JPH07176753A - Thin-film semiconductor device and its manufacture - Google Patents

Thin-film semiconductor device and its manufacture

Info

Publication number
JPH07176753A
JPH07176753A JP34394993A JP34394993A JPH07176753A JP H07176753 A JPH07176753 A JP H07176753A JP 34394993 A JP34394993 A JP 34394993A JP 34394993 A JP34394993 A JP 34394993A JP H07176753 A JPH07176753 A JP H07176753A
Authority
JP
Japan
Prior art keywords
thin film
region
semiconductor region
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34394993A
Other languages
Japanese (ja)
Inventor
Hideomi Suzawa
秀臣 須沢
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP34394993A priority Critical patent/JPH07176753A/en
Publication of JPH07176753A publication Critical patent/JPH07176753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To increase the resistance between a semiconductor region and a source-drain and to enhance the breakdown strength of this part by a method wherein an element which is different from that of a main component for the semiconductor region is introduced into a tapered edge in the semiconductor region. CONSTITUTION:A TFT is formed on a substrate 11. A thin-film semiconductor region is situated under an impurity region 13 and a gate electrode 17. It is divided substantially into intrinsic channel formation regions 12. A gate insulating film 15 is formed so as to cover the semiconductor region. In the impurity region, a contact hole is opened through a layer insulator 19, and electrode interconnections 18 are formed. An insular semiconductor region 10 is provided with a tapered edge, and a high-resistance region 14 is formed near the tapered edge. Since the edge is tapered, the coverage of the gate insulating film 15 is enhanced, its film thickness becomes uniform, and a locally thin region is not formed. Thereby, the breakdown strength of this part is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜集積回路に用いる
回路素子、例えば、薄膜トランジスタ(TFT)の構造
および作製方法に関するものである。本発明によって作
製される薄膜トランジスタは、ガラス等の絶縁基板上、
単結晶シリコン等の半導体基板上に形成された絶縁体
上、いずれにも形成される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and manufacturing method of a circuit element used in a thin film integrated circuit, for example, a thin film transistor (TFT). The thin film transistor manufactured by the present invention is on an insulating substrate such as glass,
It is formed on any insulator formed on a semiconductor substrate such as single crystal silicon.

【0002】[0002]

【従来の技術】従来、薄膜トランジスタは、形成された
非単結晶半導体被膜を島状にパターニングして、島状半
導体領域(活性層)として形成した後、ゲイト絶縁膜と
して、CVD法やスパッタ法によって絶縁被膜を形成
し、その上にゲイト電極を形成した。
2. Description of the Related Art Conventionally, in a thin film transistor, a formed non-single-crystal semiconductor film is patterned into an island shape to form an island-shaped semiconductor region (active layer), and then a gate insulating film is formed by a CVD method or a sputtering method. An insulating film was formed, and a gate electrode was formed on it.

【0003】[0003]

【発明が解決しようする課題】CVD法やスパッタ法で
形成される絶縁被膜はステップカバレージ(段差被覆
性)が悪く、信頼性や歩留り、特性に悪影響を及ぼして
いた。図2には従来の典型的なTFTを上から見た図、
およびその図面のA−A’、B−B’に沿った断面図を
示す。TFTは基板21上に形成され、薄膜半導体領域
は不純物領域(ソース、ドレイン領域、ここではN型の
導電型を示す)23とゲイト電極27の下に位置し、実
質的に真性のチャネル形成領域22に分けられ、この半
導体領域を覆って、ゲイト絶縁膜25が設けられる。不
純物領域23には、層間絶縁物29を通してコンタクト
ホールが開けられ、電極・配線28が設けられる。
The insulating coating formed by the CVD method or the sputtering method has a poor step coverage (step coverage), which adversely affects reliability, yield, and characteristics. FIG. 2 is a view of a typical conventional TFT seen from above,
And a cross-sectional view taken along line AA ′ and BB ′ of the drawing. The TFT is formed on the substrate 21, the thin film semiconductor region is located below the impurity region (source / drain region, which shows N-type conductivity here) 23 and the gate electrode 27, and is a substantially intrinsic channel forming region. A gate insulating film 25 is provided so as to cover the semiconductor region. In the impurity region 23, a contact hole is opened through an interlayer insulator 29, and an electrode / wiring 28 is provided.

【0004】図から分かるように、ゲイト絶縁膜25の
半導体領域の端部における被覆性は著しく悪く、典型的
には平坦部の厚さの半分しか厚みが存在しない。一般に
島状半導体領域が厚い場合には甚だしい。特にゲイト電
極に沿ったA−A’断面からこのような被覆性の悪化が
TFTの特性、信頼性、歩留りに及ぼす悪影響が分か
る。すなわち、図2のA−A’断面図において点線円で
示した領域26に注目してみれば、ゲイト電極27の電
界が薄膜半導体領域の端部に集中的に印加される。すな
わち、この部分ではゲイト絶縁膜の厚さが平坦部の半分
であるので、その電界強度は2倍になるためである。
As can be seen from the figure, the coverage of the end portion of the semiconductor region of the gate insulating film 25 is extremely poor, and typically only half the thickness of the flat portion is present. Generally, when the island-shaped semiconductor region is thick, it is extremely large. Particularly, from the AA 'cross section along the gate electrode, it can be seen that such deterioration of the covering property adversely affects the characteristics, reliability and yield of the TFT. That is, paying attention to the region 26 indicated by a dotted circle in the AA ′ sectional view of FIG. 2, the electric field of the gate electrode 27 is intensively applied to the end portion of the thin film semiconductor region. That is, since the thickness of the gate insulating film in this portion is half that of the flat portion, the electric field strength thereof is doubled.

【0005】この結果、この領域26のゲイト絶縁膜は
長時間のあるいは高い電圧印加によって容易に破壊され
る。ゲイト電極に印加される信号が正であれば、この領
域26の半導体もN型であるので、ゲイト電極27と不
純物領域28(特に、ドレイン領域)が導通してしま
い、信頼性の劣化の原因となる。また、ゲイト電極に通
常の電圧とは逆の電圧(Nチャネルトランジスタにおい
てはドレインに正、ゲイトに負の電圧)を印加した場合
に、ソース/ドレイン間に流れる電流(オフ電流)が増
大してしまった。典型的には、このオフ電流を減少、で
きれば1×10-12 A以下にすることができない。
As a result, the gate insulating film in this region 26 is easily destroyed by applying a high voltage for a long time. If the signal applied to the gate electrode is positive, the semiconductor in this region 26 is also N-type, so that the gate electrode 27 and the impurity region 28 (particularly, the drain region) become conductive, which causes deterioration of reliability. Becomes Further, when a voltage opposite to the normal voltage (a positive voltage to the drain and a negative voltage to the gate in the N-channel transistor) is applied to the gate electrode, the current (off current) flowing between the source and the drain increases. Oops. Typically, this off-current cannot be reduced, preferably below 1 × 10 −12 A.

【0006】また、ゲイト絶縁膜が破壊された際には、
何らかの電荷がトラップされることが起こり、例えば、
負の電荷がトラップされれば、ゲイト電極に印加される
電圧にほとんど関わりなく、領域26の半導体はN型を
呈し、ソース/ドレインと同一導電型のパス(通路)が
できてしまう。そのため2つの不純物領域28が、島状
の半導体領域の側周辺部分で電気的に導通することとな
り、特性を劣化させる。また、以上のような劣化を引き
起こさずにTFTを使用するには、半分の電圧しか印加
できず、性能を十分に利用することができない。
When the gate insulating film is destroyed,
It happens that some charge is trapped, for example
If the negative charges are trapped, the semiconductor in the region 26 exhibits an N type and a path (passage) of the same conductivity type as the source / drain is formed, regardless of the voltage applied to the gate electrode. Therefore, the two impurity regions 28 become electrically conductive in the peripheral portion on the side of the island-shaped semiconductor region, which deteriorates the characteristics. Further, in order to use the TFT without causing the above deterioration, only half the voltage can be applied, and the performance cannot be fully utilized.

【0007】また、TFTの一部にこのような弱い部分
が存在するということは製造工程における帯電等によっ
て容易にTFTが破壊されることであり、歩留り低下の
大きな要因となる。本発明はこのような問題を解決する
ことを課題とする。
The presence of such a weak portion in a part of the TFT means that the TFT is easily destroyed due to charging or the like in the manufacturing process, which is a major factor for lowering the yield. An object of the present invention is to solve such a problem.

