JP3535493B2 - CMOS circuit and manufacturing method thereof - Google Patents

CMOS circuit and manufacturing method thereof

Info

Publication number
JP3535493B2
JP3535493B2 JP2001381191A JP2001381191A JP3535493B2 JP 3535493 B2 JP3535493 B2 JP 3535493B2 JP 2001381191 A JP2001381191 A JP 2001381191A JP 2001381191 A JP2001381191 A JP 2001381191A JP 3535493 B2 JP3535493 B2 JP 3535493B2
Authority
JP
Japan
Prior art keywords
region
thin film
cross
gate electrode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001381191A
Other languages
Japanese (ja)
Other versions
JP2002231964A (en
Inventor
宏勇 張
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2001381191A priority Critical patent/JP3535493B2/en
Publication of JP2002231964A publication Critical patent/JP2002231964A/en
Application granted granted Critical
Publication of JP3535493B2 publication Critical patent/JP3535493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜トランジスタ
(TFT)の構造および作製方法に関するものである。
本発明によって作製される薄膜トランジスタは、ガラス
等の絶縁基板上、単結晶シリコン等の半導体基板上、い
ずれにも形成される。
TECHNICAL FIELD The present invention relates to a structure and a manufacturing method of a thin film transistor (TFT).
The thin film transistor manufactured by the present invention is formed on either an insulating substrate such as glass or a semiconductor substrate such as single crystal silicon.

【0002】[0002]

【従来の技術】従来、薄膜トランジスタは、薄膜半導体
領域(活性層)を島状にパターニングして、形成した
後、ゲイト絶縁膜として、CVD法やスパッタ法によっ
て絶縁被膜を形成し、その上にゲイト電極を形成した。
2. Description of the Related Art Conventionally, a thin film transistor is formed by patterning a thin film semiconductor region (active layer) in an island shape, and then forming an insulating film as a gate insulating film by a CVD method or a sputtering method, and then forming a gate film thereon. The electrode was formed.

【0003】[0003]

【発明が解決しようする課題】CVD法やスパッタ法で
形成される絶縁被膜はステップカバレージ(段差被覆
性)が悪く、信頼性や歩留り、特性に悪影響を及ぼして
いた。図3には従来の典型的なTFTを上から見た図、
およびその図面のA−A’、B−B’に沿った断面図を
示す。TFTは基板31上に形成され、薄膜半導体領域
は不純物領域(ソース、ドレイン領域、ここではN型の
導電型を示す)33とゲイト電極37の下に位置し、実
質的に真性のチャネル形成領域32に分けられ、この半
導体領域を覆って、ゲイト絶縁膜35が設けられる。不
純物領域33には、層間絶縁物39を通してコンタクト
ホールが開けられ、電極・配線38が設けられる。
The insulating coating formed by the CVD method or the sputtering method has a poor step coverage (step coverage), which adversely affects reliability, yield, and characteristics. FIG. 3 is a top view of a typical conventional TFT,
And a cross-sectional view taken along line AA ′ and BB ′ of the drawing. The TFT is formed on the substrate 31, the thin-film semiconductor region is located below the impurity region (source and drain regions, which shows N-type conductivity here) 33 and the gate electrode 37, and is a substantially intrinsic channel forming region. A gate insulating film 35 is provided so as to cover the semiconductor region. A contact hole is opened in the impurity region 33 through an interlayer insulator 39, and an electrode / wiring 38 is provided.

【0004】図から分かるように、ゲイト絶縁膜35の
半導体領域の端部における被覆性は著しく悪く、典型的
には平坦部の厚さの半分しか厚みが存在しない。一般に
島状半導体領域が厚い場合には甚だしい。特にゲイト電
極に沿ったA−A’断面からこのような被覆性の悪化が
TFTの特性、信頼性、歩留りに及ぼす悪影響が分か
る。すなわち、図5のA−A’断面図において点線円で
示した領域36に注目してみれば、ゲイト電極37の電
界が薄膜半導体領域の端部に集中的に印加される。すな
わち、この部分ではゲイト絶縁膜の厚さが平坦部の半分
であるので、その電界強度は2倍になるためである。
As can be seen from the figure, the coverage of the end portion of the semiconductor region of the gate insulating film 35 is extremely poor, and typically only half the thickness of the flat portion is present. Generally, when the island-shaped semiconductor region is thick, it is extremely large. Particularly, from the AA 'cross section along the gate electrode, it can be seen that such deterioration of the covering property adversely affects the characteristics, reliability and yield of the TFT. That is, paying attention to the region 36 indicated by the dotted circle in the AA ′ sectional view of FIG. 5, the electric field of the gate electrode 37 is intensively applied to the end portion of the thin film semiconductor region. That is, since the thickness of the gate insulating film in this portion is half that of the flat portion, the electric field strength thereof is doubled.

