JPS60113971A - Thin-film field-effect type semiconductor device and manufacture thereof - Google Patents

Thin-film field-effect type semiconductor device and manufacture thereof

Info

Publication number
JPS60113971A
JPS60113971A JP22250683A JP22250683A JPS60113971A JP S60113971 A JPS60113971 A JP S60113971A JP 22250683 A JP22250683 A JP 22250683A JP 22250683 A JP22250683 A JP 22250683A JP S60113971 A JPS60113971 A JP S60113971A
Authority
JP
Japan
Prior art keywords
film
semiconductor
thin film
source
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22250683A
Other languages
Japanese (ja)
Other versions
JPH0449788B2 (en
Inventor
Sadakichi Hotta
定吉 堀田
Seiichi Nagata
清一 永田
Ikunori Kobayashi
郁典 小林
Shigenobu Shirai
白井 繁信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22250683A priority Critical patent/JPS60113971A/en
Publication of JPS60113971A publication Critical patent/JPS60113971A/en
Publication of JPH0449788B2 publication Critical patent/JPH0449788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To stabilize OFF characteristics by forming a semiconductor film having large Fermi level energy to the surface positioned on the side reverse to the gate electrode of a semiconductor film forming a channel section. CONSTITUTION:A nonsingle crystal semiconductor 11, which differs from a layer 4 having the following properties and mainly comprises Si, is formed to the surface positioned on the side reverse to the surface being in contact with a gate insulating layer 3 in a region as a channel of the semiconductor layer 4. The properties are that Fermi level energy DELTAEF=EC-Ef measured from conduction band width EC is larger than the layer 4 shaping the channel in a semiconductor thin-film FET. Accordingly, stable characteristics can be displayed particularly under an OFF state even when there are gas adsorption, difference in the manufacture of an insulating film 8 in a process for shielding beams and charges by the floating potential of an optical shielding metal 9 on the free space side.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜電界効果トランジスタ及びその製造方法
に係り、とりわけ水素化非晶質シリコン(a−8t:H
)等の非単結晶シリコン又はシリコン化合物半導体膜な
どの■族元素を主成分とする半導体薄膜電界効果トラン
ジスタ(以降TPTと呼ぶ)及びその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film field effect transistor and a method for manufacturing the same, and particularly relates to a thin film field effect transistor and a method for manufacturing the same.
The present invention relates to a semiconductor thin film field effect transistor (hereinafter referred to as TPT) whose main component is a group Ⅰ element such as a non-single crystal silicon or silicon compound semiconductor film such as ), and a method for manufacturing the same.

従来例の構成とその問題点 600℃以下七いう比較的低温で、プラズマ堆積法、ス
パッタ法あるいは熱CV−D法で作製され、水素、フッ
素等によって原子結合対の不完全性が補償された非晶質
シリコンを代表とする■族元素を主成分とした非単結晶
半導体薄膜は、弱いn型又は真性の電子電導性を示し電
子易動度が0.1〜10c++t/ V・secと比較
的大きく且つ単結晶シリコン等と比べ@抵抗が大きいた
めp m l’l接合分離を形成しなくてもTPTにし
た場合オン抵抗とオフ抵抗の比(ON−OFF比)が大
きくとれる。従って、これらの半導体TPTは、液晶と
組合せることによって画像表示装置等を構成したり、受
光素子と組合せることによってイメージセンサを構成し
たりするスイッチングアレー等への応用が有望である。
Conventional Structures and Problems They are fabricated at relatively low temperatures below 600°C by plasma deposition, sputtering, or thermal CV-D, and imperfections in atomic bonding pairs are compensated for by hydrogen, fluorine, etc. Non-single-crystalline semiconductor thin films mainly composed of group II elements, typified by amorphous silicon, exhibit weak n-type or intrinsic electronic conductivity and have an electron mobility of 0.1 to 10 c++t/V sec. Since it has a large surface area and a high resistance compared to single crystal silicon or the like, a large ratio of on resistance to off resistance (ON-OFF ratio) can be obtained when TPT is used without forming a pml junction isolation. Therefore, these semiconductor TPTs are promising for application to switching arrays and the like that configure image display devices and the like by combining with liquid crystals, and configure image sensors by combining with light-receiving elements.

以下a−SiH膜を用いたTPTについて主に述べる。The TPT using an a-SiH film will be mainly described below.

第1図(a) 、 (b)に従来用いられている水素化
非晶質シリコン(a−8i:H)半導体を用いた逆スタ
ガー型TPTの典型的な構造断面図を示す。
FIGS. 1(a) and 1(b) show typical structural cross-sectional views of an inverted staggered TPT using a conventionally used hydrogenated amorphous silicon (a-8i:H) semiconductor.

従来用いられているTPTの構成を第1図(a)。Figure 1(a) shows the configuration of a conventionally used TPT.

(b)を用い製造工程に従って説明する。先ずガラス等
基板1上にCr等の金属を蒸着しゲート電極2となるべ
き部分を残してエツチングする。次にプラズマCVD法
等により窒化シリコン膜3(以下SiNを0.1−0.
Eiμm、a−8i:H膜4を0.1−0.5μm、n
 にトープしたa−Si:H膜5a、5bを300八〜
1000八程度連続堆積する。次にTPTとして残すべ
き部分をレジストで被覆し、残余の部分のn+a−3i
:H,a−8i:H膜をエソチノグ除去する。次にAλ
等の金属を蒸着し、ソース、ドレインti6a、6bを
パタニング4る。
(b) will be used to explain the manufacturing process. First, a metal such as Cr is deposited on a substrate 1 such as glass and etched, leaving a portion to become the gate electrode 2. Next, a silicon nitride film 3 (hereinafter referred to as SiN) of 0.1-0.
Ei μm, a-8i: H film 4 is 0.1-0.5 μm, n
The a-Si:H films 5a and 5b doped with
Approximately 1,000 pieces are deposited continuously. Next, the part to be left as TPT is covered with resist, and the remaining part n+a-3i
:H, a-8i: Remove the H film with esotinog. Then Aλ
The source and drains ti6a and 6b are patterned 4.

更に、AJ2電極6a、6bをマスクにして、両電極間
に存在するn+a−5i:Hの部分領域7をエツチング
することにより第1図(d)の構造のT FTが完成す
る。
Furthermore, using the AJ2 electrodes 6a and 6b as a mask, the n+a-5i:H partial region 7 existing between the two electrodes is etched, thereby completing the TFT having the structure shown in FIG. 1(d).