【0008】[0008]

【発明を解決するための手段】本発明では、このように
電気的に弱いエッヂ部をテーパー状に加工することによ
って被覆性を向上させ、また、エッヂ部に半導体領域の
主成分とは異なる元素を導入し、あるいは、高速のイオ
ンを注入することによって、該領域とソース、ドレイン
との間の抵抗を高めることによって、この部分の耐圧を
向上させることを特徴とする。本発明の典型的な構造を
図1に示す。図1も図2と同様にTFTを上から見た図
面と、そのA−A’、B−B’断面の断面図を示してい
る。TFTは基板11上に形成され、薄膜半導体領域は
不純物領域(ソース、ドレイン領域、ここではN型の導
電型を示すことにするが、P型であっても構わない)1
3とゲイト電極17の下に位置し、実質的に真性のチャ
ネル形成領域12に分けられ、この半導体領域を覆っ
て、ゲイト絶縁膜15が設けられる。不純物領域13に
は、層間絶縁物19を通してコンタクトホールが開けら
れ、電極・配線18が設けられる。
According to the present invention, the electrically weak edge portion is processed into a taper shape to improve the coverage, and the edge portion is made of an element different from the main component of the semiconductor region. Is introduced or high-speed ions are implanted to increase the resistance between the region and the source / drain, thereby improving the breakdown voltage of this portion. A typical structure of the present invention is shown in FIG. Similar to FIG. 2, FIG. 1 also shows a drawing of the TFT viewed from above and cross-sectional views of AA ′ and BB ′ cross sections thereof. The TFT is formed on the substrate 11, and the thin film semiconductor region is an impurity region (source and drain regions, which are N-type conductivity type here, but may be P-type) 1.
3 and the gate electrode 17 and is divided into a substantially intrinsic channel forming region 12, and a gate insulating film 15 is provided so as to cover this semiconductor region. A contact hole is formed in the impurity region 13 through an interlayer insulator 19, and an electrode / wiring 18 is provided.

【0009】図2で示した従来のTFTと異なる点は、
島状半導体領域10がテーパー状のエッヂを有している
ことと、このテーパー状のエッヂの付近に抵抗の高い領
域14を設けたことである。エッヂがテーパー状である
ためにゲイト絶縁膜15の被覆性が向上し、膜厚も均一
なものとなり、局所的に薄い領域はなくなる。この領域
14の形成方法としては以下の3種類のものが考えられ
る。
The difference from the conventional TFT shown in FIG. 2 is that
The island-shaped semiconductor region 10 has a tapered edge, and the region 14 having a high resistance is provided in the vicinity of the tapered edge. Since the edge has a tapered shape, the coverage of the gate insulating film 15 is improved, the film thickness becomes uniform, and locally thin regions are eliminated. The following three types of methods can be considered as the method of forming this region 14.

【0010】第1は酸素、炭素、窒素から選ばれた少な
くとも1種の元素を添加することにより、炭素、酸素、
窒素のいずれか1つの元素もしくは複数の元素を島状の
半導体領域の平均的な濃度よりも高めることによって、
その部分に、化学式Six 1-x (0<x<1)、Si
2-x (0<x<2)、Si3 4-x (0<x<4)あ
るいは、SiCy z z で示される半絶縁性または絶
縁性領域を構成せしめる方法である。例えば、半導体領
域の平均的な窒素の濃度が1×1018cm-3であれば、
この部分の窒素の濃度を1×1019cm-3以上、好まし
くは1×1020cm-3以上の濃度となるように窒素を導
入して、半導体のシリコンと反応せしめて、Si3
4-x (0<x<4)を形成する。この結果、領域14の
抵抗は著しく上昇する。酸素、炭素を用いる場合も同様
で、1×1019cm-3以上、好ましくは1×1020cm
-3以上の濃度となるように酸素、炭素を導入することに
よって、高い抵抗領域14を形成することができた。
The first is a small amount selected from oxygen, carbon and nitrogen.
By adding at least one element, carbon, oxygen,
Any one or more elements of nitrogen are island-shaped
By increasing the average concentration of the semiconductor region,
In that part, the chemical formula SixC 1-x(0 <x <1), Si
O2-x(0 <x <2), Si3N4-x(0 <x <4)
Rui, SiCyNzOzSemi-insulating or insulation indicated by
This is a method of forming the limbic region. For example, semiconductor area
The average nitrogen concentration in the area is 1 x 1018cm-3If,
The concentration of nitrogen in this part is 1 × 1019cm-3That's all
Kuha 1 × 1020cm-3Nitrogen is introduced to reach the above concentration.
Put it in and let it react with the silicon of the semiconductor, Si3N
4-x(0 <x <4) is formed. As a result, the area 14
The resistance rises significantly. The same applies when oxygen or carbon is used
So 1 x 1019cm-3Or more, preferably 1 × 1020cm
-3Introducing oxygen and carbon to the above concentration
Therefore, the high resistance region 14 could be formed.

【0011】かくすると、その他のチャネル形成領域1
2に比較して、エネルギーバンド幅が大きくなるので、
ゲイト電極に高い電圧が印加された際、側端部でもチャ
ネルとの間では意図的に電界強度チャネル形成領域より
も弱め、ここでの電気的破壊、リークの発生を抑えるこ
とができる。
Thus, the other channel forming region 1
Since the energy band width is larger than that of 2,
When a high voltage is applied to the gate electrode, the electric field strength between the side edge portion and the channel is intentionally made weaker than that in the channel formation region, so that electrical breakdown and leakage can be suppressed.

【0012】第2は、不純物領域(ソース、ドレイン)
13とは逆の導電型を呈せしめる半導体不純物を添加す
るものである。この結果、その後、ソース、ドレインが
形成されても、領域14のうち少なくともゲイト電極の
下部の領域は不純物領域(ソース、ドレイン領域)13
の導電形とは逆の導電形となる。例えば、不純物領域が
N型であれば、領域14にはP型の導電型を示す不純物
を導入し、不純物領域がP型であれば、領域14にはN
型の導電型を示す不純物を導入する。特に領域14の不
純物濃度はゲイト電極の下部において、ゲイト電極に印
加した電圧によって反転しない程度の十分なドーピング
(具体的には1×1015〜3×1018cm-3、好ましく
は、1×1016〜1×1017cm-3)が望まれる。この
不純物濃度が、1×1019cm-3またはそれ以上となる
と、ドレインとの耐圧が弱くなり、アバランシェ・ホッ
ト・キャリヤが発生してしまう。なお、ゲイト電極の下
の部分以外においては、不純物領域13のドーピングの
際に、領域14の導電型が反転してしまうことがある
が、実質的に何ら問題はない。
Second, impurity regions (source, drain)
A semiconductor impurity having a conductivity type opposite to that of 13 is added. As a result, even if the source and drain are formed thereafter, at least the region below the gate electrode in the region 14 is the impurity region (source and drain region) 13
The conductivity type is opposite to that of. For example, if the impurity region is N-type, an impurity exhibiting a P-type conductivity type is introduced into the region 14, and if the impurity region is P-type, the region 14 is N-type.
An impurity exhibiting the conductivity type of the type is introduced. In particular, the impurity concentration of the region 14 is sufficient below the gate electrode so as not to be inverted by the voltage applied to the gate electrode (specifically, 1 × 10 15 to 3 × 10 18 cm −3 , preferably 1 ×). 10 16 to 1 × 10 17 cm −3 ) is desired. When the impurity concentration is 1 × 10 19 cm −3 or higher, the breakdown voltage with the drain becomes weak and avalanche hot carriers are generated. In addition, except for the portion below the gate electrode, the conductivity type of the region 14 may be inverted when the impurity region 13 is doped, but there is practically no problem.

【0013】第3は、高速のイオンを注入するものであ
る。注入すべきイオンとしてはシリコン、炭素、酸素、
窒素、燐、ホウ素等である。例えば、長時間の熱アニー
ルによる固相成長法、あるいはレーザーもしくはそれと
同等な強光の照射によって結晶化した島状半導体領域
に、シリコンイオンを1×1013〜1×1016cm-2
好ましくは1×1014〜5×1015cm-2のドーズ量
で、また、30〜100KeVの加速エネルギーで注入
すれば、その部分の結晶性が低下し、十分に高い抵抗を
実現できる。当然のことであるが、ドーズ量、加速エネ
ルギーの最適値は島状半導体膜の厚さに依存するので、
必ずしも上記の範囲に収まることを要求するものではな
い。
The third method is to implant high-speed ions. Ions to be implanted include silicon, carbon, oxygen,
Examples include nitrogen, phosphorus, and boron. For example, 1 × 10 13 to 1 × 10 16 cm -2 of silicon ions are added to an island-shaped semiconductor region crystallized by a solid-phase growth method by long-time thermal annealing, or irradiation of a laser or strong light equivalent thereto.
By implanting with a dose of preferably 1 × 10 14 to 5 × 10 15 cm −2 and with an accelerating energy of 30 to 100 KeV, the crystallinity of that portion is lowered and a sufficiently high resistance can be realized. As a matter of course, since the optimum values of the dose amount and the acceleration energy depend on the thickness of the island-shaped semiconductor film,
It is not necessarily required to fall within the above range.