【0005】この結果、この領域36のゲイト絶縁膜は
長時間のあるいは高い電圧印加によって容易に破壊され
る。ゲイト電極に印加される信号が正であれば、この領
域36の半導体もN型であるので、ゲイト電極37と不
純物領域38(特に、ドレイン領域)が導通してしま
い、信頼性低下の原因となる。
As a result, the gate insulating film in this region 36 is easily destroyed by applying a high voltage for a long time. If the signal applied to the gate electrode is positive, the semiconductor in this region 36 is also N-type, so that the gate electrode 37 and the impurity region 38 (particularly, the drain region) become conductive, which causes a decrease in reliability. Become.

【0006】また、ゲイト絶縁膜が破壊された際には、
何らかの電荷がトラップされることが起こり、例えば、
負の電荷がトラップされれば、ゲイト電極に印加される
電圧にほとんど関わりなく、領域36の半導体はN型を
呈し、2つの不純物領域38が導通することとなり、特
性を劣化させる。また、以上のような劣化を引き起こさ
ずにTFTを使用するには、理想的な場合の半分の電圧
しか印加できず、性能を十分に利用することができな
い。
When the gate insulating film is destroyed,
It happens that some charge is trapped, for example
If the negative charges are trapped, the semiconductor in the region 36 exhibits N type and the two impurity regions 38 become conductive regardless of the voltage applied to the gate electrode, which deteriorates the characteristics. Further, in order to use the TFT without causing the above deterioration, only half the voltage as in the ideal case can be applied, and the performance cannot be fully utilized.

【0007】また、TFTの一部にこのような弱い部分
が存在するということは製造工程における帯電等によっ
て容易にTFTが破壊されることであり、歩留り低下の
大きな要因となる。本発明はこのような問題を解決する
ことを課題とする。
The presence of such a weak portion in a part of the TFT means that the TFT is easily destroyed due to charging or the like in the manufacturing process, which is a major factor for lowering the yield. An object of the present invention is to solve such a problem.

【0008】[0008]

【発明を解決するための手段】本発明では、このように
電気的に弱い領域の半導体を抵抗の高い真性半導体、あ
るいはチャネル形成領域と同じ導電型とすることによっ
て補うことを特徴とする。本発明の典型的な構造を図1
に示す。図1(A)に示すように、本発明では,島状半
導体領域の端部でゲイト電極11が横断する部分の近傍
において、従来のTFTでは不純物領域(ソース、ドレ
イン)とされていた部分に真性の領域もしくはチャネル
形成領域と同じ導電型の領域14を設けた。すなわち、
本発明のTFTでは、島状半導体領域において、ゲイト
電極で覆われていない部分に関して、不純物がドーピン
グされた不純物領域(ソース、ドレイン)13以外に、
実質的に真性な領域もしくはチャネル形成領域と同じ導
電型の領域14が存在する。
The present invention is characterized in that the semiconductor in such an electrically weak region is supplemented by making it an intrinsic semiconductor having a high resistance or the same conductivity type as that of the channel forming region. A typical structure of the present invention is shown in FIG.
Shown in. As shown in FIG. 1 (A), in the present invention, in the vicinity of the portion where the gate electrode 11 crosses at the end of the island-shaped semiconductor region, in the portion which is the impurity region (source, drain) in the conventional TFT. A region 14 having the same conductivity type as the intrinsic region or the channel formation region is provided. That is,
In the TFT of the present invention, in the island-shaped semiconductor region, in the portion not covered with the gate electrode, other than the impurity region (source, drain) 13 doped with impurities,
There is a substantially intrinsic region or a region 14 of the same conductivity type as the channel forming region.

【0009】図1(B)には、本発明の別な例を示す
が、島状半導体領域の形状が違うだけで、実質的な構造
は図1(A)と同じである。なお、図中の16はソー
ス、ドレインに接続する電極を示す。
FIG. 1B shows another example of the present invention, but the substantial structure is the same as that of FIG. 1A except that the shape of the island-shaped semiconductor region is different. Reference numeral 16 in the figure denotes an electrode connected to the source and drain.

【0010】このように、真性な領域14もしくはチャ
ネル形成領域と同じ導電型の領域が設けられたことの効
果は図4で説明される。図4(A)は従来のTFTの構
造および等価回路を示す。図中のX、Yは島状半導体領
域をゲイト電極が横断する部分であるが、この部分のゲ
イト絶縁膜は先に述べた通り、平坦な部分よりも薄い。
したがって、等価回路に示すように本来のTFTよりも
しきい値や耐圧の低い寄生TFTが形成されている。
The effect of providing the intrinsic region 14 or the region of the same conductivity type as that of the channel forming region in this manner will be described with reference to FIG. FIG. 4A shows a structure and an equivalent circuit of a conventional TFT. In the figure, X and Y are portions where the gate electrode crosses the island-shaped semiconductor region, but the gate insulating film in this portion is thinner than the flat portion as described above.
Therefore, as shown in the equivalent circuit, a parasitic TFT having a lower threshold value and lower withstand voltage than the original TFT is formed.