第1図(a)の構造ではa−3i:H膜4のゲート絶縁
膜SiN3に対して反対、側に位置する領域7の面は、
自由表面であり、その電子状態は水やNH3等のガス吸
着や液晶パネルへ応用する場合、配向膜等の塗布により
非常に敏感に影響される。
In the structure of FIG. 1(a), the surface of the region 7 of the a-3i:H film 4 located on the opposite side to the gate insulating film SiN3 is
It is a free surface, and its electronic state is very sensitively affected by the adsorption of gases such as water and NH3, and by the coating of alignment films when applied to liquid crystal panels.

したがって、a−8i:HTFTを外光からの影響を除
外するために、第1図(−)の構造のTPTにポリミド
、チノ化シリコン、酸化シリコン等の絶縁膜8を介して
MO等の光じゃへい用金R9をTPTのチャンネル部(
■で示す○印部外)上に設置する構造のTPT第1図(
b)がある。この場合も絶縁膜8の被着形成方法や光じ
ゃへい金属9の電位の浮遊によってa−3t:H膜の7
で示される面は敏感に変化する。
Therefore, in order to exclude the influence of external light on the a-8i:HTFT, the TPT having the structure shown in FIG. Transfer the Jahei money R9 to the TPT channel section (
Figure 1 of the TPT (outside the circle indicated by
There is b). In this case as well, due to the deposition method of the insulating film 8 and the floating potential of the photoreceptive metal 9, the
The surface indicated by changes sensitively.

敏感に変化する様子を第1図(a) 、 (b)の(D
の断面に於けるa−3i:HTFTのバンド構造図、第
2図(a) 、 (b) 、 (C)を用いて説明する
。第2図(a) 、 (b) 。
The sensitive changes are shown in Figures 1 (a) and (b) (D).
This will be explained using FIGS. 2(a), 2(b), and 2(C), which are band structure diagrams of a-3i: HTFT in the cross section of . Figure 2 (a), (b).

(C)に於いて、番号の指定は第1図と同様で、2はゲ
ート電極部、3はゲート絶縁層、4は半導体層部分であ
って、そのバンド構造を示し、E c 、 E y。
In (C), the designation of numbers is the same as in FIG. 1, 2 is the gate electrode part, 3 is the gate insulating layer, and 4 is the semiconductor layer part, and the band structure is shown, E c , E y .

EFはそれぞれ伝導帯端エネルギー、価電子帯端エネル
ギー及びフェルミ準位エネルギーを示す。
EF indicates conduction band edge energy, valence band edge energy, and Fermi level energy, respectively.

又、Δ1.Δ2はデバイ長である。ゲート電極2に電圧
を印加しない初期の状態、第2図(a)では半導体層4
の伝導帯端はンラソトであると仮定する。
Also, Δ1. Δ2 is the Debye length. In the initial state in which no voltage is applied to the gate electrode 2, the semiconductor layer 4 is shown in FIG. 2(a).
Assume that the conduction band edge of is Nrasoto.

次に、ゲート電極2にゲート電圧Vaを位加すると、第
2図(b)に示す様に半導体層4のゲート絶縁層3との
界面側で伝導帯端Ecはデバイ長Δ1の深さ程度の領域
で下方にベンディングしTPTがON状態になる。自由
空間10側からの電界がなければ、第2図(a) 、 
(b)に示す様に、半導体層4の自由空間10側の伝導
帯端Ecは平坦である。しかるに自由空間10側には通
常パッシベーション膜がなければ電気陰性度が半導体層
−と異なるガスの吸着が生じ、表面に電荷Qが生じる。
Next, when a gate voltage Va is applied to the gate electrode 2, the conduction band edge Ec on the interface side with the gate insulating layer 3 of the semiconductor layer 4 is about the depth of the Debye length Δ1, as shown in FIG. 2(b). It bends downward in the region of , and the TPT becomes ON. If there is no electric field from the free space 10 side, Fig. 2(a),
As shown in (b), the conduction band edge Ec of the semiconductor layer 4 on the free space 10 side is flat. However, if there is normally no passivation film on the free space 10 side, gases having electronegativity different from that of the semiconductor layer will be adsorbed, and a charge Q will be generated on the surface.

寸だ、パッシベーションや光じゃへい用の金属を設置す
るだめの絶縁体を半導体層に付加した場合もその製造方
法や膜質及び光じゃへい用金属の浮遊電位により、半導
体層との界面に電荷Qを生じさせる。
Even if an insulator is added to the semiconductor layer for passivation or a metal for light shielding, a charge Q will be generated at the interface with the semiconductor layer depending on the manufacturing method, film quality, and floating potential of the metal for light shielding. cause

この電荷Q(正の場合)により半導体層4の自由空間1
o側の伝導帯端Ecはデバイ長Δ2の深さ程度の範囲で
下方にベンディングし、ベンディング量は半導体層4と
自由空間10の界面に於いてΔ■程度である。Δ2及び
ΔVは次の様に表される。
Due to this charge Q (if positive), the free space 1 of the semiconductor layer 4
The o-side conduction band edge Ec bends downward within a depth range of approximately Debye length Δ2, and the amount of bending is approximately Δ■ at the interface between semiconductor layer 4 and free space 10. Δ2 and ΔV are expressed as follows.