【0014】このようにして形成された領域14におい
ては、万が一、半導体領域の端部16でゲイト絶縁膜が
破壊されて、ピンホールが生じても、領域14はソー
ス、ドレインとは逆の導電型であったり、抵抗が高かっ
たりするため、特にゲイト電極とドレイン領域間のリー
ク電流を著しく低減せしめることができる。また、ゲイ
ト絶縁膜の破壊によって好ましくない電荷がトラップさ
れた場合においても、領域14では半導体領域の導電型
がソース、ドレインと逆であったり、抵抗が高いので、
ソース領域とドレイン領域が導通することは防止でき
る。このようにゲイト絶縁膜が破壊されても特性や信頼
性に問題が生じないのであれば、使用時の電圧の制限は
少なくなり、また、製造時の静電破壊等による不良品の
発生の確率も低下し、歩留りが向上する。以下に実施例
を示し、さらに本発明を説明する。
In the region 14 thus formed, even if the gate insulating film is destroyed at the end portion 16 of the semiconductor region and a pinhole is generated, the region 14 has a conductivity opposite to that of the source and drain. Since the type is high and the resistance is high, the leak current between the gate electrode and the drain region can be remarkably reduced. Further, even when undesired charges are trapped by the breakdown of the gate insulating film, the conductivity type of the semiconductor region in the region 14 is opposite to that of the source and drain, or the resistance is high.
Conduction between the source region and the drain region can be prevented. If there is no problem in characteristics and reliability even if the gate insulating film is destroyed in this way, the voltage limit during use will be less, and the probability of occurrence of defective products due to electrostatic breakdown during manufacturing. Also decreases and the yield improves. Hereinafter, the present invention will be described with reference to examples.

【0015】[0015]

【実施例】〔実施例1〕 図3に本実施例の作製工程の
断面図を示す。本実施例を含めて、以下の実施例の図面
では、TFTの断面図のみを示し、いずれも左側にはゲ
イト電極に垂直な面(図1、図2の断面B−B’に相
当)を有するTFTを構成し、また、右側にはゲイト電
極に平行な面(図1、図2の断面A−A’に相当)を有
するTFTを構成する例を示す。
[Embodiment] [Embodiment 1] FIG. 3 shows a cross-sectional view of a manufacturing process of this embodiment. In the drawings of the following embodiments including this embodiment, only the cross-sectional view of the TFT is shown, and in each case, a surface perpendicular to the gate electrode (corresponding to the cross section BB ′ in FIGS. 1 and 2) is provided on the left side. An example is shown in which the TFT having the same is formed, and the TFT having the surface parallel to the gate electrode (corresponding to the cross section AA ′ in FIGS. 1 and 2) is formed on the right side.

【0016】まず、基板(コーニング7059)30上
にプラズマCVD法またはスパッタリング法によって厚
さ2000Åの酸化珪素または窒化珪素、あるいはそれ
らの多層膜の下地膜31を形成した。さらに、プラズマ
CVD法やLPCVD法によってアモルファスシリコン
膜を100〜5000Å、好ましくは300〜1000
Å堆積した。アモルファスシリコン膜上には保護膜とし
て、酸化珪素膜を100〜500Å堆積した。そして、
公知のフォトリソグラフィー法によってレジストのマス
ク33a、33bを形成し、ドライエッチング法によっ
て、アモルファスシリコンのエッチングをおこなった。
このときのエッチング条件は、以下のようであった。 RFパワー :500W 圧力 :100mTorr ガス流量 CF4 :50sccm O2 ;45sccm
First, a base film 31 of silicon oxide or silicon nitride having a thickness of 2000 Å or a multilayer film thereof was formed on a substrate (Corning 7059) 30 by a plasma CVD method or a sputtering method. Further, an amorphous silicon film is formed with a plasma CVD method or an LPCVD method in an amount of 100 to 5000 Å, preferably 300 to 1000.
Å Accumulated. A silicon oxide film was deposited on the amorphous silicon film as a protective film in an amount of 100 to 500 liters. And
The resist masks 33a and 33b were formed by a known photolithography method, and the amorphous silicon was etched by a dry etching method.
The etching conditions at this time were as follows. RF power: 500 W Pressure: 100 mTorr Gas flow rate CF 4 : 50 sccm O 2 ; 45 sccm

【0017】この結果、図3(A)に示すように、島状
のシリコン領域32a、32bが得られたが、そのエッ
ヂ部は図のようにテーパー状になっていた。このテーパ
ーの角度は20〜60°であった。エッチングにおい
て、比率CF4 /O2 が大きくなると、このようなテー
パー状のエッヂを得ることはできなかった。次に、この
レジストをマスクとしてホウ素を1×1015〜3×10
18cm-3、好ましくは1×1016〜1×1017cm-3
濃度に導入した。ホウ素の導入にはプラズマドーピング
法を用いた。ドーピングガスとしてはジボラン(B2
6 )を用い、rfパワー10〜30W、例えば10Wで
放電させてプラズマを発生させ、これを加速電圧20〜
60kV、例えば20kVで加速して、シリコン領域に
導入した。ドーズ量は、1×1013〜5×1015
-2、例えば、3×1014〜1×1015cm-2とした。
この結果、P型の領域34a、34b、34c、34d
を形成した。(図3(A))
As a result, as shown in FIG. 3A, island-shaped silicon regions 32a and 32b were obtained, but the edge portions thereof were tapered as shown in the figure. The angle of this taper was 20 to 60 °. In etching, if the ratio CF 4 / O 2 becomes large, such a tapered edge could not be obtained. Next, using this resist as a mask, boron is added at 1 × 10 15 to 3 × 10 5.
It was introduced at a concentration of 18 cm -3 , preferably 1 × 10 16 to 1 × 10 17 cm -3 . A plasma doping method was used to introduce boron. Diborane (B 2 H) is used as a doping gas.
6 ) is used to generate plasma by discharging with rf power of 10 to 30 W, for example, 10 W, and accelerating voltage of 20 to
It was accelerated to 60 kV, for example 20 kV, and introduced into the silicon region. The dose amount is 1 × 10 13 to 5 × 10 15 c
m −2 , for example, 3 × 10 14 to 1 × 10 15 cm −2 .
As a result, P-type regions 34a, 34b, 34c, 34d
Was formed. (Fig. 3 (A))

【0018】その後、フォトレジストのマスク材63
a、63bと、その下の保護膜を除去し、島状のシリコ
ン膜を露出させた状態で、KrFエキシマーレーザー
(波長248nm、パルス幅20nsec)を照射し
て、アモルファスシリコンの結晶化をおこなった。レー
ザーとしては、XeClエキシマーレーザー(波長30
8nm、パルス幅50nsec)を用いてもよかった。
このようにして得られた島状シリコン領域32aおよび
32bの基板に対して平行である面は(110)面、
(111)面、(311)面からなっていることがX線
回折法から明らかになった。
After that, a photoresist mask material 63
The amorphous silicon was crystallized by irradiating a KrF excimer laser (wavelength 248 nm, pulse width 20 nsec) with the islands of silicon film exposed by removing the protective films a and 63b. . As the laser, XeCl excimer laser (wavelength 30
8 nm, pulse width 50 nsec) may be used.
The planes of the island-shaped silicon regions 32a and 32b thus obtained which are parallel to the substrate are the (110) planes,
It was revealed from the X-ray diffraction method that it consisted of the (111) plane and the (311) plane.

