のものに比べて
約40%増大させることができた。
By actually diffusing this p++ layer 7 widely to the extent that it does not reach the channel region, this conductivity modulation type M
The maximum turn-off current of the OSFET could be increased by about 40% compared to the conventional one.

第2図(a)〜(d>は他の実施例の製造工程断面図で
ある。先の実施例と対応する部分には同一符号を付して
詳細な説明は省略する。この実施例では、p型ベース層
とp+型層のイオン注入工程を逆にしている。即ち先ず
(a)に示すように、多結晶シリコン膜によりゲート電
極51と第1のマスク材52を形成する。13はこのゲ
ート電極51および第1のマスク材52をパターン形成
するために用いたフォトレジストを示している。この実
yII例ではこの状態でボロンのイオン注入を行い、p
型ベース開用のp型112181〜83を形成する。こ
の後フォトレジスト13を除去し、先の実施例と同様に
(b)に示すようにゲート電極51と第1のマスク材5
2の間を覆う第2のマスク材をフォトレジスト等により
形成し、ボロンを高1度にイオン注入してp+型型子7
形成する。そして第2のマスク材6続いて第1のマスク
材52を除去し、熱処理して不純物活性化と拡散を行う
ことにより、(C)に示すようにp型ベース層8とその
中央部に位置するp+型FjJ7を形成する。そして(
d)に示すように、p型ベース層8内に自己整合的にn
++ソースl119を形成し、CVD絶縁III$10
で濁ってこれにコンタクト孔を開けてソース電極11を
形成し、裏面にはドレイン電極12を形成して、導電変
調型MOSFETを完成する。
FIGS. 2(a) to 2(d) are cross-sectional views of the manufacturing process of another embodiment. Parts corresponding to those in the previous embodiment are given the same reference numerals and detailed explanations are omitted. In this embodiment, , the ion implantation process for the p-type base layer and the p + type layer is reversed. That is, as shown in (a), first, the gate electrode 51 and the first mask material 52 are formed from a polycrystalline silicon film. 13 is The photoresist used to pattern the gate electrode 51 and the first mask material 52 is shown.In this practical example, boron ions are implanted in this state, and p
Form p-types 112181-83 for mold base opening. After that, the photoresist 13 is removed, and the gate electrode 51 and the first mask material 5 are removed as shown in FIG.
A second mask material covering between 2 and 2 is formed of photoresist or the like, and boron is ion-implanted at a high rate to form a p+ type element 7.
Form. Then, the second mask material 6 is removed and the first mask material 52 is heat-treated to activate and diffuse impurities, thereby forming the p-type base layer 8 and the central portion thereof, as shown in (C). A p+ type FjJ7 is formed. and(
As shown in d), n is formed in the p-type base layer 8 in a self-aligned manner.
++ Form source l119, CVD insulation III $10
A contact hole is formed in this to form a source electrode 11, and a drain electrode 12 is formed on the back surface to complete a conductivity modulation type MOSFET.

この実施例によっても、先の実施例と同様にp“型W4
7はp型ベース層8中夫に自己整合的に形成され、従っ
て先の実施例と同様の効果が得られる。
In this embodiment as well, p" type W4 is used as in the previous embodiment.
7 is formed in a self-aligned manner with the p-type base layer 8, so that the same effect as in the previous embodiment can be obtained.