ΔV=2.44.x1o15−Q/J 、、−++・+
+・+(1)Δ =2.5csx1o’10− ・・−
(2)但し、ρは半導体層4のフェルミ準位付近のギヤ
ツブ内準位素度(Crn−5・eV−1)である。Qは
電荷量〔クーロン/ crt: 〕である。この結果、
半導体層4の自由空間10側にもバンドベンディングに
よるチャンネリングが生じTPTのドレイン電流に付加
される。従ってn型エン2・ンスメン)TPT特性のO
FF状態つまりゲート電極2にゲート電圧■Gか印加さ
れない状態に於いても、正の電荷Qによって生しる半導
体層4の自由空間10側のチャンネルにそって電子によ
るトレイン電流が流れ、TETのOFF電流は増加し、
その結果TPTの0N−OFF比(ON電流とOFF電
流の比)が低下する。この様な現象によって、従来のn
型エンハンスメン)TPTは製造方法、環境によって特
性が大きく変化し、再現性信頼性に欠けた。
ΔV=2.44. x1o15-Q/J ,,-++・+
+・+(1)Δ=2.5csx1o'10− ・・−
(2) However, ρ is the in-gear level prime degree (Crn-5·eV-1) near the Fermi level of the semiconductor layer 4. Q is the amount of electric charge [coulomb/crt: ]. As a result,
Channeling due to band bending also occurs on the free space 10 side of the semiconductor layer 4 and is added to the drain current of the TPT. Therefore, the O of the TPT characteristics
Even in the FF state, that is, when no gate voltage G is applied to the gate electrode 2, a train current due to electrons flows along the channel on the free space 10 side of the semiconductor layer 4 generated by the positive charge Q, and the TET The OFF current increases,
As a result, the ON-OFF ratio (ratio of ON current to OFF current) of the TPT decreases. Due to this phenomenon, the conventional n
(Mold Enhancement) TPT's characteristics varied greatly depending on the manufacturing method and environment, and it lacked reproducibility and reliability.

発明の目的 上 本発明は、以下に述べた従来のTPT (特にn型エン
ノ・ンスメントTFT)の欠点を改善し、TPTのOF
F特性を安定させることで、再現性信頼性のすぐれたT
PTを提供することを目的とする。
For the purposes of the invention, the present invention improves the drawbacks of conventional TPTs (particularly n-type enforcement TFTs) as described below, and improves the OFF of TPTs.
By stabilizing the F characteristic, T with excellent reproducibility and reliability
The purpose is to provide PT.

発明の構成 以下、本発明の構成をTPTの要部断面図である第3図
(、) 、 (b)を用いて説明する。
Structure of the Invention The structure of the present invention will be explained below with reference to FIGS.

本発明の特徴は、少なくとも半導体層4のチャに次の様
な性質を有する第2のシリコンを主成分とする非単結晶
半導体11を設置する所にある。
The feature of the present invention is that a second non-single crystal semiconductor 11 mainly composed of silicon is provided at least in the core of the semiconductor layer 4, and has the following properties.

その性質とは[−伝導帯端Ecから計ったツユ−ルミ準
位エネルギーΔEF−(EC−Ef)がTPTのチャン
ネルの形成する第1の半導体層4より大きい。
The property is that [- the Tschulmi level energy ΔEF-(EC-Ef) measured from the conduction band edge Ec is larger than the first semiconductor layer 4 formed by the TPT channel.

ということである。That's what it means.

本発明t7) T F’ Tの、第3図(a) 、 (
b)の(IV)の断面に於けるa−8i:HTFTのバ
ンド構造図を第4図及び第5図に示す。
The present invention t7) T F' T, FIG. 3(a), (
FIGS. 4 and 5 show band structure diagrams of the a-8i:HTFT in the section (IV) of b).

第4図にノンドープa−3i:H層4とより真性又は弱
いp型に価電子制御されたa−8t:H層詰のホモ接合
を有する例を示す。即ちa−8t:H膜層4の自由空間
10側の面に、伝導帯端Ecから計ったフェルミ準位エ
ネルギーΔEF2−EF−ECがa−3i:H膜のフェ
ルミ準位エネルギーΔEF1(通常0.5−o、5eV
)よシ大きい(ΔEF2〉ΔEF1)半導体層11とし
て例えばボロン等の■族元素をドープし真性又は弱いp
型に価電子制御されだa−3i:H膜層1を設置する。
FIG. 4 shows an example having a homojunction of a non-doped a-3i:H layer 4 and an a-8t:H layer packed with valence electrons controlled to be more intrinsic or weakly p-type. That is, on the surface of the free space 10 side of the a-8t:H film layer 4, the Fermi level energy ΔEF2-EF-EC measured from the conduction band edge Ec is equal to the Fermi level energy ΔEF1 of the a-3i:H film (usually 0 .5-o, 5eV
) is larger (ΔEF2>ΔEF1) The semiconductor layer 11 is doped with a group II element such as boron, and is made of an intrinsic or weak p-p semiconductor layer 11.
A valence electron controlled a-3i:H film layer 1 is placed on the mold.

この様にすれば、自由空間10側にガス吸着したり光じ
ゃへいのだめの工程に於ける絶縁膜(第3図の8)の製
造方法の差や光じゃへい金属9の浮遊電位により生じる
電荷Qか存在しても、電荷Qによる半導体層11の自由
空間10側表面に於ける伝導帯端Ecの下方へのヘンテ
ィング量ΔVをΔV(ΔEF2−ΔEF1の条件内にお
さめることが出来、このバントベンディングによる電子
の電流成分は、TPT本来のオフ電流にほとんど寄与し
ないほど小さくすることが出来る。つまり、本発明のT
PTは、○FF電流が自由空間1o側の影響を受けず安
定した0N−OFF比特性を示す。
In this way, gas adsorption on the free space 10 side, differences in the manufacturing method of the insulating film (8 in FIG. 3) in the process of preventing light blocking, and charges generated due to the floating potential of the light blocking metal 9 can be avoided. Even if Q exists, the downward bending amount ΔV of the conduction band edge Ec on the free space 10 side surface of the semiconductor layer 11 due to the charge Q can be kept within the condition of ΔV(ΔEF2−ΔEF1, and this The electron current component due to band bending can be made so small that it hardly contributes to the inherent off-state current of the TPT.
PT exhibits a stable ON-OFF ratio characteristic in which the FF current is not influenced by the free space 1o side.

第5図は、a−3i:H膜4とエネルギーギャップEg
=EC−Evがa−8i:H膜(通常E9−1.6〜1
.8)より大きい第2の半導体層11とのへテロ接合を
有する場合である。例えば、半導体層11として炭素、
酸素又は窒素を数多から70係程度含む非晶質シリコン
化合物半導体層(SICx:1−1膜SiOx:H膜又
はSiNx : H膜)を用いる。この様にすればおの
ずからΔEF2>ΔEF1の条件がみたされ前述したと
同様に0N−OFF比特性の安定したa−3i:HTF
Tが得られる。又5iCx:H。
Figure 5 shows the a-3i:H film 4 and the energy gap Eg.
=EC-Ev is a-8i:H film (usually E9-1.6~1
.. 8) A case where a heterojunction with the larger second semiconductor layer 11 is provided. For example, carbon as the semiconductor layer 11,
An amorphous silicon compound semiconductor layer (SICx: 1-1 film SiOx:H film or SiNx:H film) containing oxygen or nitrogen in a large number to about 70 parts is used. In this way, the condition of ΔEF2>ΔEF1 is naturally satisfied, and the a-3i:HTF with stable 0N-OFF ratio characteristics as described above.
T is obtained. Also 5iCx:H.