【0019】次に、スパッタリング法またはプラズマC
VD法によって厚さ500〜1500Å、例えば100
0Åの酸化珪素膜35をゲイト絶縁膜として堆積し、引
き続いて、減圧CVD法によって、厚さ6000〜80
00Å、例えば6000Åのシリコン膜(0.1〜2%
の燐を含む)を堆積した。なお、この酸化珪素とシリコ
ン膜の成膜工程は連続的におこなうことが望ましい。そ
して、シリコン膜をパターニングして、配線36a、3
6bを形成した。これらの配線は、いずれもゲイト電極
として機能する。(図3(B))
Next, a sputtering method or plasma C
According to the VD method, the thickness is 500 to 1500Å, for example, 100
A 0Å silicon oxide film 35 is deposited as a gate insulating film, and subsequently a thickness of 6000 to 80 is formed by a low pressure CVD method.
00Å, for example 6000Å silicon film (0.1-2%
Containing phosphorus). It is desirable that the steps of forming the silicon oxide and the silicon film are continuously performed. Then, the silicon film is patterned to form the wirings 36a, 3
6b was formed. Each of these wirings functions as a gate electrode. (Fig. 3 (B))

【0020】次に、プラズマドーピング法によって、シ
リコン領域に配線36aをマスクとして不純物(燐)を
注入した。ドーピングガスとして、フォスフィン(PH
3 )を用い、加速電圧を60〜90kV、例えば80k
Vとした。ドーズ量は1×1015〜8×1015cm-2
例えば、先のホウ素のドーズ量よりも大きい5×1015
cm-2とした。(図3(C))その後、還元雰囲気中、
550〜600℃で48時間アニールすることによっ
て、不純物を活性化させた。このようにして不純物領域
37a、37bを形成した。この場合には、先に形成さ
れたホウ素領域のうち、後から燐が導入されなかった領
域34c、34dはP型を示すのに対し、燐が導入され
た領域34a、34bは多量の燐のドーピングによって
N型になっているが、本発明の技術思想からは何ら問題
はない。(図3(D))
Next, impurities (phosphorus) were implanted into the silicon region by plasma doping using the wiring 36a as a mask. As doping gas, phosphine (PH
3 ) is used and the acceleration voltage is 60 to 90 kV, for example 80 kV.
It was set to V. The dose is 1 × 10 15 to 8 × 10 15 cm -2 ,
For example, 5 × 10 15 which is larger than the previous dose of boron.
It was cm -2 . (FIG. 3C) After that, in a reducing atmosphere,
The impurities were activated by annealing at 550 to 600 ° C. for 48 hours. Thus, the impurity regions 37a and 37b were formed. In this case, among the boron regions previously formed, the regions 34c and 34d in which phosphorus is not introduced afterwards show P-type, while the regions 34a and 34b in which phosphorus is introduced contain a large amount of phosphorus. Although it is N-type by doping, there is no problem from the technical idea of the present invention. (Fig. 3 (D))

【0021】続いて、厚さ3000Åの酸化珪素膜38
を層間絶縁物としてプラズマCVD法によって形成し、
これにコンタクトホールを形成して、金属材料、例え
ば、窒化チタンとアルミニウムの多層膜によって配線3
9a、39bを形成した。以上の工程によって半導体回
路が完成した。(図3(E))
Then, a silicon oxide film 38 having a thickness of 3000 Å is formed.
Is formed by plasma CVD as an interlayer insulator,
A contact hole is formed in this, and the wiring 3 is made of a metal material, for example, a multilayer film of titanium nitride and aluminum.
9a and 39b were formed. The semiconductor circuit is completed through the above steps. (Fig. 3 (E))

【0022】〔実施例2〕 図4に本実施例の作製工程
の断面図を示す。まず、基板(コーニング7059)4
0上にスパッタリングによって厚さ2000Åの酸化珪
素の下地膜41を形成した。さらに、プラズマCVD法
によって、厚さ500〜1500Å、例えば1500Å
のアモルファスシリコン膜を堆積した。アモルファスシ
リコン膜中の窒素の濃度は、2次イオン質量分析(SI
MS)法による測定では1×1018cm-3以下であっ
た。連続して、スパッタリング法によって、厚さ200
Åの酸化珪素膜を保護膜として堆積した。そして、これ
を還元雰囲気下、600℃で48時間アニールして結晶
化させた。このようにして得られたシリコン膜はX線回
折法によると、(111)面が最も強く現れた。結晶化
工程はレーザー等の強光を用いる方式でもよい。そし
て、結晶シリコン膜をパターニングして、島状シリコン
半導体領域42a、42bを形成した。島状シリコン膜
の上には保護膜が残されている。この保護膜は、その後
のフォトリソグラフィー工程において、島状シリコン領
域が汚染されることを防止する作用がある。
[Embodiment 2] FIG. 4 shows a cross-sectional view of a manufacturing process of this embodiment. First, the substrate (Corning 7059) 4
An underlayer film 41 of silicon oxide having a thickness of 2000 Å was formed on the substrate 0 by sputtering. Further, by the plasma CVD method, the thickness is 500 to 1500Å, for example 1500Å
Deposited an amorphous silicon film. The nitrogen concentration in the amorphous silicon film is determined by secondary ion mass spectrometry (SI
It was 1 × 10 18 cm −3 or less as measured by the MS method. Continuously, a thickness of 200 is obtained by the sputtering method.
A Å silicon oxide film was deposited as a protective film. Then, this was annealed at 600 ° C. for 48 hours in a reducing atmosphere to be crystallized. According to the X-ray diffraction method, the (111) plane appeared most strongly in the silicon film thus obtained. The crystallization step may be a method using strong light such as a laser. Then, the crystalline silicon film was patterned to form island-shaped silicon semiconductor regions 42a and 42b. A protective film is left on the island-shaped silicon film. This protective film has a function of preventing the island-shaped silicon region from being contaminated in the subsequent photolithography process.

【0023】次に全面にフォトレジストを塗布して、公
知のフォトリソグラフィー法によってレジストのマスク
43a、43bを形成し、ドライエッチング法によっ
て、アモルファスシリコンのエッチングをおこなった。
このときのエッチング条件は、以下のようであった。 RFパワー :500W 圧力 :100mTorr ガス流量 CF4 :50sccm O2 ;45sccm
Next, a photoresist is applied on the entire surface, resist masks 43a and 43b are formed by a known photolithography method, and amorphous silicon is etched by a dry etching method.
The etching conditions at this time were as follows. RF power: 500 W Pressure: 100 mTorr Gas flow rate CF 4 : 50 sccm O 2 ; 45 sccm

【0024】この結果、図4(A)に示すように、島状
のシリコン領域42a、42bが得られたが、そのエッ
ヂ部は図のようにテーパー状になっていた。このテーパ
ーの角度は基板表面に対して20〜60°であった。エ
ッチングにおいて、比率CF4 /O2 が大きくなると、
このようなテーパー状のエッヂを得ることはできなかっ
た。そして、このレジストをマスクとして窒素、炭素、
酸素、ここでは窒素を、島状半導体領域の端部に選択的
に導入した。窒素の導入にはプラズマドーピング法を用
いた。ドーピングガスとしては窒素ガスを用い、rfパ
ワー10〜30W、例えば10Wで放電させてプラズマ
を発生させ、これを加速電圧20〜60kV、例えば2
0kVで加速して、シリコン領域に導入した。ドーズ量
は、1×1015〜5×1016cm-2、例えば、1×10
16cm-2とした。この結果、窒素のドープされた領域4
4a、44b、44c、44dを形成した。本条件で
は、この窒素のドープされた領域の窒素の濃度は1×1
20〜2×1022cm-3、例えば、1×1021cm-3
度となり、他の半導体領域に比べて著しく多量の窒素が
導入された。(図4(A))
As a result, as shown in FIG. 4 (A), island-shaped silicon regions 42a and 42b were obtained, but the edge portions thereof were tapered as shown in the figure. The angle of this taper was 20 to 60 ° with respect to the substrate surface. In etching, if the ratio CF 4 / O 2 increases,
It was not possible to obtain such a tapered edge. Then, using this resist as a mask, nitrogen, carbon,
Oxygen, here nitrogen, was selectively introduced at the edge of the island-shaped semiconductor region. A plasma doping method was used to introduce nitrogen. Nitrogen gas is used as a doping gas, and plasma is generated by discharging with rf power of 10 to 30 W, for example, 10 W, and accelerating voltage of 20 to 60 kV, for example, 2
It was accelerated at 0 kV and introduced into the silicon region. The dose amount is 1 × 10 15 to 5 × 10 16 cm −2 , for example, 1 × 10
16 cm -2 . As a result, the nitrogen-doped region 4
4a, 44b, 44c and 44d were formed. Under this condition, the concentration of nitrogen in the nitrogen-doped region is 1 × 1.
It was 0 20 to 2 × 10 22 cm −3 , for example, about 1 × 10 21 cm −3, and a remarkably large amount of nitrogen was introduced compared to other semiconductor regions. (Fig. 4 (A))

【0025】次に、マスク43a、43bを除去し、さ
らにその下の酸化珪素の保護膜をも除去し、半導体領域
42a、42bの表面を露呈せしめた後、スパッタリン
グ法によって厚さ1000Åの酸化珪素膜45をゲイト
絶縁膜として堆積し、引き続き、厚さ1000Å〜3μ
mのアルミニウム(1wt%のSi、もしくは0.1〜
0.3wt%のSc(スカンジウム)を含む)膜を電子
ビーム蒸着法もしくはスパッタ法によって形成した。
Next, the masks 43a and 43b are removed, the protective film of silicon oxide thereunder is also removed, and the surfaces of the semiconductor regions 42a and 42b are exposed. The film 45 is deposited as a gate insulating film, and then the thickness is 1000Å to 3μ.
m aluminum (1 wt% Si, or 0.1
A 0.3 wt% Sc (scandium) -containing film was formed by an electron beam evaporation method or a sputtering method.