なお本発明は上記実施例に限られるものではなく、その
趣旨を逸脱しない範囲で種々変形して実施することがで
きる。
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、ベース層を低抵抗化
してラッチアップを防止するのための高不純物濃度層を
ベース層の中央部に自己整合的に形成することができ、
優れた特性の導電変調型MOSFETを歩留りよく製造
することができる。
[Effects of the Invention] As described above, according to the present invention, a high impurity concentration layer for reducing the resistance of the base layer and preventing latch-up can be formed in a self-aligned manner in the center of the base layer. I can,
A conductivity modulation type MOSFET with excellent characteristics can be manufactured with high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例の導電変調型
MOSFETの製造工程を示す断面図、第2図(a)〜
(d)は他の実施例の製造工程を示す断面図、第3図は
一般的な導電変調型MO5FETの構造を示す断面図、
第4図は従来法の問題を説明するための断面図である。 1・・・p+型ドレイン層、2・・・n+型バッファ層
、3・・・n型高抵抗層、4・・・ゲート絶縁膜、5・
・・ゲートff電極(多結晶シリコン膜)、52・・・
第1のマスク材(多結晶シリコンIIり、6・・・第2
のマスク材、7・・・p“型層、8・・・p型ベース層
、9・・・n+型ソー2Ji、10・CVD絶縁絶縁1
1・・・ソース電極、12・・・ドレイン電極。 出願人代理人 弁理士 鈴江武彦 第1図 z 第1図
FIGS. 1(a) to (d) are cross-sectional views showing the manufacturing process of a conductivity modulation type MOSFET according to an embodiment of the present invention, and FIGS. 2(a) to 2(d) are
(d) is a sectional view showing the manufacturing process of another example, FIG. 3 is a sectional view showing the structure of a general conductivity modulation type MO5FET,
FIG. 4 is a sectional view for explaining the problems of the conventional method. DESCRIPTION OF SYMBOLS 1...p+ type drain layer, 2...n+ type buffer layer, 3...n type high resistance layer, 4...gate insulating film, 5...
...Gate ff electrode (polycrystalline silicon film), 52...
First mask material (polycrystalline silicon II, 6... second mask material)
mask material, 7...p" type layer, 8...p type base layer, 9...n+ type saw 2Ji, 10.CVD insulation 1
1... Source electrode, 12... Drain electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 1z Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)高不純物濃度の第1導電型ドレイン層上に第2導
電型の高抵抗層を有する基板の高抵抗層上にゲート絶縁
膜を介して多結晶シリコン膜を堆積する工程と、前記多
結晶シリコン膜を選択エッチングして、多結晶シリコン
・ゲート電極とこれに隣接して島状に残される多結晶シ
リコン膜からなる第1のマスク材を形成する工程と、前
記ゲート電極と第1のマスク材の間を覆う第2のマスク
材を形成する工程と、前記第1、第2のマスク材および
ゲート電極をマスクとして不純物をドープして前記高抵
抗層内に第1導電型の高不純物濃度層を形成する工程と
、前記第1および第2のマスク材を順次除去し、前記ゲ
ート電極をマスクとして不純物をドープして前記高抵抗
層内に第1導電型ベース層およびこのベース層内に位置
する第2導電型ソース層を形成する工程とを備えたこと
を特徴とする導電変調型MOSFETの製造方法。
(1) A step of depositing a polycrystalline silicon film on a high resistance layer of a substrate having a high resistance layer of a second conductivity type on a drain layer of a first conductivity type with a high impurity concentration via a gate insulating film; selectively etching the crystalline silicon film to form a first mask material consisting of a polycrystalline silicon gate electrode and a polycrystalline silicon film left in an island shape adjacent to the polycrystalline silicon gate electrode; a step of forming a second mask material covering between the mask materials; and doping impurities using the first and second mask materials and the gate electrode as masks to form a high impurity of a first conductivity type in the high resistance layer. A step of forming a concentration layer, and sequentially removing the first and second mask materials, doping impurities using the gate electrode as a mask, and forming a first conductivity type base layer in the high resistance layer and forming a first conductivity type base layer in the base layer. A method for manufacturing a conductivity modulation type MOSFET, comprising the step of forming a second conductivity type source layer located at .
(2)前記第2導電型ベース層用の不純物ドーピングを
前記第2のマスク材形成前に行うようにした特許請求の
範囲第1項記載の導電変調型MOSFETの製造方法。
(2) The method for manufacturing a conductivity modulation type MOSFET according to claim 1, wherein impurity doping for the second conductivity type base layer is performed before forming the second mask material.
JP7115986A 1986-03-31 1986-03-31 Manufacture of conduction-modulation mosfet Pending JPS62229977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7115986A JPS62229977A (en) 1986-03-31 1986-03-31 Manufacture of conduction-modulation mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7115986A JPS62229977A (en) 1986-03-31 1986-03-31 Manufacture of conduction-modulation mosfet