SiOx:H又はSiNx:Hにボロン等■族元素をト
ープすることにより、ΔEF2はさらに大きく出来、Δ
■〈ΔEF2−ΔEF1の条件を現出させやすい。
By doping SiOx:H or SiNx:H with group III elements such as boron, ΔEF2 can be further increased, and ΔEF2 can be further increased.
■ It is easy to make the condition of ∆EF2 - ∆EF1 appear.

ということは、自由空間10側の影響をさらに受けに〈
<シ効果が大きい。
This means that due to the influence of the free space 10 side,
<The effect is large.

更にボロン等■族を含むp型a−3i:H膜や、5iC
x:H,SiOx:H,SiNx:H膜等(7J) 7
 、 /l/ミ準位エネルギーEF付近のギヤツブステ
ート密度ρ(CnIeV )はa−8t:Hのρ(約1
015〜10 cm eV )より太き(,10−10
crneV−程度である。従って第4図、第6図に示す
自由空間10側の電荷Qの影響により電子伝導帯端Ec
のベンディングする膜厚方向の深さくデバイ長)Δ2 
及びベンディング量Δ■は(1)式、(2)式から明ら
かな様に、a−8i:H膜に比べて各々1/3〜1/1
0o程度に小さくなり、チャンネルを形成するa−3i
:H膜4(/iはとんど自由空間10側からの影響を受
けなくなる。
Furthermore, p-type a-3i:H film containing group II such as boron, and 5iC
x:H, SiOx:H, SiNx:H film, etc. (7J) 7
, /l/The gear state density ρ (CnIeV) near the Mi level energy EF is ρ of a-8t:H (approximately 1
015-10 cm eV) thicker (,10-10
crneV- level. Therefore, due to the influence of the charge Q on the free space 10 side shown in FIGS. 4 and 6, the electron conduction band edge Ec
The depth in the film thickness direction of bending (Debye length) Δ2
As is clear from equations (1) and (2), the bending amount Δ■ is 1/3 to 1/1 compared to the a-8i:H film, respectively.
a-3i which becomes small to about 0o and forms a channel
:H film 4(/i is hardly influenced by the free space 10 side.

実施例の説明 以下、本発明の実施例を製造方法も含めて詳細に説明す
る。
DESCRIPTION OF EXAMPLES Hereinafter, examples of the present invention will be described in detail, including manufacturing methods.

〔第1実施例〕 第6図、第7図に第1実施例のTPTの製造工程ならび
に要部断面図を示す。
[First Embodiment] FIGS. 6 and 7 show the manufacturing process of the TPT of the first embodiment and sectional views of essential parts.

先ず、ガラス等基板1にクロムを蒸着しゲート電極2と
なるべき部分を残してエツチングする〔第6図(a)〕
。次にプラズマCVDによりチン化シリコン膜3を40
00八程度、a−8i:H膜4を40Q〇八程度、n+
ドープのa−3i:H膜6を600人程真空続して堆積
する。次にTPTとして残すべき部分をフォトレジスト
で被覆し、残余の部分のn+a −3i : H膜5a
−5i:H膜4をエツチング除去する〔第6図(b)〕
First, chromium is deposited on a substrate 1 such as glass and etched, leaving only the part that will become the gate electrode 2 [FIG. 6(a)].
. Next, a silicon nitride film 3 with a thickness of 40% is formed by plasma CVD.
About 008, a-8i:H film 4 about 40Q08, n+
A doped a-3i:H film 6 is successively deposited by about 600 people under vacuum. Next, the portion to be left as TPT is covered with photoresist, and the remaining portion is coated with n+a −3i:H film 5a.
-5i: Etching and removing the H film 4 [Figure 6(b)]
.

次ニ、クロムとアルミニウムの多層金属を蒸着し、ソー
ス、ドレイン電極6a、6bとしてパタニングし、ソー
ス、ドレイン電極ea、ebをマスクに両電極間に存在
するn+a−8i:H5をエツチング除去することによ
りソース、ドレイン電極6a、6bとa−8t:H膜と
のオーミック接触用のn+a−8t:H膜領域5a、5
bを形成する〔第6図(C)〕。更に、70:30の流
量比で混合したシランガスとメタンガスにo、1vo1
%程度のジボランを混ぜてプラズマCVD法によりp型
の5iCx:H膜11′500八−1000八程度を全
面に堆積する〔第6図い)〕。
Next, a multilayer metal of chromium and aluminum is deposited and patterned as source and drain electrodes 6a and 6b, and n+a-8i:H5 present between the two electrodes is removed by etching using the source and drain electrodes ea and eb as masks. n+a-8t:H film regions 5a, 5 for ohmic contact between the source and drain electrodes 6a, 6b and the a-8t:H film.
b [Fig. 6(C)]. Furthermore, o, 1 vol was added to the silane gas and methane gas mixed at a flow rate ratio of 70:30.
A p-type 5iCx:H film 11' of about 5008-10008% is deposited on the entire surface by plasma CVD with diborane of about 10% mixed therein (see Fig. 6).

最後に、ポリイミドを1μ程度選択的に被着形成して絶
縁層8とし、その上にTPTのチャンネル部に外光の入
射を防ぐ光じゃへい板9をモリブデン金属等で形成した
後、絶縁層8をマスクに5iCx層11′を選択的に除
去して第3図の半導体層11を形成し、第6図(e)に
示す本発明のTPTを製造する。
Finally, polyimide is selectively deposited to form an insulating layer 8 of about 1 μm, and a light shielding plate 9 made of molybdenum metal or the like is formed on top of this to prevent external light from entering the channel portion of the TPT. 8 as a mask, the 5iCx layer 11' is selectively removed to form the semiconductor layer 11 shown in FIG. 3, and the TPT of the present invention shown in FIG. 6(e) is manufactured.