【0011】もし、ゲイトに過大な電圧が印加される
と、本来のTFTが破壊される前に、この寄生TFTが
破壊されて、寄生TFTは単なる導体となり、ソース、
ドレイン間、もしくはソース、ゲイト間のリーク電流が
増大する。
If an excessive voltage is applied to the gate, the parasitic TFT is destroyed before the original TFT is destroyed, and the parasitic TFT becomes a mere conductor, and the source,
The leak current between the drains or between the source and the gate increases.

【0012】一方、本発明は図4(B)に示すような構
造、および等価回路である。本発明においても寄生TF
T、X、Yが形成されるのは従来の場合と同様である。
しかしながら、本発明では島状半導体領域の一部が真性
半導体領域となったために抵抗が高く、この抵抗Rは寄
生TFTに直列に挿入されて、ソース、ドレインの電圧
が直接、寄生TFTに印加されない構造となる。また、
チャネル形成領域と同じ導電型の領域を設けた場合に
は、その導電型はソース、ドレインとは逆であるので、
PN接合によって抵抗と同等なバリアが形成される。
On the other hand, the present invention has a structure as shown in FIG. 4B and an equivalent circuit. Also in the present invention, the parasitic TF
The formation of T, X, and Y is the same as in the conventional case.
However, in the present invention, since a part of the island-shaped semiconductor region is an intrinsic semiconductor region, the resistance is high, and this resistance R is inserted in series to the parasitic TFT, so that the source and drain voltages are not directly applied to the parasitic TFT. It becomes a structure. Also,
When a region of the same conductivity type as the channel formation region is provided, the conductivity type is opposite to that of the source and drain, so
The PN junction forms a barrier equivalent to resistance.

【0013】したがって、過大な電圧がゲイト電極に印
加された場合においても、寄生抵抗のソース、ドレイン
に直列に挿入された上記の抵抗によって電圧が減じら
れ、寄生TFTが破壊されることがない。この結果、従
来のTFTにおいて問題となった信頼性の低下、歩留
り、特性の劣化は解決される。
Therefore, even when an excessive voltage is applied to the gate electrode, the voltage is reduced by the above resistance inserted in series with the source and drain of the parasitic resistance, and the parasitic TFT is not destroyed. As a result, the deterioration of reliability, yield, and deterioration of characteristics which have been problems in the conventional TFT can be solved.

【0014】本発明を実施する工程を図1(C)〜
(H)を用いて簡単に説明する。まず、基板上に島状半
導体領域10を形成する。通常はこの半導体領域は実質
的に真性であるが、弱いN型もしくはP型であってもよ
い。(図1(C))
The steps for carrying out the present invention are shown in FIG.
A brief description will be given using (H). First, the island-shaped semiconductor region 10 is formed on the substrate. Usually this semiconductor region is substantially intrinsic, but may be weakly N-type or P-type. (Fig. 1 (C))

【0015】そして、ゲイト絶縁膜を形成した後、図1
(D)に示すようにゲイト電極11を設ける。その後、
図1(E)に12で示すように不純物を注入する。この
結果、図1(F)のように、不純物領域13と不純物領
域とゲイト電極で挟まれた領域14が形成される。領域
14は2〜5μmのディメンジョンで示される領域とす
ると好ましい。この領域の導電型は島状半導体の導電型
と同じで、島状半導体が真性であれば、この領域14も
真性であり、典型的な抵抗率は106Ωcm以上であ
る。
Then, after forming the gate insulating film, as shown in FIG.
A gate electrode 11 is provided as shown in FIG. afterwards,
Impurities are implanted as indicated by 12 in FIG. As a result, as shown in FIG. 1F, an impurity region 13 and a region 14 sandwiched between the impurity region and the gate electrode are formed. The area 14 is preferably an area having a dimension of 2 to 5 μm. The conductivity type of this region is the same as that of the island semiconductor, and if the island semiconductor is intrinsic, this region 14 is also intrinsic, and the typical resistivity is 10 6 Ωcm or more.

【0016】図1(G)には、図1(F)で示されたT
FTのゲイト電極を除去した様子を示す。この図から明
らかなように、チャネル形成領域15と図1(F)で示
した領域14の導電型は同じである。最後にソース、ド
レインに電極16を形成してTFTが完成する。(図1
(H))
FIG. 1G shows the T shown in FIG.
The state where the gate electrode of FT is removed is shown. As is clear from this figure, the channel formation region 15 and the region 14 shown in FIG. 1F have the same conductivity type. Finally, electrodes 16 are formed on the source and drain to complete the TFT. (Fig. 1
(H))

【0017】本発明においては、例えば、基板上にNチ
ャネル型もしくはPチャネル型のどちらか一方のTFT
だけを形成する場合にはフォトリソグラフィーの工程が
1つ増加するが、このことは、本発明によって得られる
特性、信頼性、歩留りの向上を勘案すれば何ら障害とは
ならない。
In the present invention, for example, either N-channel type or P-channel type TFT is provided on the substrate.
In the case of forming only the structure, the number of photolithography steps is increased by one, but this does not cause any obstacle in view of the improvement in the characteristics, reliability and yield obtained by the present invention.