【0026】そして、その表面に公知のスピンコート法
によってフォトレジストを塗布し、公知のフォトリソグ
ラフィー法によって、パターニングをおこなった。そし
て、燐酸によって、アルミニウム膜のエッチングをおこ
なった。このようにして、ゲイト電極・配線46a、4
6bを形成した。なお、ゲイト電極・配線上にはフォト
レジストのマスク47a、47bをそのまま残存させて
おいた。また、オーバーエッチのために、ゲイト電極・
配線の側面はフォトレジストの側面よりも内側にある。
(図4(B))
Then, a photoresist was applied on the surface by a known spin coating method, and patterning was performed by a known photolithography method. Then, the aluminum film was etched with phosphoric acid. In this way, the gate electrodes / wirings 46a, 4
6b was formed. The photoresist masks 47a and 47b were left on the gate electrode / wiring. Also, due to overetching,
The side surface of the wiring is inside the side surface of the photoresist.
(Fig. 4 (B))

【0027】この状態で、イオンドーピング法によっ
て、TFTの活性半導体層42a、42bに、フォトレ
ジスト47a、47bをマスクとして不純物を注入し、
N型のソース48a、ドレイン48bを形成した。ここ
で、フォトレジスト47aに対して、ゲイト電極46a
は距離xだけ内側にあるため、図に示したように、ゲイ
ト電極とソース/ドレインが重ならないオフセット状態
となっている。距離xは、アルミニウム配線の際のエッ
チング時間を加減することによって増減できる。xとし
ては、0.3〜5μmが好ましかった。(図4(C))
In this state, impurities are implanted into the active semiconductor layers 42a and 42b of the TFT by ion doping using the photoresists 47a and 47b as masks,
An N type source 48a and drain 48b were formed. Here, with respect to the photoresist 47a, the gate electrode 46a
Is inside by the distance x, and therefore, as shown in the figure, the gate electrode and the source / drain are in an offset state where they do not overlap each other. The distance x can be increased or decreased by adjusting the etching time for aluminum wiring. As x, 0.3 to 5 μm was preferable. (Fig. 4 (C))

【0028】その後、フォトレジスト47a、47bを
剥離し、KrFエキシマーレーザー(波長248nm、
パルス幅20nsec)を照射して、活性層中に導入さ
れた不純物イオンの活性化をおこなった。このレーザー
アニールにおいては、島状領域42a、42bの側端部
44a、44bもレーザー照射され、該領域のシリコン
と反応して化学式Si3 4-x (0<x<4)で示され
る物質が形成される。窒素の代わりに炭素、酸素が導入
されていた場合にも、それぞれ、化学式Six
1-x (0<x<1)、SiO2-x (0<x<2)で示さ
れる物質が得られる。(図4(D))
After that, the photoresists 47a and 47b are peeled off, and a KrF excimer laser (wavelength 248 nm,
A pulse width of 20 nsec) was applied to activate the impurity ions introduced into the active layer. In this laser annealing, the side end portions 44a and 44b of the island-shaped regions 42a and 42b are also laser-irradiated, and react with silicon in the regions to react with the chemical formula Si 3 N 4-x (0 <x <4). Is formed. Even when carbon and oxygen are introduced instead of nitrogen, the chemical formulas of Si x C
The substances represented by 1-x (0 <x <1) and SiO 2−x (0 <x <2) are obtained. (Fig. 4 (D))

【0029】最後に、全面に層間絶縁物49として、プ
ラズマCVD法によって酸化珪素膜を厚さ2000Å〜
1μm形成した。さらに、TFTのソース48a、ドレ
イン48bにコンタクトホールを形成し、アルミニウム
配線50a、50bを2000Å〜1μm、例えば50
00Åの厚さに形成した。このアルミニウム配線の下に
にバリヤメタルとして、例えば窒化チタンを形成すると
より一層、信頼性を向上させることができた(図4
(E))
Finally, a silicon oxide film having a thickness of 2000 Å or more is formed on the entire surface as an interlayer insulator 49 by a plasma CVD method.
1 μm was formed. Further, contact holes are formed in the source 48a and the drain 48b of the TFT, and the aluminum wirings 50a and 50b are 2000 Å to 1 μm, for example, 50.
It was formed to a thickness of 00Å. The reliability can be further improved by forming, for example, titanium nitride as a barrier metal under the aluminum wiring (FIG. 4).
(E))

【0030】〔実施例3〕 図5に本実施例を示す。ま
ず、基板51上に厚さ1000〜3000Åの酸化珪素
の下地膜52を形成した。さらに、プラズマCVD法や
LPCVD法によってアモルファスシリコン膜を100
〜5000Å、好ましくは300〜1000Å堆積し
た。アモルファスシリコン膜上には保護膜として、酸化
珪素膜を100〜500Å堆積した。そして、これを還
元雰囲気下、600℃で48時間アニールして結晶化さ
せた。結晶化工程はレーザー等の強光を用いる方式でも
よい。さらに、公知のフォトリソグラフィー法によって
レジストのマスク54a、54bを形成し、ドライエッ
チング法によって、アモルファスシリコンのエッチング
をおこなった。このときのエッチング条件は、以下のよ
うであった。 RFパワー :500W 圧力 :100mTorr ガス流量 CF4 :50sccm O2 ;45sccm
[Third Embodiment] FIG. 5 shows the present embodiment. First, a base film 52 of silicon oxide having a thickness of 1000 to 3000 Å was formed on a substrate 51. Furthermore, an amorphous silicon film is formed by plasma CVD or LPCVD.
~ 5000Å, preferably 300-1000Å. A silicon oxide film was deposited on the amorphous silicon film as a protective film in an amount of 100 to 500 liters. Then, this was annealed at 600 ° C. for 48 hours in a reducing atmosphere to be crystallized. The crystallization step may be a method using strong light such as a laser. Further, resist masks 54a and 54b were formed by a known photolithography method, and amorphous silicon was etched by a dry etching method. The etching conditions at this time were as follows. RF power: 500 W Pressure: 100 mTorr Gas flow rate CF 4 : 50 sccm O 2 ; 45 sccm

【0031】この結果、図5(A)に示すように、島状
のシリコン領域53a、53bが得られたが、そのエッ
ヂ部は図のようにテーパー状になっていた。このテーパ
ーの角度は20〜60°であった。エッチングにおい
て、比率CF4 /O2 が大きくなると、このようなテー
パー状のエッヂを得ることはできなかった。次に、この
レジストをマスクとしてシリコンを注入した。シリコン
の注入には公知のイオン打ち込み法を用い、例えば、8
0keVの加速電圧、5×1015cm-2のドーズ量でシ
リコンを注入した。この結果、レジストがなかった、も
しくは薄かったシリコン領域のエッヂ部55a、55
b、55c、55dにシリコンが注入された。(図5
(A))
As a result, as shown in FIG. 5A, island-shaped silicon regions 53a and 53b were obtained, but the edge portions thereof were tapered as shown in the figure. The angle of this taper was 20 to 60 °. In etching, if the ratio CF 4 / O 2 becomes large, such a tapered edge could not be obtained. Next, silicon was injected using this resist as a mask. A known ion implantation method is used for implanting silicon, for example, 8
Silicon was implanted at an accelerating voltage of 0 keV and a dose amount of 5 × 10 15 cm −2 . As a result, the edge portions 55a, 55 of the silicon region having no or thin resist are formed.
Silicon was injected into b, 55c, and 55d. (Fig. 5
(A))