この実施例に於けるp型5iCx:H層11のΔ”F2
は1.4eVであり第5図に於いてΔE −ΔEF1は
約0,7eVとなる。又フエノベ2 準位エネルギー付近のギヤツブ準位密度ρハ約1018
on−3eV−” であり、テ・くイ長Δ2 ;260
八となる。従って5iCx:H層11′を500人も堆
積させれば外部からの固定電荷による電界しみ込み(テ
・・イ長)は十分5iCx:Hで吸収され、TPTのO
FF特性を劣化させない。更に電荷量NS (Q/ec
cn−21; e電子の電荷クーロン)が1012(−
cm−2:] という大きな量(ゲート電圧2O−30
V以上に相当)になっても5iCx:Hの表面のバント
の下方ベンディング量Δ■は0.4eV程度で、ΔV=
0.4eV(ΔEF2−ΔEF1−0.7e■の条件が
満され、バンドベンディングによる電子伝導によりTP
TのOFF%性を劣化させない。
Δ”F2 of p-type 5iCx:H layer 11 in this example
is 1.4 eV, and in FIG. 5, ΔE - ΔEF1 is approximately 0.7 eV. Also, the gear level density ρ near the level energy of Fuenobe 2 is approximately 1018
on-3eV-", and the length Δ2; 260
It becomes eight. Therefore, if 500 layers of 5iCx:H layer 11' are deposited, the penetration of the electric field (TE length) due to external fixed charges will be sufficiently absorbed by 5iCx:H, and the TPT O
Does not deteriorate FF characteristics. Furthermore, the amount of charge NS (Q/ec
cn-21; e electron charge coulomb) is 1012(-
cm-2: ] (gate voltage 2O-30
Even if the amount of downward bending Δ■ of the bunt on the surface of 5iCx:H is about 0.4 eV, ΔV=
0.4eV (ΔEF2-ΔEF1-0.7e■ condition is satisfied, TP due to electron conduction due to band bending
Does not deteriorate the OFF% property of T.

第7図に本発明のTPTのドレイン電流■D(A−ゲー
ト電圧■GCV)特性を示す。従来、本発明の5iCx
:H層11を用いずに光じゃへいしたTPT〔第7図の
(B)〕は、光じゃへい工程を通す前のTPTを乾燥雰
囲気で測定したもの〔第7図の(八〕と比べvG−0付
近でドレイン電流がもち上がりOFF電流が増加した結
果、0N−OFF比が105から105台に劣化してい
る。
FIG. 7 shows drain current (D) (A-gate voltage (GCV)) characteristics of the TPT of the present invention. Conventionally, the 5iCx of the present invention
: TPT light shielded without using the H layer 11 [Figure 7 (B)] is compared with TPT measured in a dry atmosphere before undergoing the light shielding process [Figure 7 (8)]. As a result of the drain current rising near vG-0 and the OFF current increasing, the 0N-OFF ratio deteriorates from 105 to 105.

一方、本発明のTFT [:第7図(C) )ではTP
Tのゲートしきい値電圧■Tは多少ゲート電圧負の側に
シフトしているが、ON−〇FF特性は5ケタ(10)
以上を維持している。
On the other hand, in the TFT of the present invention [: Fig. 7(C)), TP
Gate threshold voltage of T■ Although T is slightly shifted to the negative side of the gate voltage, the ON-FF characteristics are 5 digits (10)
The above is maintained.

〔第2実施例〕 本発明による第2のTET製造実施例を、第8図(a)
、(b)の要部工程断面図を用いて説明する。第8図(
a)は従来と同じ工程をへて製造されたTPTであり、
ソース、ドレイン電極形成まで完了している。
[Second Example] A second TET manufacturing example according to the present invention is shown in FIG. 8(a).
, (b) will be explained using the main part process sectional view. Figure 8 (
a) is TPT manufactured through the same process as before,
Formation of source and drain electrodes has been completed.

次に、ソース、ドレイン電極をマスクにしてTPTのチ
ャンネル部にボロン又は炭素、チッ素、酸素の内掛なく
とも1元素以上をイオン注入法により半導体層4の裏面
に注入してドープされた領域を形成しこのドープ領域を
半導体層11として本発明のTPT第9図(b)が完成
する。
Next, using the source and drain electrodes as masks, at least one element among boron, carbon, nitrogen, and oxygen is implanted into the back surface of the semiconductor layer 4 by an ion implantation method into the channel portion of the TPT, thereby doping the region. This doped region is used as the semiconductor layer 11 to complete the TPT of the present invention (FIG. 9(b)).

〔第3の実施例〕 第9図(a)〜(e)に本発明のTPTの第3の実施製
造方法を要部工程断面図により説明する。クロム等の金
属がゲート電極2として選択的に被着形成された基板1
に〔第9図(a)〕、ゲート絶縁膜としてチソ化シリコ
ン膜3、a−3i:H膜4をそれぞれ厚さ0.1μm−
0,4μm程度プラズマCVD装置で堆積する。引き続
き、ボロンを1010 at係含むSiC膜11’、4
と同等のa−9i:H膜15゜n4−トープしたa−3
i:H膜5をそれぞれ厚さ100人、1000八、50
0八程度連続し産堆積する〔第9図(b) −’ o第
1のa−8i:H膜4 、 SiC膜11′、第2のa
−3i:H膜16.n+ドープしたa−3i : H膜
5 ヲフォトレジストをマスクにCF4ガス、02 ガ
スの混合ガスを導入したプラズマエツチング装置によっ
て不要部分を除去してノくターニングしSiC半導体膜
11を形成する〔第9図(C)〕。
[Third Embodiment] A third embodiment of the TPT manufacturing method of the present invention will be explained with reference to main part process sectional views in FIGS. 9(a) to 9(e). A substrate 1 on which a metal such as chromium is selectively deposited as a gate electrode 2.
[FIG. 9(a)], a thiosinated silicon film 3 and an a-3i:H film 4 are each formed with a thickness of 0.1 μm as a gate insulating film.
It is deposited to a thickness of about 0.4 μm using a plasma CVD device. Subsequently, SiC films 11' and 4 containing 1010 at of boron are formed.
a-9i:H film 15°n4-toped a-3 equivalent to
The i:H film 5 has a thickness of 100, 1000, and 50, respectively.
08 continuous deposits [Fig. 9(b) -' o first a-8i: H film 4, SiC film 11', second a
-3i:H film 16. Using the photoresist as a mask, the n+ doped a-3i:H film 5 is etched using a plasma etching device into which a mixed gas of CF4 gas and 02 gas is introduced to remove unnecessary portions and turn the film to form a SiC semiconductor film 11. Figure 9 (C)].