【0018】さらに、本発明をNチャネル型とPチャネ
ル型のTFTが混在する相補型回路(CMOS回路)に
適用するとその効果はより明らかになる。CMOS回路
においては、最も簡便な作製方法は、最初にN型もしく
はP型の不純物を基板全面に導入し、ついで、必要な箇
所をマスキングして、先に導入された不純物を打ち消す
だけの逆の導電型の不純物を導入するものである。この
方法を仮に第1の方法と称する。しかしながら、この第
1の方法では、例えば、N型領域は1×1015cm-2
ドーズ量であるのに、P型領域は、5×1015cm-2
ドーズ量が要求され、耐圧、しきい値等においてNチャ
ネル型TFTとPチャネル型TFTのバランスが取れな
いことがあった。
Furthermore, when the present invention is applied to a complementary circuit (CMOS circuit) in which N-channel type TFTs and P-channel type TFTs are mixed, the effect becomes more apparent. In a CMOS circuit, the simplest manufacturing method is to reverse the process of first introducing N-type or P-type impurities into the entire surface of the substrate, then masking necessary portions, and canceling the previously introduced impurities. A conductive type impurity is introduced. This method is tentatively called the first method. However, in the first method, for example, the N-type region has a dose amount of 1 × 10 15 cm −2 , but the P-type region requires a dose amount of 5 × 10 15 cm −2 , and the withstand voltage is high. In some cases, the N-channel TFT and the P-channel TFT cannot be balanced in terms of threshold value and the like.

【0019】もっとも、確実な方法は、最初にマスキン
グを施して、N型もしくはP型不純物を導入し、次に再
びマスキングを施して先の不純物の逆の導電型の不純物
を導入する方法である。この方法を第2の方法と称す
る。この場合には、N型不純物とP型不純物の濃度を全
く独立に設定できるのでCMOS回路として理想的な特
性を期待できる。しかし、この場合には、第1の方法に
比べてフォトリソグラフィー工程が1つ追加されること
となる。
The most reliable method, however, is to first perform masking to introduce N-type or P-type impurities, and then again to carry out masking to introduce impurities of a conductivity type opposite to the previous impurities. . This method is called the second method. In this case, since the concentrations of the N-type impurity and the P-type impurity can be set completely independently, ideal characteristics as a CMOS circuit can be expected. However, in this case, one photolithography process is added as compared with the first method.

【0020】本発明をCMOS回路において、N型、P
型両TFTに実施しようとすれば、N型不純物とP型不
純物を別々にマスキングして導入せざるをえない。した
がって、上記2つの方法のうちの第2の方法を採用する
こととなる。第2の方法は、製造工程が複雑になるので
あるが、得られる特性が優れたものであることは先に説
明した通りである。そして、その効果に加えて本発明の
効果が得られるのであるから、フォトリソグラフィー工
程が1つ追加されることのデメリットは完全に打ち消さ
れてしまう。以下には、特にCMOS回路を作製する上
で、本発明を実施する場合について実施例を示す。
In the CMOS circuit according to the present invention, N type, P type
If it is to be applied to both type TFTs, N-type impurities and P-type impurities must be masked and introduced separately. Therefore, the second method of the above two methods is adopted. Although the second method complicates the manufacturing process, the obtained characteristics are excellent, as described above. Since the effect of the present invention is obtained in addition to the effect, the demerit of adding one photolithography step is completely canceled. Examples will be shown below for implementing the present invention particularly in manufacturing a CMOS circuit.

【0021】[0021]

【実施例】図2に本実施例の作製工程の断面図を示す。
基板(コーニング7059)20上にスパッタリングに
よって厚さ200nmの酸化珪素の下地膜21を形成し
た。さらに、プラズマCVD法によって、厚さ50〜1
50nm、例えば150nmのアモルファスシリコン膜
を堆積した。引き続き、スパッタリング法によって、厚
さ20nmの酸化珪素膜を保護膜として堆積した。そし
て、これを還元雰囲気下、600℃で48時間アニール
して結晶化させた。結晶化工程はレーザー等の強光を用
いる方式でもよい。そして、得られた結晶シリコン膜を
パターニングして、島状シリコン領域22P、22Nを
形成した。
EXAMPLE FIG. 2 shows a cross-sectional view of the manufacturing process of this example.
A base film 21 of silicon oxide having a thickness of 200 nm was formed on the substrate (Corning 7059) 20 by sputtering. Furthermore, by plasma CVD method, a thickness of 50 to 1
A 50 nm, for example 150 nm, amorphous silicon film was deposited. Subsequently, a 20-nm-thick silicon oxide film was deposited as a protective film by a sputtering method. Then, this was annealed at 600 ° C. for 48 hours in a reducing atmosphere to be crystallized. The crystallization step may be a method using strong light such as a laser. Then, the obtained crystalline silicon film was patterned to form island-shaped silicon regions 22P and 22N.