【0032】次に、スパッタリング法によって厚さ10
00Åの酸化珪素膜56をゲイト絶縁膜として堆積し、
引き続いて、スパッタ法によって、厚さ6000〜80
00Å、例えば6000Åのアルミニウム膜(0.2重
量%のスカンジウムを含む)を堆積した。なお、この酸
化珪素とアルミニウム膜の成膜工程は連続的におこなう
ことが望ましい。そして、アルミニウム膜をパターニン
グして、配線57a、57bを形成した。これらの配線
は、いずれもゲイト電極として機能する。さらに、この
アルミニウム配線の表面を陽極酸化して、表面に酸化物
層58a、58bを形成した。(図5(B))
Next, a thickness of 10 is obtained by the sputtering method.
A silicon oxide film 56 of 00Å is deposited as a gate insulating film,
Subsequently, a thickness of 6000 to 80 is obtained by a sputtering method.
An aluminum film (containing 0.2% by weight of scandium) of 00Å, for example 6000Å, was deposited. In addition, it is desirable that the steps of forming the silicon oxide film and the aluminum film are continuously performed. Then, the aluminum film was patterned to form wirings 57a and 57b. Each of these wirings functions as a gate electrode. Further, the surface of this aluminum wiring was anodized to form oxide layers 58a and 58b on the surface. (Fig. 5 (B))

【0033】陽極酸化は、酒石酸の1〜5%エチレング
リコール溶液中でおこなった。得られた酸化物層の厚さ
は2000Åであった。次に、プラズマドーピング法に
よって、シリコン領域に配線57aおよび酸化物58a
をマスクとして不純物(燐)を注入した。ドーピングガ
スとして、フォスフィン(PH3 )を用い、加速電圧を
60〜90kV、例えば80kVとした。ドース量は1
×1015〜8×1015cm-2、例えば、1×1015cm
-2とした。このようにしてN型の不純物領域59a、5
9bを形成した。(図5(C))
The anodization was carried out in a 1-5% ethylene glycol solution of tartaric acid. The thickness of the obtained oxide layer was 2000Å. Next, the wiring 57a and the oxide 58a are formed in the silicon region by plasma doping.
Impurities (phosphorus) were implanted using the as a mask. Phosphine (PH 3 ) was used as a doping gas, and the acceleration voltage was set to 60 to 90 kV, for example, 80 kV. Dose is 1
× 10 15 to 8 × 10 15 cm -2 , for example, 1 × 10 15 cm
-2 . In this way, the N type impurity regions 59a, 5
9b was formed. (Fig. 5 (C))

【0034】その後、レーザーアニール法によって不純
物の活性化をおこなった。レーザーとしてはKrFエキ
シマーレーザー(波長248nm、パルス幅20nse
c)を用いたが、その他のレーザー、例えば、XeFエ
キシマーレーザー(波長353nm)、XeClエキシ
マーレーザー(波長308nm)、ArFエキシマーレ
ーザー(波長193nm)等を用いてもよい。レーザー
のエネルギー密度は、200〜350mJ/cm2 、例
えば250mJ/cm2 とし、1か所につき2〜10シ
ョット、例えば2ショット照射した。レーザー照射時
に、基板を200〜450℃程度に加熱してもよい。基
板を加熱した場合には最適なレーザーエネルギー密度が
変わることに注意しなければならない。
After that, the impurities were activated by the laser annealing method. As a laser, a KrF excimer laser (wavelength 248 nm, pulse width 20 nse
Although c) is used, other lasers such as XeF excimer laser (wavelength 353 nm), XeCl excimer laser (wavelength 308 nm), ArF excimer laser (wavelength 193 nm) and the like may be used. The energy density of the laser was 200 to 350 mJ / cm 2 , for example, 250 mJ / cm 2, and the irradiation was performed for 2 to 10 shots, for example, 2 shots per location. The substrate may be heated to about 200 to 450 ° C. during laser irradiation. It should be noted that the optimum laser energy density changes when the substrate is heated.

【0035】なお、本実施例では、シリコンイオンが注
入された領域55a、55b、55c、55dのうち、
55aと55bはこのレーザーアニールの工程において
結晶化されてしまう。しかしながら、ゲイト電極の下の
部分である55cと55dにはレーザー光が照射しない
ので結晶化せず、したがって、極めて大きな抵抗として
機能し、リーク電流を低下させる目的では効果的であっ
た。なお、本実施例では燐のドーピングされる領域は陽
極酸化物の厚さxだけ、ゲイト電極から離れているた
め、ゲイト電極とソース/ドレインはオフセット状態で
ある。(図5(D))
In this embodiment, of the regions 55a, 55b, 55c and 55d in which silicon ions are implanted,
55a and 55b are crystallized in this laser annealing step. However, the portions 55c and 55d below the gate electrode are not crystallized because they are not irradiated with laser light, and therefore function as an extremely large resistance and are effective for the purpose of reducing the leak current. In this embodiment, since the phosphorus-doped region is separated from the gate electrode by the thickness x of the anodic oxide, the gate electrode and the source / drain are in an offset state. (Figure 5 (D))

【0036】続いて、厚さ3000Åの酸化珪素膜60
を層間絶縁物としてプラズマCVD法によって形成し、
これにコンタクトホールを形成して、金属材料、例え
ば、窒化チタンとアルミニウムの多層膜によって配線6
1a、61bを形成した。以上の工程によってTFTが
完成した。(図5(E))
Then, a silicon oxide film 60 having a thickness of 3000 Å is formed.
Is formed by plasma CVD as an interlayer insulator,
A contact hole is formed in this, and the wiring 6 is made of a metal material, for example, a multilayer film of titanium nitride and aluminum.
1a and 61b were formed. The TFT was completed by the above steps. (Fig. 5 (E))

【0037】[0037]

【発明の効果】本発明によって、薄膜半導体装置の歩留
りを向上させ、また、その信頼性を高め、最大限を特性
を引き出すことが可能となった。本発明の薄膜半導体装
置は、特に、ゲイト−ドレイン間、ゲイト−ソース間の
リーク電流が低く、高いゲイト電圧にも耐えられる等の
特徴から液晶ディスプレーのアクティブマトリクス回路
における画素制御用のトランジスタとして好ましい。
According to the present invention, it is possible to improve the yield of thin film semiconductor devices, enhance their reliability, and maximize the characteristics. The thin film semiconductor device of the present invention is particularly preferable as a transistor for controlling pixels in an active matrix circuit of a liquid crystal display because it has a low leak current between a gate and a drain and a leak current between a gate and a source and can withstand a high gate voltage. .

【0038】本発明ではNチャネル型のTFTを例にと
って説明したが、Pチャネル型TFTや同一基板上にN
チャネル型とPチャネル型の混在した相捕型の回路の場
合も同様に実施できることは言うまでもない。また、実
施例に示したような簡単な構造のものばかりではなく、
例えば、特願平5−256567に示されるようなソー
ス/ドレインにシリサイドを有するような構造のTFT
に用いてもよい。
Although the present invention has been described by taking the N-channel type TFT as an example, the P-channel type TFT or the N-channel type TFT on the same substrate.
It goes without saying that the same can be applied to the case of the phase trapping type circuit in which the channel type and the P channel type are mixed. Also, not only the simple structure shown in the embodiment,
For example, a TFT having a structure having silicide in the source / drain as shown in Japanese Patent Application No. 5-256567.
May be used for.

【0039】さらに、本実施例はTFTを主として示し
たが、他の回路素子、例えば、1つの島状領域に複数の
ゲート電極を有せしめた薄膜集積回路、スタックトゲイ
ト型TFT、ダイオード、抵抗、キャパシタ、またはこ
れを集積化した薄膜半導体回路に応用することが可能で
あることは言うまでもない。このように本発明は工業
上、有益な発明である。
Further, although the present embodiment mainly shows the TFT, other circuit elements such as a thin film integrated circuit having a plurality of gate electrodes in one island region, a stacked gate type TFT, a diode, a resistor. Needless to say, it can be applied to a capacitor, or a thin film semiconductor circuit in which the capacitor is integrated. Thus, the present invention is an industrially useful invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の半導体装置(TFT)の構成例を
示す。
FIG. 1 shows a configuration example of a semiconductor device (TFT) of the present invention.

【図2】 従来の半導体装置(TFT)の構成例を示
す。
FIG. 2 shows a configuration example of a conventional semiconductor device (TFT).