アルミニウム等の金属をソース、ドレイン電極6a、6
bとして選択的に被着形成〔第9図(d)〕した後、ソ
ースドレイン電極6a、6bをマスクにフッ酸と硝酸及
び水の混合液でンース、ドレイン電極間に存在する第2
のa−3t:H膜15.n+ドープしだa−3i:H膜
5を選択的に除去することにより第9図(e)に示すT
PTが完成する。5a。
Metal such as aluminum is used as source and drain electrodes 6a, 6.
9(d)], the source and drain electrodes 6a and 6b are used as masks and a mixture of hydrofluoric acid, nitric acid, and water is used to remove the second layer existing between the drain electrodes.
a-3t: H film 15. By selectively removing the n+ doped a-3i:H film 5, the T shown in FIG.
PT is completed. 5a.

5bはソース、ドレ(7電極6a、5bとa−3i:H
膜4とのオーミック接触改善に寄与し、ボールブロッキ
ンク層15 a 、 15 bij:ホールフロノキン
グ性能を上げるだめのものである。
5b is the source, drain (7 electrodes 6a, 5b and a-3i: H
Ball blocking layers 15a, 15bij: They contribute to improving the ohmic contact with the film 4 and improve the hole blocking performance.

この構造孕び製法の上の第1の特徴は、本発明の他の実
施例と同様にa−3t:H膜4のゲート電極2と反対に
位置する面にボロンをドープしたS i Cx :H(
x=o−0,7)膜11を設置することにより、その後
の工程や外部から影響を受け離りくなり、OFF状態の
安定したTPTが提供出来る。
The first feature of this structure and manufacturing method is that the surface of the a-3t:H film 4 opposite to the gate electrode 2 is doped with boron, similar to other embodiments of the present invention. H(
x=o-0,7) By installing the membrane 11, it is isolated from subsequent processes and influences from the outside, and a stable TPT in an OFF state can be provided.

本実施例の第2の特徴は、オーミック層5、ブロッキン
グ層15を選択的に除去する工程に於いて、ボロンをド
ープした5iCx:H膜11′がエツチングストッパー
になり不要にa−3i:H膜4を除去するということが
なくなり、a−3i:H膜4の膜べりがなく、TPTの
設計通りの膜厚におさまるということである。
The second feature of this embodiment is that in the process of selectively removing the ohmic layer 5 and the blocking layer 15, the boron-doped 5iCx:H film 11' acts as an etching stopper, eliminating unnecessary a-3i:H etching. This means that there is no need to remove the film 4, there is no thinning of the a-3i:H film 4, and the thickness falls within the designed thickness of TPT.

以上では、半導体薄膜の一方の面にゲート絶縁膜があり
他方の面にソース、トレイン電極を有するスタカー型T
PTで、且つ第3.6,7,9゜10.11図に例示す
るように基板側にゲート電極を先ず形成する構造の逆ス
タガー型TPTにつき本発明の詳細な説明した。本発明
の基本とするところは第4,5図のバンドダイヤグラム
に示される思想をTPTに具現化することであり、半導
体薄膜の一方の側にケート絶縁膜及びソース、トレイン
1程極を有するコプレナー型にも適用されるのは当然で
ある。
In the above, a stacker type T having a gate insulating film on one side of a semiconductor thin film and source and train electrodes on the other side is used.
The present invention has been described in detail with respect to an inverted stagger type TPT having a structure in which a gate electrode is first formed on the substrate side as illustrated in FIGS. 3.6, 7, 9 and 10.11. The basis of the present invention is to embody the idea shown in the band diagrams in Figs. 4 and 5 in TPT, and to form a coplanar film with a gate insulating film, a source, and a pole about train 1 on one side of a semiconductor thin film. Of course, it also applies to types.

発明の効果 本発明は、チャンネル部を形成するa−8i:H膜のゲ
ート電極と反対の側に位置する面にa−3i:H膜より
伝導帯端から計ったフェルミ準位エネルギーΔEFが大
きい半導体膜を設置することにより、外部からのガス吸
着並びにTPTのソース・ドレイン形成後の工程による
影響に対して安定な特性(特にOFF状態時に)を有す
るTPTを提供出来る。又、本発明はソース、ドレイン
電極のオーミック層形成工程に於いて半導体層(a−8
i:H膜)の不要なオーバーエツチングがなく、その膜
厚が設計通りに実現出来るという効果も有する。
Effects of the Invention In the present invention, the Fermi level energy ΔEF measured from the conduction band edge is larger than that of the a-3i:H film on the surface of the a-8i:H film that forms the channel portion, located on the side opposite to the gate electrode. By providing the semiconductor film, it is possible to provide a TPT that has stable characteristics (especially in the OFF state) against the effects of external gas adsorption and processes after forming the source and drain of the TPT. Furthermore, the present invention provides a semiconductor layer (a-8
There is no unnecessary overetching of the i:H film), and the film thickness can be achieved as designed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は従来のTPTの要部構成断
面図、第2図体Mb) 、 (C)は従来のTPTのバ
ンド構造図、第3図(a) 、 (b)は本発明の実施
例のTPTの要部構成断面図、第4図、第6図は本発明
のTPTのバンド構造図、第6図(−) −(e) 、
第8図(a) 、 (b) 、第9図(a)〜(e)は
本発明のTPTの要部製造工程断面図、第7図はTPT
のドレイン電流−ゲート電圧特性を示す図である。 1・・・・・基板、2・・・・・・ゲート電極、3・・
・・ゲート絶縁膜、4.16・−−−a−3i:H膜、
5,5a。 6 b −−−−n”ドープa−3t:H膜、6+6a
、eb・・・・・・ソース、ドレイン電極、11・・・
・・ボロン、炭素、チッ素、酸素の内掛なくとも1元素
を含むa−8i:H膜又はa−8i化合物半導体膜。 代理人の氏名 弁理士 中 尾 敏 男 はが1名菓 
1 図 (α) (1) (bジ 第2図 (a−) 第2図 (C) 3図 (α9 (11) (b) 2 / 第 5 口 第6図 (0L) 第6図 (e) l ? 捌 7 図 一5o s to ts z。 Vex CV) 妃8図 (α) B+ l ? (′I)) 1 ? 第9図 (6し)
Figures 1 (a) and (b) are cross-sectional views of the main parts of a conventional TPT, Figures 2 (Mb) and (C) are band structure diagrams of a conventional TPT, and Figures 3 (a) and (b) are FIGS. 4 and 6 are cross-sectional views of the main parts of the TPT according to the embodiment of the present invention, and FIGS. 6 and 6 are band structure diagrams of the TPT according to the present invention, respectively.
Figures 8(a), (b), and 9(a) to (e) are cross-sectional views of the main parts of the TPT of the present invention, and Figure 7 is a cross-sectional view of the TPT of the present invention.
FIG. 2 is a diagram showing drain current-gate voltage characteristics of FIG. 1...Substrate, 2...Gate electrode, 3...
・・Gate insulating film, 4.16・---a-3i:H film,
5,5a. 6 b ----n” doped a-3t:H film, 6+6a
, eb...source, drain electrode, 11...
... an a-8i:H film or an a-8i compound semiconductor film containing at least one element among boron, carbon, nitrogen, and oxygen. Name of agent: Patent attorney Toshio Nakao
1 Figure (α) (1) (b Figure 2 (a-) Figure 2 (C) Figure 3 (α9 (11) (b) 2 / 5th Figure 6 (0L) Figure 6 (e) ) l ? Figure 9 (6)