【0022】次に、スパッタリング法によって厚さ10
0nmの酸化珪素膜23をゲイト絶縁膜として堆積し、
引き続いて、減圧CVD法によって、厚さ600〜80
0nm、例えば600nmのシリコン膜(0.01〜2
%の燐を含む)を堆積した。なお、この酸化珪素とシリ
コン膜の成膜工程は連続的におこなうことが望ましい。
そして、シリコン膜をパターニングして、ゲイト電極2
4P、24Nを形成した。(図2(A))
Next, a thickness of 10 is obtained by the sputtering method.
A 0 nm silicon oxide film 23 is deposited as a gate insulating film,
Subsequently, the thickness of 600 to 80 is obtained by the low pressure CVD method.
0 nm, for example 600 nm silicon film (0.01-2
% Phosphorus) was deposited. It is desirable that the steps of forming the silicon oxide and the silicon film are continuously performed.
Then, the silicon film is patterned to form the gate electrode 2
4P and 24N were formed. (Fig. 2 (A))

【0023】次に、半導体領域22Pをフォトレジスト
25Nでマスクして、プラズマドーピング法によって、
シリコン領域22Nに配線24Nをマスクとして不純物
(燐)を注入した。マスク25の材料としては、この他
にもクロム、チタン、窒化チタン、アルミニウム等の金
属材料、金属窒化物材料も使用できる。ドーピングのパ
ターンは図1(E)に示されるような形状とした。ドー
ピングガスとして、フォスフィン(PH3)を用い、加
速電圧を60〜90kV、例えば80kVとした。ドー
ス量は1×1015〜8×1015cm-2、例えば1×10
15cm-2とした。この結果、N型の不純物領域26Nが
形成された。ドーピング終了後、レジストマスク25N
は酸素雰囲気中でのアッシング(灰化)工程によって除
去された。典型的なアッシング条件は1Torr、RF
パワー300Wであった。
Next, the semiconductor region 22P is masked with a photoresist 25N, and plasma doping is performed by a plasma doping method.
Impurities (phosphorus) were implanted into the silicon region 22N using the wiring 24N as a mask. As the material of the mask 25, metal materials such as chromium, titanium, titanium nitride, and aluminum, and metal nitride materials can be used in addition to the above. The doping pattern has a shape as shown in FIG. Phosphine (PH 3 ) was used as a doping gas, and the acceleration voltage was set to 60 to 90 kV, for example, 80 kV. The dose amount is 1 × 10 15 to 8 × 10 15 cm -2 , for example, 1 × 10
It was set to 15 cm -2 . As a result, the N-type impurity region 26N was formed. After doping, resist mask 25N
Was removed by an ashing process in an oxygen atmosphere. Typical ashing condition is 1 Torr, RF
The power was 300 W.

【0024】また、後で、レーザーによって活性化をお
こなう場合には、レジストマスクを除去する前に、フッ
化水素酸によって、シリコン領域22N上の酸化珪素2
3を選択的に除去するとよい。これは、レーザー照射時
に、酸化珪素23とシリコン領域22Nが反応すること
によって表面に凹凸が生じることを防止する上で効果的
である。(図2(B))
Further, when the activation is performed by a laser later, the silicon oxide 2 on the silicon region 22N is formed by hydrofluoric acid before removing the resist mask.
3 should be selectively removed. This is effective in preventing unevenness on the surface due to the reaction between the silicon oxide 23 and the silicon region 22N during laser irradiation. (Fig. 2 (B))

【0025】さらに、今度は、半導体領域22Nをフォ
トレジスト25Pでマスクして、プラズマドーピング法
によって、シリコン領域22Pに配線24Pをマスクと
して不純物(ホウ素)を注入した。この場合もドーピン
グのパターンは図1(E)に示されるような形状とし
た。ドーピングガスとして、ジボラン(B26)を用
い、加速電圧を20〜70kV、例えば65kVとし
た。ドース量は1×1015〜8×1015cm-2、例えば
1×1015cm-2とした。この結果、P型の不純物領域
26Pが形成された。ドーピング後、レジストマスク2
5Pはアッシング工程によって除去された。(図2
(C))
Further, this time, the semiconductor region 22N was masked with the photoresist 25P, and an impurity (boron) was implanted into the silicon region 22P by the plasma doping method using the wiring 24P as a mask. Also in this case, the doping pattern has a shape as shown in FIG. Diborane (B 2 H 6 ) was used as a doping gas, and the acceleration voltage was set to 20 to 70 kV, for example, 65 kV. The dose amount was set to 1 × 10 15 to 8 × 10 15 cm −2 , for example, 1 × 10 15 cm −2 . As a result, the P-type impurity region 26P is formed. After doping, resist mask 2
5P was removed by the ashing process. (Fig. 2
(C))