【図3】 実施例1のTFTの作製工程断面を示す。3A to 3C are cross-sectional views of a manufacturing process of the TFT of Example 1.

【図4】 実施例2のTFTの作製工程断面を示す。4A to 4C show cross-sectional views of a manufacturing process of a TFT of Example 2.

【図5】 実施例3のTFTの作製工程断面を示す。5A to 5C show cross-sectional views of a manufacturing process of a TFT of Example 3.

【符号の説明】[Explanation of symbols]

10・・・島状半導体領域 11・・・基板 12・・・チャネル形成領域(実質的に真性) 13・・・不純物領域(ソース、ドレイン) 14・・・高抵抗領域 15・・・ゲイト絶縁膜 16・・・島状半導体領域の端部 17・・・ゲイト電極 18・・・ソース、ドレイン電極 10 ... Island semiconductor region 11 ... Substrate 12 ... Channel formation region (substantially intrinsic) 13 ... Impurity region (source / drain) 14 ... High resistance region 15 ... Gate insulation Film 16 ... Edge of island-shaped semiconductor region 17 ... Gate electrode 18 ... Source / drain electrode

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 絶縁表面上に形成されたテーパー状のエ
ッヂを有する島状の非単結晶薄膜半導体領域と、前記半
導体領域を横断するゲイト電極とを有する薄膜半導体装
置において、前記半導体領域のテーパー状エッヂに、該
半導体領域の主成分とは異なる元素が含まれていること
を特徴とする薄膜半導体装置。
1. A thin film semiconductor device having an island-shaped non-single-crystal thin film semiconductor region having a tapered edge formed on an insulating surface, and a gate electrode crossing the semiconductor region, wherein the semiconductor region has a taper. A thin film semiconductor device, wherein the edge portion contains an element different from the main component of the semiconductor region.
【請求項2】 請求項1において、該半導体領域の主成
分とは異なる元素は該半導体装置のソース、ドレインの
導電型とは逆の導電型を呈せしめる不純物であることを
特徴とする薄膜半導体装置。
2. The thin film semiconductor according to claim 1, wherein the element different from the main component of the semiconductor region is an impurity exhibiting a conductivity type opposite to the conductivity type of the source and drain of the semiconductor device. apparatus.
【請求項3】 請求項1において、該半導体領域の主成
分とは異なる元素は炭素、窒素、酸素の少なくとも1つ
であることを特徴とする薄膜半導体装置。
3. The thin film semiconductor device according to claim 1, wherein the element different from the main component of the semiconductor region is at least one of carbon, nitrogen and oxygen.
【請求項4】 絶縁表面上に形成されたテーパー状のエ
ッヂを有する島状の非単結晶薄膜半導体領域と、前記半
導体領域を横断するゲイト電極とを有する薄膜半導体装
置において、前記半導体領域の周辺部に高速イオンの注
入された領域が存在し、かつ、ゲイト電極が該領域を横
断していることを特徴とする薄膜半導体装置。
4. A thin film semiconductor device having an island-shaped non-single crystal thin film semiconductor region having a tapered edge formed on an insulating surface and a gate electrode crossing the semiconductor region, the periphery of the semiconductor region. A thin-film semiconductor device, characterized in that there is a region into which fast ions are implanted, and a gate electrode crosses the region.
【請求項5】 請求項4において、注入された高速イオ
ンは該半導体装置のソース、ドレインの導電型とは逆の
導電型を呈せしめる不純物であることを特徴とする薄膜
半導体装置。
5. The thin film semiconductor device according to claim 4, wherein the implanted fast ions are impurities that exhibit a conductivity type opposite to the conductivity type of the source and drain of the semiconductor device.
【請求項6】 請求項4において、注入された高速イオ
ンは炭素、窒素、酸素の少なくとも1つであることを特
徴とする薄膜半導体装置。
6. The thin film semiconductor device according to claim 4, wherein the implanted fast ions are at least one of carbon, nitrogen and oxygen.
【請求項7】 請求項4において、注入された高速イオ
ンはシリコンであることを特徴とする薄膜半導体装置。
7. The thin film semiconductor device according to claim 4, wherein the implanted fast ions are silicon.
【請求項8】 非単結晶半導体薄膜上に直接、もしくは
間接にマスク材を形成し、フォトリソグラフィー法によ
って、島状にパターニングをおこなう工程と、ドライエ
ッチング法もしくはウェットエッチング法によって、前
記マスク材のパターンにしたがって、前記半導体薄膜を
島状にエッチングし、同時に該島状半導体領域のエッヂ
部をテーパー状に加工する工程と、前記島状の半導体薄
膜上にマスク材を残した状態で、イオンを加速して照射
する工程と、前記半導体薄膜を横断してゲイト電極を形
成する工程とを有することを特徴とする薄膜トランジス
タの作製方法。
8. A step of directly or indirectly forming a mask material on a non-single-crystal semiconductor thin film and patterning it in an island shape by a photolithography method, and a step of forming the mask material by a dry etching method or a wet etching method. According to the pattern, the semiconductor thin film is etched into an island shape, and at the same time, the edge portion of the island semiconductor region is processed into a taper shape. A method of manufacturing a thin film transistor, comprising: a step of accelerating irradiation and a step of forming a gate electrode across the semiconductor thin film.
【請求項9】 請求項8において、イオンは該半導体装
置のソース、ドレインの導電型とは逆の導電型を呈せし
める不純物のイオンであることを特徴とする薄膜トラン
ジスタの作製方法。
9. The method for manufacturing a thin film transistor according to claim 8, wherein the ion is an impurity ion which exhibits a conductivity type opposite to a conductivity type of a source and a drain of the semiconductor device.
【請求項10】 請求項8において、イオンは炭素、窒
素、酸素の少なくとも1つであることを特徴とする薄膜
トランジスタの作製方法。
10. The method for manufacturing a thin film transistor according to claim 8, wherein the ion is at least one of carbon, nitrogen, and oxygen.
【請求項11】 請求項8において、イオンはシリコン
であることを特徴とする薄膜トランジスタの作製方法。
11. The method for manufacturing a thin film transistor according to claim 8, wherein the ions are silicon.
JP34394993A 1993-12-17 1993-12-17 Thin-film semiconductor device and its manufacture Pending JPH07176753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34394993A JPH07176753A (en) 1993-12-17 1993-12-17 Thin-film semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34394993A JPH07176753A (en) 1993-12-17 1993-12-17 Thin-film semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH07176753A true JPH07176753A (en) 1995-07-14