Claims (6)

【特許請求の範囲】[Claims] (1) シリコンを主成分とする非単結晶半導体薄膜を
用いた薄膜電界効果型トランジスタのチャンネルを形成
する第1の半導体薄膜の2つの表面のうち少なくとも一
方の表面に接する様に、伝導帯エネルギ一端ECから計
ったフェルミ準位エネルギー(EC−Ef)が前記第1
の半導体薄膜より大きいフェルミ準位エネルギーを有す
る第2の半導体薄膜を形成したことを特徴とする薄膜電
界効果型半導体装置。
(1) Conduction band energy The Fermi level energy (EC-Ef) measured from EC is the first
1. A thin-film field-effect semiconductor device comprising a second semiconductor thin film having a higher Fermi level energy than that of the semiconductor thin film.
(2)第2の半導体薄膜にホロン等の■族元素を不純物
としてドープしたことを特徴とする特5/[請求の範囲
第1項記載の薄膜電界効果型半導体装置。
(2) The thin film field effect semiconductor device according to claim 1, characterized in that the second semiconductor thin film is doped with a group Ⅰ element such as holon as an impurity.
(3)第2の半導体薄膜のエネルギーギャップEgが、
第1の半導体薄膜のエネルギーギャップに比べて大きい
ことを特徴とする特許請求の範囲第1項記載の薄膜電界
効果型半導体装置。
(3) The energy gap Eg of the second semiconductor thin film is
2. The thin film field effect semiconductor device according to claim 1, wherein the energy gap is larger than the energy gap of the first semiconductor thin film.
(4)逆スタガー構造のシリコンを主成分とする非単結
晶半導体薄膜電界効果型トランジスタの製造に際し、ソ
ース、ドレイン電極を選択的に被着形成する工程の後に
ボロン炭素、チッ素、酸素のうち少なくとも1つ以上の
元素を含むシリコンを主成分とする第2の非単結晶半導
体膜を堆積する工程及び少なくとも前記ソース、トレイ
ン電極間に前記第2の半導体膜を残す工程を含むことを
特徴とする薄膜電界効果型半導体装置の製造方法。
(4) When manufacturing a non-single-crystal semiconductor thin-film field effect transistor mainly composed of silicon with an inverted staggered structure, after the process of selectively depositing source and drain electrodes, one of boron, carbon, nitrogen, and oxygen is removed. The method includes the steps of: depositing a second non-single crystal semiconductor film mainly composed of silicon containing at least one element; and leaving the second semiconductor film between at least the source and train electrodes. A method for manufacturing a thin film field effect semiconductor device.
(5)逆スタガー構造のシリコンを主成分とする非単結
晶半導体薄膜電界効果型トランジスタの製造に際し、ソ
ース、トレイン電極を選択的に被着形成する工程の後に
、前記ソース、ドレイン電極をマスクにして前記非単結
晶半導体薄膜にボロン。 炭素、チッ素、酸素のうち少なくとも1つ以上の元素を
イオン注入法で注入する工程を含む薄膜電界効果型半導
体装置の製造方法。
(5) When manufacturing a non-single-crystal semiconductor thin-film field-effect transistor with an inverted staggered structure and whose main component is silicon, after the step of selectively depositing the source and train electrodes, the source and drain electrodes are used as masks. Boron is added to the non-single crystal semiconductor thin film. A method for manufacturing a thin film field-effect semiconductor device, which includes a step of implanting at least one element among carbon, nitrogen, and oxygen using an ion implantation method.
(6)選択的にゲート電極が被着形成された基板に、ゲ
ート絶縁膜、シリコンを主成分とする第1の非単結晶半
導体膜、ボロン、炭素、酸素、チッ素のうぢ少なくとも
1つ以上の元素を含むシリコンを主成分とする第2の非
単結晶半導体膜、第3の真性型の非単結晶半導体膜及び
n l・−プされた第4の非単結晶半導体膜を連続して
堆積する工程、前記第1.第2.第3及び第4の非単結
晶半導体膜をパターニングする工程、ソース、ドレイン
電極を選択的に被着形成した後に前記ソース、ドレイン
電極をマスクにして前記ソース、トレイン間に延在する
前記第3.第4の非単結晶半導体膜を除去する工程を含
む薄膜電界効果型半導体装置の製造方法。
(6) A gate insulating film, a first non-single crystal semiconductor film mainly composed of silicon, and at least one of boron, carbon, oxygen, and nitrogen on the substrate on which the gate electrode is selectively deposited. A second non-single-crystalline semiconductor film mainly composed of silicon containing the above elements, a third intrinsic-type non-single-crystalline semiconductor film, and a fourth n-type non-single-crystalline semiconductor film are successively formed. 1. Second. a step of patterning third and fourth non-single crystal semiconductor films; after selectively depositing and forming source and drain electrodes, using the source and drain electrodes as a mask, the third layer extends between the source and the train; .. A method for manufacturing a thin film field effect semiconductor device, including a step of removing a fourth non-single crystal semiconductor film.
JP22250683A 1983-11-26 1983-11-26 Thin-film field-effect type semiconductor device and manufacture thereof Granted JPS60113971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22250683A JPS60113971A (en) 1983-11-26 1983-11-26 Thin-film field-effect type semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22250683A JPS60113971A (en) 1983-11-26 1983-11-26 Thin-film field-effect type semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60113971A true JPS60113971A (en) 1985-06-20
JPH0449788B2 JPH0449788B2 (en) 1992-08-12