【0026】その後、還元雰囲気中、600℃で48時
間アニールすることによって、不純物を活性化させた。
この工程はレーザーアニールによっておこなってもよ
い。その場合には、レーザーとしてはKrFエキシマー
レーザー(波長248nm)、XeFエキシマーレーザ
ー(波長353nm)、XeClエキシマーレーザー
(波長308nm)、ArFエキシマーレーザー(波長
193nm)等を用い、レーザーのエネルギー密度は、
200〜350mJ/cm2、例えば250mJ/cm2
とし、1か所につき2〜10ショット、例えば2ショッ
ト照射すればよい。レーザー照射時に、基板を200〜
450℃程度に加熱してもよい。基板を加熱した場合に
は最適なレーザーエネルギー密度が変わることに注意し
なければならない。
Then, the impurities were activated by annealing at 600 ° C. for 48 hours in a reducing atmosphere.
This step may be performed by laser annealing. In that case, a KrF excimer laser (wavelength 248 nm), a XeF excimer laser (wavelength 353 nm), a XeCl excimer laser (wavelength 308 nm), an ArF excimer laser (wavelength 193 nm), or the like is used as the laser.
200 to 350 mJ / cm 2 , for example 250 mJ / cm 2
Therefore, it is sufficient to irradiate 2 to 10 shots, for example, 2 shots, at one place. Substrate 200-
You may heat to about 450 degreeC. It should be noted that the optimum laser energy density changes when the substrate is heated.

【0027】不純物の活性化後、続いて、厚さ300〜
1000nm、例えば600nmの酸化珪素膜27を層
間絶縁物としてプラズマCVD法によって形成し、これ
にコンタクトホールを形成して、金属材料、例えば、窒
化チタンとアルミニウムの多層膜によって配線28P、
28Nを形成した。以上の工程によってCMOSの半導
体回路が完成した。(図2(D))
After activation of the impurities, the thickness of 300-
A silicon oxide film 27 having a thickness of 1000 nm, for example 600 nm, is formed as an interlayer insulator by a plasma CVD method, a contact hole is formed in the film, and a wiring 28P is formed of a metal material such as a multilayer film of titanium nitride and aluminum.
28N was formed. Through the above steps, a CMOS semiconductor circuit is completed. (Fig. 2 (D))

【0028】[0028]

【発明の効果】本発明によって、TFTの歩留りを向上
させ、また、その信頼性を高め、最大限の特性を引き出
すことが可能となった。しかも、かように大きな効果を
得るに際して、特に大きなプロセス変更や投資、技術開
発を伴わないで実施できることのメリットは大きい。本
発明では絶縁基板上のTFTを例にとって説明したが、
単結晶半導体基板上に形成されるTFTにも実施できる
ことは言うまでもない。このように本発明は工業上、有
益な発明である。
According to the present invention, it is possible to improve the yield of TFTs, enhance their reliability, and bring out the maximum characteristics. Moreover, in obtaining such a large effect, there is a great merit that it can be carried out without involving a large process change, investment, and technological development. Although the present invention has been described by taking the TFT on the insulating substrate as an example,
Needless to say, the present invention can be applied to a TFT formed on a single crystal semiconductor substrate. Thus, the present invention is an industrially useful invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のTFTの構成および作製方法の概
念図を示す。
1A and 1B are conceptual diagrams showing a structure of a TFT of the invention and a manufacturing method thereof.

【図2】 実施例のTFTの作製工程断面を示す。2A to 2C show cross-sectional views of a manufacturing process of a TFT of an example.

【図3】 従来のTFTの構成例を示す。FIG. 3 shows a configuration example of a conventional TFT.

【図4】 本発明および従来のTFTの電気特性を説
明する。
FIG. 4 illustrates electrical characteristics of the present invention and a conventional TFT.

【符号の説明】[Explanation of symbols]

10・・・島状半導体領域 11・・・ゲイト電極 12・・・不純物導入領域 13・・・不純物領域(ソース、ドレイン) 14・・・不純物の導入されなかった領域 15・・・チャネル形成領域 16・・・ソース電極、ドレイン電極 10 ... Island semiconductor region 11 ... Gate electrode 12 ... Impurity introduction region 13 ... Impurity region (source, drain) 14: Area where impurities are not introduced 15 ... Channel formation region 16 ... Source electrode, drain electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 29/78 621 27/08 321A (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/336 H01L 21/8238 H01L 27/08 H01L 27/092 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI H01L 29/78 621 27/08 321A (58) Fields investigated (Int.Cl. 7 , DB name) H01L 29/786 H01L 21 / 336 H01L 21/8238 H01L 27/08 H01L 27/092