Family

ID=18365488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34394993A Pending JPH07176753A (en) 1993-12-17 1993-12-17 Thin-film semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH07176753A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176752A (en) * 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
WO1997048136A1 (en) * 1996-06-14 1997-12-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having soi structure and method for manufacturing the device
US6211535B1 (en) 1994-11-26 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6278132B1 (en) 1996-07-11 2001-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR100346831B1 (en) * 1999-10-12 2002-08-03 삼성전자 주식회사 Silicon-on-insulator device using trench and mesa structures and a method for manufacturing the same device
JP2002343976A (en) * 2001-05-21 2002-11-29 Fujitsu Ltd Thin-film transistor
JP2003298059A (en) * 2002-03-29 2003-10-17 Advanced Lcd Technologies Development Center Co Ltd Thin film transistor
EP1536482A1 (en) * 2003-11-28 2005-06-01 Samsung SDI Co., Ltd. Thin film transistor with tapered edges
JP2007519215A (en) * 2003-07-04 2007-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flexible semiconductor devices and identification labels
JP2007227955A (en) * 1996-07-11 2007-09-06 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2007273968A (en) * 2006-03-08 2007-10-18 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
KR100883813B1 (en) * 2006-07-20 2009-02-16 미쓰비시덴키 가부시키가이샤 Thin Film Transistor Substrate and Manufacturing Method Thereof
WO2009037896A1 (en) * 2007-09-18 2009-03-26 Sharp Kabushiki Kaisha Semiconductor device manufacturing method and semiconductor device
US7538347B2 (en) 2005-06-21 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Thin film transistor having a channel region that includes a plurality of connecting channel regions
JP2009147355A (en) * 2009-02-02 2009-07-02 Advanced Lcd Technologies Development Center Co Ltd Thin film transistor
US7573090B2 (en) 2006-03-31 2009-08-11 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device and manufacturing method thereof
US7598526B2 (en) 2006-03-08 2009-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR100982310B1 (en) * 2008-03-27 2010-09-15 삼성모바일디스플레이주식회사 TFT, fabricating methode of the TFT, and organic lighting emitting diode display device comprising the same
US7851296B2 (en) 2007-03-23 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
US7851277B2 (en) 2006-12-05 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US7968884B2 (en) 2006-12-05 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8067772B2 (en) 2006-12-05 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8253141B2 (en) 2008-07-14 2012-08-28 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the thin film transistor
US8283668B2 (en) 2007-08-23 2012-10-09 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the same
US8318523B2 (en) 2008-04-11 2012-11-27 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same and organic light emitting diode display device having the same
US8513669B2 (en) 2007-08-22 2013-08-20 Samsung Display Co., Ltd. Thin film transistor including metal or metal silicide structure in contact with semiconductor layer and organic light emitting diode display device having the thin film transistor
US8581260B2 (en) 2007-02-22 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a memory
US8603870B2 (en) 1996-07-11 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8790967B2 (en) 2007-05-31 2014-07-29 Samsung Display Co., Ltd. Method of fabricating polycrystalline silicon layer, TFT fabricated using the same, method of fabricating TFT, and organic light emitting diode display device having the same
US9230826B2 (en) 2010-08-26 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Etching method using mixed gas and method for manufacturing semiconductor device
US9257561B2 (en) 2010-08-26 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150469A (en) * 1983-02-03 1984-08-28 Toshiba Corp Manufacture of semiconductor device
JPS60113971A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Thin-film field-effect type semiconductor device and manufacture thereof
JPS6312160A (en) * 1986-07-03 1988-01-19 Fujitsu Ltd Method for forming island shaped soi channel stopper
JPH06314785A (en) * 1993-03-05 1994-11-08 Semiconductor Energy Lab Co Ltd Thin film semiconductor device and its manufacture
JPH06314698A (en) * 1993-03-05 1994-11-08 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
JPH07176752A (en) * 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150469A (en) * 1983-02-03 1984-08-28 Toshiba Corp Manufacture of semiconductor device
JPS60113971A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Thin-film field-effect type semiconductor device and manufacture thereof
JPS6312160A (en) * 1986-07-03 1988-01-19 Fujitsu Ltd Method for forming island shaped soi channel stopper
JPH06314785A (en) * 1993-03-05 1994-11-08 Semiconductor Energy Lab Co Ltd Thin film semiconductor device and its manufacture
JPH06314698A (en) * 1993-03-05 1994-11-08 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
JPH07176752A (en) * 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176752A (en) * 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd Thin-film semiconductor device and its manufacture
US6211535B1 (en) 1994-11-26 2001-04-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
WO1997048136A1 (en) * 1996-06-14 1997-12-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having soi structure and method for manufacturing the device
US6225663B1 (en) 1996-06-14 2001-05-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having SOI structure and method of fabricating the same
US8603870B2 (en) 1996-07-11 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7037765B2 (en) 1996-07-11 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2007227955A (en) * 1996-07-11 2007-09-06 Semiconductor Energy Lab Co Ltd Semiconductor device
US7635861B2 (en) 1996-07-11 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6278132B1 (en) 1996-07-11 2001-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8129232B2 (en) 1996-07-11 2012-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR100346831B1 (en) * 1999-10-12 2002-08-03 삼성전자 주식회사 Silicon-on-insulator device using trench and mesa structures and a method for manufacturing the same device
JP2002343976A (en) * 2001-05-21 2002-11-29 Fujitsu Ltd Thin-film transistor
JP4575621B2 (en) * 2001-05-21 2010-11-04 シャープ株式会社 Thin film transistor
JP2003298059A (en) * 2002-03-29 2003-10-17 Advanced Lcd Technologies Development Center Co Ltd Thin film transistor
JP2007519215A (en) * 2003-07-04 2007-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Flexible semiconductor devices and identification labels
EP1536482A1 (en) * 2003-11-28 2005-06-01 Samsung SDI Co., Ltd. Thin film transistor with tapered edges
US7538347B2 (en) 2005-06-21 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Thin film transistor having a channel region that includes a plurality of connecting channel regions
US8294157B2 (en) 2006-03-08 2012-10-23 Semiconducter Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9029864B2 (en) 2006-03-08 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007273968A (en) * 2006-03-08 2007-10-18 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US7598526B2 (en) 2006-03-08 2009-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8049266B2 (en) 2006-03-31 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device and manufacturing method thereof
US7573090B2 (en) 2006-03-31 2009-08-11 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device and manufacturing method thereof
US8310000B2 (en) 2006-03-31 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device and manufacturing method thereof
US7858474B2 (en) 2006-03-31 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device and manufacturing method thereof
KR100883813B1 (en) * 2006-07-20 2009-02-16 미쓰비시덴키 가부시키가이샤 Thin Film Transistor Substrate and Manufacturing Method Thereof
US8834989B2 (en) 2006-12-05 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8067772B2 (en) 2006-12-05 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7968884B2 (en) 2006-12-05 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7851277B2 (en) 2006-12-05 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US8283669B2 (en) 2006-12-05 2012-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US8581260B2 (en) 2007-02-22 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a memory
US8350313B2 (en) 2007-03-23 2013-01-08 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory transistor
US7851296B2 (en) 2007-03-23 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor memory device
US8790967B2 (en) 2007-05-31 2014-07-29 Samsung Display Co., Ltd. Method of fabricating polycrystalline silicon layer, TFT fabricated using the same, method of fabricating TFT, and organic light emitting diode display device having the same
US8513669B2 (en) 2007-08-22 2013-08-20 Samsung Display Co., Ltd. Thin film transistor including metal or metal silicide structure in contact with semiconductor layer and organic light emitting diode display device having the thin film transistor
US8283668B2 (en) 2007-08-23 2012-10-09 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the same
WO2009037896A1 (en) * 2007-09-18 2009-03-26 Sharp Kabushiki Kaisha Semiconductor device manufacturing method and semiconductor device
US8436360B2 (en) 2008-03-27 2013-05-07 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic lighting emitting diode display device including the same
US8101952B2 (en) 2008-03-27 2012-01-24 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic lighting emitting diode display device including the same
KR100982310B1 (en) * 2008-03-27 2010-09-15 삼성모바일디스플레이주식회사 TFT, fabricating methode of the TFT, and organic lighting emitting diode display device comprising the same
US8318523B2 (en) 2008-04-11 2012-11-27 Samsung Display Co., Ltd. Thin film transistor, method of fabricating the same and organic light emitting diode display device having the same
US8253141B2 (en) 2008-07-14 2012-08-28 Samsung Mobile Display Co., Ltd. Thin film transistor, method of fabricating the same, and organic light emitting diode display device including the thin film transistor
JP2009147355A (en) * 2009-02-02 2009-07-02 Advanced Lcd Technologies Development Center Co Ltd Thin film transistor
US9230826B2 (en) 2010-08-26 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Etching method using mixed gas and method for manufacturing semiconductor device
US9257561B2 (en) 2010-08-26 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH07176753A (en) Thin-film semiconductor device and its manufacture
US5913112A (en) Method of manufacturing an insulated gate field effect semiconductor device having an offset region and/or lightly doped region
JP3193803B2 (en) Manufacturing method of semiconductor element
US5899709A (en) Method for forming a semiconductor device using anodic oxidation
US5814540A (en) Method for producing a transistor
US5512494A (en) Method for manufacturing a thin film transistor having a forward staggered structure
US7355202B2 (en) Thin-film transistor
US6984551B2 (en) MIS semiconductor device and method of fabricating the same
JPH07106594A (en) Semiconductor device and its forming method
JPH06232069A (en) Manufacture of semiconductor device
USRE36314E (en) Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode
US6709907B1 (en) Method of fabricating a thin film transistor
JPH06314698A (en) Thin-film semiconductor device and its manufacture
JPH06314785A (en) Thin film semiconductor device and its manufacture
JP3325945B2 (en) Method for manufacturing thin film transistor
JPH06314786A (en) Thin film semiconductor device and its manufacture
JPH06314787A (en) Thin film semiconductor device and its manufacture
GB2358080A (en) Method of making a thin film transistor
JPH07176752A (en) Thin-film semiconductor device and its manufacture
JP3226655B2 (en) Method for manufacturing thin film transistor
JP3535493B2 (en) CMOS circuit and manufacturing method thereof
JP3315190B2 (en) Method for manufacturing thin film transistor
JPH06188264A (en) Manufacture of thin film transistor
JP3494280B2 (en) Insulated gate field effect semiconductor device
JP3316203B2 (en) Method for manufacturing semiconductor device