Publications (1)

Publication Number Publication Date
JPS62229977A true JPS62229977A (en) 1987-10-08

Family

ID=13452570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7115986A Pending JPS62229977A (en) 1986-03-31 1986-03-31 Manufacture of conduction-modulation mosfet

Country Status (1)

Country Link
JP (1) JPS62229977A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238172A (en) * 1988-03-18 1989-09-22 Fuji Electric Co Ltd Manufacture of mos type semiconductor device
US4898835A (en) * 1988-10-12 1990-02-06 Sgs-Thomson Microelectronics, Inc. Single mask totally self-aligned power MOSFET cell fabrication process
JPH02100365A (en) * 1988-10-07 1990-04-12 Fuji Electric Co Ltd Manufacture of conductivity modulation type mosfet
US5262339A (en) * 1989-06-12 1993-11-16 Hitachi, Ltd. Method of manufacturing a power semiconductor device using implants and solid diffusion source
EP1429391A1 (en) * 2002-12-10 2004-06-16 ABB Schweiz AG Insulated gate semiconductor device and method of making the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238172A (en) * 1988-03-18 1989-09-22 Fuji Electric Co Ltd Manufacture of mos type semiconductor device
JPH02100365A (en) * 1988-10-07 1990-04-12 Fuji Electric Co Ltd Manufacture of conductivity modulation type mosfet
US4898835A (en) * 1988-10-12 1990-02-06 Sgs-Thomson Microelectronics, Inc. Single mask totally self-aligned power MOSFET cell fabrication process
US5262339A (en) * 1989-06-12 1993-11-16 Hitachi, Ltd. Method of manufacturing a power semiconductor device using implants and solid diffusion source
EP1429391A1 (en) * 2002-12-10 2004-06-16 ABB Schweiz AG Insulated gate semiconductor device and method of making the same
WO2004053998A1 (en) * 2002-12-10 2004-06-24 Abb Schweiz Ag Insulated gate semiconductor device and method of making the same
US7224008B2 (en) 2002-12-10 2007-05-29 Abb Schweiz Ag Self-aligned production method for an insulated gate semiconductor device cell and insulated gate semiconductor device cell

Similar Documents

Publication Publication Date Title
US5382536A (en) Method of fabricating lateral DMOS structure
JPS61156882A (en) Double-diffused igfet and manufacture thereof
JP4009331B2 (en) MOS transistor and manufacturing method thereof
JPH0817848A (en) Manufacture of mos type electric power device
JP3206726B2 (en) Method for manufacturing MOS type semiconductor device
JPH09232458A (en) Bicmos device and its manufacture
JP2882291B2 (en) High breakdown voltage diode and method of manufacturing the same
JPS62229977A (en) Manufacture of conduction-modulation mosfet
JP3170610B2 (en) Manufacturing method of vertical field effect transistor
US5990518A (en) MOS device
JPH01132167A (en) Semiconductor device
JPS6225457A (en) Manufacture of vertical semiconductor device
JPH0878685A (en) Soi-mosfet and its manufacture
JP2892415B2 (en) Method for manufacturing semiconductor device
JPH11135783A (en) Mos transistor and manufacture thereof
JPH02296342A (en) Manufacture of mosfet
JPS6225456A (en) Vertical semiconductor device and manufacture thereof
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
KR100304718B1 (en) A power semiconductor device and method for manufacturing thereof
KR940002776B1 (en) Producting method for mosfet with cmos and soi complex structure
JPS6016469A (en) Manufacture of mis semiconductor device
JPS63133677A (en) Field-effect semiconductor device
JPH04297070A (en) Manufacture of insulated gate bipolar transistor
JPS62204574A (en) Insulated-gate field-effect semiconductor device
JP2722415B2 (en) Method for manufacturing semiconductor device