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Nチャネル型のTFTと、前記Nチャネル
型のTFTと接続したPチャネル型を有するCMOS回
路であって、 前記Nチャネル型のTFTと前記Pチャネル型のTFT
はそれぞれ十字状の薄膜半導体と、前記十字状の薄膜半
導体上にゲイト絶縁膜と、前記ゲイト絶縁膜上にゲイト
電極とを有し、 前記十字状の薄膜半導体は上方に前記ゲイト電極を有す
る第1の領域、前記第1の領域の端部と前記十字状の薄
膜半導体の端部と接し、かつ、前記ゲイト電極が横断す
る部分の近傍の第2の領域および前記第1の領域と前記
第2の領域を含まない、n型又はp型不純物の注入領域
である第3の領域とに区分され、 前記第1の領域および前記第2の領域はn型又はp型不
純物の非注入領域であり、 前記ゲイト絶縁膜は、活性化処理の前に選択的に除去さ
れていることを特徴とするCMOS回路。
1. A CMOS circuit having an N-channel type TFT and a P-channel type connected to the N-channel type TFT, wherein the N-channel type TFT and the P-channel type TFT are provided.
Each has a cross-shaped thin film semiconductor, a gate insulating film on the cross-shaped thin film semiconductor, and a gate electrode on the gate insulating film, and the cross-shaped thin film semiconductor has the gate electrode above. No. 1 region, a second region in contact with an end of the first region and an end of the cross-shaped thin film semiconductor, and in the vicinity of a portion traversed by the gate electrode, the first region and the first region. The second region is a non-implanted region of an n-type or p-type impurity and is divided into a third region which is an n-type or p-type impurity-implanted region not including the second region. A CMOS circuit, wherein the gate insulating film is selectively removed before the activation process.
【請求項2】Nチャネル型のTFTと、前記Nチャネル
型のTFTと接続したPチャネル型を有するCMOS回
路であって、 前記Nチャネル型のTFTと前記Pチャネル型のTFT
はそれぞれ十字状の薄膜半導体と、前記十字状の薄膜半
導体上にゲイト絶縁膜と、前記ゲイト絶縁膜上にゲイト
電極とを有し、 前記十字の薄膜半導体は上方に前記ゲイト電極を有する
第1の領域、前記第1の領域の端部と前記十字状の薄膜
半導体の端部と接し、かつ、前記十字状の薄膜半導体の
端部で前記ゲイト電極が横断する部分の近傍の第2の領
域および前記第1の領域と前記第2の領域を含まない、
n型又はp型不純物の注入領域である不純物が導入され
た第3の領域とに区分され、 前記第2の領域の導電型はチャネル形成領域の導電型と
同じであり、 前記ゲイト絶縁膜は、活性化処理の前に選択的に除去さ
れていることを特徴とするCMOS回路。
2. A CMOS circuit having an N-channel TFT and a P-channel TFT connected to the N-channel TFT, wherein the N-channel TFT and the P-channel TFT are provided.
Each has a cross-shaped thin film semiconductor, a gate insulating film on the cross-shaped thin film semiconductor, and a gate electrode on the gate insulating film. The cross thin film semiconductor has the gate electrode above. Region, which is in contact with the end of the first region and the end of the cross-shaped thin film semiconductor, and is in the vicinity of a portion of the cross-shaped thin film semiconductor crossed by the gate electrode. And does not include the first region and the second region,
The third region is an n-type or p-type impurity implantation region into which an impurity is introduced, the second region has the same conductivity type as the channel formation region, and the gate insulating film is , A CMOS circuit characterized by being selectively removed before the activation process.
【請求項3】請求項2において、 前記第1の領域および前記第2の領域は弱いP型または
弱いN型の導電性を有することを特徴とするCMOS回
路。
3. The CMOS circuit according to claim 2, wherein the first region and the second region have weak P-type or weak N-type conductivity.
【請求項4】請求項1乃至3のいずれか一において、 前記第2の領域の電気抵抗値は第3の領域の電気抵抗値
よりも高いことを特徴とするCMOS回路。
4. The CMOS circuit according to claim 1, wherein the electric resistance value of the second region is higher than the electric resistance value of the third region.
【請求項5】十字状の薄膜半導体を基板上に形成し、 前記十字状の薄膜半導体上に絶縁膜を形成し、 前記絶縁膜上にゲイト電極を形成し、 前記十字状の薄膜半導体の端部および前記ゲイト電極の
端部と接し、かつ、前記ゲイト電極が横断する部分の近
傍と少なくとも重なる第一のマスクを用いて不純物を導
入し、 前記第一のマスクを用いて前記絶縁膜を除去し、 前記薄膜半導体の端部および前記ゲイト電極の端部と接
し、かつ、前記ゲイト電極が横断する部分の近傍と少な
くとも重なる第ニのマスクを用い、前記不純物をとは逆
の導電型の不純物を導入し、 該不純物を導入後、活性化を行うCMOS回路の作製方
法。
5. A cross-shaped thin film semiconductor is formed on a substrate, an insulating film is formed on the cross-shaped thin film semiconductor, a gate electrode is formed on the insulating film, and ends of the cross-shaped thin film semiconductor are formed. Part and an end portion of the gate electrode, and impurities are introduced by using a first mask which overlaps at least with the vicinity of a portion traversed by the gate electrode, and the insulating film is removed by using the first mask. An impurity having a conductivity type opposite to that of the impurity is used by using a second mask which is in contact with the end of the thin film semiconductor and the end of the gate electrode and at least overlaps with the vicinity of a portion crossed by the gate electrode. And a method for manufacturing a CMOS circuit in which the impurities are introduced and then activated.
【請求項6】十字状の薄膜半導体を基板上に形成し、 前記十字状の薄膜半導体上に絶縁膜を形成し、 前記絶縁膜上にゲイト電極を形成し、 基板全面に不純物を導入し、 前記薄膜半導体の端部および前記ゲイト電極の端部と接
し、かつ、前記ゲイト電極が横断する部分の近傍とは少
なくとも重ならないマスクを用い、 前記十字状の薄膜半導体に前記不純物を打ち消すだけの
逆の導電型の不純物を導入し、 該不純物を導入後、該マスクを用いて前記絶縁膜を除去
し、活性化を行うCMOS回路の作製方法。
6. A cross-shaped thin film semiconductor is formed on a substrate, an insulating film is formed on the cross-shaped thin film semiconductor, a gate electrode is formed on the insulating film, and impurities are introduced into the entire surface of the substrate. Using a mask that is in contact with the end of the thin film semiconductor and the end of the gate electrode and does not at least overlap with the vicinity of the portion traversed by the gate electrode, the reverse cross-section only cancels the impurities in the cross-shaped thin film semiconductor. The method for manufacturing a CMOS circuit, wherein the conductivity type impurity is introduced, and after the impurity is introduced, the insulating film is removed using the mask and activation is performed.
【請求項7】請求項5又は請求項6において、 前記活性化は、レーザーを照射することによって行われ
るCMOS回路の作製方法。
7. The method for manufacturing a CMOS circuit according to claim 5, wherein the activation is performed by irradiating a laser.
【請求項8】請求項5乃至請求項7のいずれか一におい
て、前記絶縁膜は、フッ化水素酸によって除去されるC
MOS回路の作製方法。
8. The C according to claim 5, wherein the insulating film is C removed by hydrofluoric acid.
Manufacturing method of MOS circuit.
JP2001381191A 2001-12-14 2001-12-14 CMOS circuit and manufacturing method thereof Expired - Lifetime JP3535493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381191A JP3535493B2 (en) 2001-12-14 2001-12-14 CMOS circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381191A JP3535493B2 (en) 2001-12-14 2001-12-14 CMOS circuit and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07110393A Division JP3325945B2 (en) 1993-03-05 1993-03-05 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JP2002231964A JP2002231964A (en) 2002-08-16
JP3535493B2 true JP3535493B2 (en) 2004-06-07