Family

ID=16783492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22250683A Granted JPS60113971A (en) 1983-11-26 1983-11-26 Thin-film field-effect type semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60113971A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198865A (en) * 1984-03-23 1985-10-08 Nec Corp Thin film transistor
JPS615578A (en) * 1984-06-19 1986-01-11 Nec Corp Thin film transistor
JPS6189672A (en) * 1984-10-09 1986-05-07 Agency Of Ind Science & Technol Thin film transistor
JPS63193568A (en) * 1987-02-05 1988-08-10 Mitsubishi Electric Corp Thin film transistor
JPH01102968A (en) * 1987-10-15 1989-04-20 Nec Corp Liquid crystal panel device
JPH01120070A (en) * 1987-11-02 1989-05-12 Nec Corp Thin-film transistor
JPH01241175A (en) * 1988-03-23 1989-09-26 Seikosha Co Ltd Manufacture of amolphous silicon thin film transistor
JPH01276768A (en) * 1988-04-28 1989-11-07 Fujitsu Ltd Manufacture of thin film transistor
JPH0230186A (en) * 1988-07-19 1990-01-31 Agency Of Ind Science & Technol Thin-film field-effect transistor and manufacture thereof
JPH0250483A (en) * 1988-08-12 1990-02-20 Seikosha Co Ltd Silicon thin film transistor and manufacture thereof
JPH0256822A (en) * 1988-05-02 1990-02-26 Canon Inc Electron emitting element manufacture
JPH06291316A (en) * 1992-02-25 1994-10-18 Semiconductor Energy Lab Co Ltd Thin film insulated gate semiconductor device and manufacture thereof
JPH06314698A (en) * 1993-03-05 1994-11-08 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
JPH06314785A (en) * 1993-03-05 1994-11-08 Semiconductor Energy Lab Co Ltd Thin film semiconductor device and its manufacture
JPH07176753A (en) * 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
US5821559A (en) * 1991-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS=1982 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198865A (en) * 1984-03-23 1985-10-08 Nec Corp Thin film transistor
JPS615578A (en) * 1984-06-19 1986-01-11 Nec Corp Thin film transistor
JPS6189672A (en) * 1984-10-09 1986-05-07 Agency Of Ind Science & Technol Thin film transistor
JPS63193568A (en) * 1987-02-05 1988-08-10 Mitsubishi Electric Corp Thin film transistor
JPH01102968A (en) * 1987-10-15 1989-04-20 Nec Corp Liquid crystal panel device
JPH01120070A (en) * 1987-11-02 1989-05-12 Nec Corp Thin-film transistor
JPH01241175A (en) * 1988-03-23 1989-09-26 Seikosha Co Ltd Manufacture of amolphous silicon thin film transistor
JPH01276768A (en) * 1988-04-28 1989-11-07 Fujitsu Ltd Manufacture of thin film transistor
JPH0256822A (en) * 1988-05-02 1990-02-26 Canon Inc Electron emitting element manufacture
JPH0687392B2 (en) * 1988-05-02 1994-11-02 キヤノン株式会社 Method for manufacturing electron-emitting device
JPH0230186A (en) * 1988-07-19 1990-01-31 Agency Of Ind Science & Technol Thin-film field-effect transistor and manufacture thereof
US5075746A (en) * 1988-07-19 1991-12-24 Agency Of Industrial Science And Technology Thin film field effect transistor and a method of manufacturing the same
JPH0250483A (en) * 1988-08-12 1990-02-20 Seikosha Co Ltd Silicon thin film transistor and manufacture thereof
US5821559A (en) * 1991-02-16 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US6028333A (en) * 1991-02-16 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Electric device, matrix device, electro-optical display device, and semiconductor memory having thin-film transistors
US5894151A (en) * 1992-02-25 1999-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having reduced leakage current
JPH06291316A (en) * 1992-02-25 1994-10-18 Semiconductor Energy Lab Co Ltd Thin film insulated gate semiconductor device and manufacture thereof
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US7148542B2 (en) 1992-02-25 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
US7649227B2 (en) 1992-02-25 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of forming the same
JPH06314785A (en) * 1993-03-05 1994-11-08 Semiconductor Energy Lab Co Ltd Thin film semiconductor device and its manufacture
JPH06314698A (en) * 1993-03-05 1994-11-08 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
JPH07176753A (en) * 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture

Also Published As

Publication number Publication date
JPH0449788B2 (en) 1992-08-12

Similar Documents

Publication Publication Date Title
JPS60113971A (en) Thin-film field-effect type semiconductor device and manufacture thereof
JP2542448B2 (en) Field effect transistor and method of manufacturing the same
WO2017008331A1 (en) Tft substrate structure and manufacturing method therefor
JPS63258072A (en) Field-effect transistor
KR100272260B1 (en) Thin film transistor using diamond like carbon and manufacturing method thereof
US6166400A (en) Thin film transistor of liquid crystal display with amorphous silicon active layer and amorphous diamond ohmic contact layers
JPS6165477A (en) Semiconductor device
JP2014003196A (en) Semiconductor device
JPH01309378A (en) Thin-film semiconductor element
JP2631476B2 (en) Method for manufacturing thin film transistor
JPH0564862B2 (en)
JPS631072A (en) Thin-film field-effect transistor
JPH0575127A (en) Thin-film semiconductor device
JPS59163871A (en) Double gate type thin-film transistor
JPS62160769A (en) Thin film transistor element
JP2523679B2 (en) Thin film transistor and manufacturing method thereof
JPH06120505A (en) Thin film transistor
JPH0691103B2 (en) Method for manufacturing insulating gate type transistor
JPH01115162A (en) Thin film transistor and manufacture thereof
KR100370451B1 (en) Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process
JPS59124165A (en) Insulated gate type transistor and manufacture thereof
KR100200346B1 (en) Thin film transistor having contact layer and making method thereof
JP3492710B2 (en) Thin film transistor and method for manufacturing the same
JPH01309379A (en) Thin-film semiconductor element
JPH01149480A (en) Thin film semiconductor element