Family

ID=19187302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381191A Expired - Lifetime JP3535493B2 (en) 2001-12-14 2001-12-14 CMOS circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3535493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295529B2 (en) * 2007-08-13 2013-09-18 株式会社ジャパンディスプレイ Semiconductor device

Also Published As

Publication number Publication date
JP2002231964A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
US5913112A (en) Method of manufacturing an insulated gate field effect semiconductor device having an offset region and/or lightly doped region
JP3193803B2 (en) Manufacturing method of semiconductor element
JP3398453B2 (en) Method for manufacturing thin film transistor
KR0157471B1 (en) Transistor and method for producing the same
JPH07176753A (en) Thin-film semiconductor device and its manufacture
US7709904B2 (en) Thin film transistor substrate and method for manufacturing the same
CN106847703A (en) The manufacture method and display device of low-temperature polysilicon film transistor
JPH11514152A (en) Method of manufacturing electronic device including thin film transistor
JP3452981B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP3325945B2 (en) Method for manufacturing thin film transistor
JPH06314785A (en) Thin film semiconductor device and its manufacture
JPH06314698A (en) Thin-film semiconductor device and its manufacture
JP3535493B2 (en) CMOS circuit and manufacturing method thereof
JPH0637314A (en) Thin-film transistor and manufacture thereof
JPH06314787A (en) Thin film semiconductor device and its manufacture
JP3662881B2 (en) Thin film transistor
JP3134910B2 (en) Method for manufacturing semiconductor device and method for manufacturing integrated circuit for liquid crystal display
JPH06314786A (en) Thin film semiconductor device and its manufacture
JP3358284B2 (en) Method for manufacturing thin film transistor
JP3175390B2 (en) Thin film transistor and method of manufacturing the same
JPH07176752A (en) Thin-film semiconductor device and its manufacture
KR100856864B1 (en) A fabricating method of Thin Film Transistor for Liquid Crystal Display Device and TFT for LCD thereby
JP3181901B2 (en) Thin film transistor
JPH09172186A (en) Manufacture of thin film transistor
JP2777101B2 (en) Transistor and manufacturing method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

EXPY Cancellation because of completion of term