JP3325945B2 - Method for manufacturing thin film transistor - Google Patents

Method for manufacturing thin film transistor

Info

Publication number
JP3325945B2
JP3325945B2 JP07110393A JP7110393A JP3325945B2 JP 3325945 B2 JP3325945 B2 JP 3325945B2 JP 07110393 A JP07110393 A JP 07110393A JP 7110393 A JP7110393 A JP 7110393A JP 3325945 B2 JP3325945 B2 JP 3325945B2
Authority
JP
Japan
Prior art keywords
region
thin film
tft
island
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07110393A
Other languages
Japanese (ja)
Other versions
JPH06260650A (en
Inventor
宏勇 張
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP07110393A priority Critical patent/JP3325945B2/en
Priority to KR1019940004360A priority patent/KR940022911A/en
Publication of JPH06260650A publication Critical patent/JPH06260650A/en
Application granted granted Critical
Publication of JP3325945B2 publication Critical patent/JP3325945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄膜トランジスタ(T
FT)の構造および作製方法に関するものである。本発
明によって作製される薄膜トランジスタは、ガラス等の
絶縁基板上、単結晶シリコン等の半導体基板上、いずれ
にも形成される。
The present invention relates to a thin film transistor (T
FT) and a method of manufacturing the same. The thin film transistor manufactured by the present invention is formed on an insulating substrate such as glass and a semiconductor substrate such as single crystal silicon.

【0002】[0002]

【従来の技術】従来、薄膜トランジスタは、薄膜半導体
領域(活性層)を島状にパターニングして、形成した
後、ゲイト絶縁膜として、CVD法やスパッタ法によっ
て絶縁被膜を形成し、その上にゲイト電極を形成した。
2. Description of the Related Art Conventionally, a thin film transistor is formed by patterning a thin film semiconductor region (active layer) into an island shape, forming an insulating film as a gate insulating film by a CVD method or a sputtering method, and forming a gate insulating film thereon. An electrode was formed.

【0003】[0003]

【発明が解決しようする課題】CVD法やスパッタ法で
形成される絶縁被膜はステップカバレージ(段差被覆
性)が悪く、信頼性や歩留り、特性に悪影響を及ぼして
いた。図3には従来の典型的なTFTを上から見た図、
およびその図面のA−A’、B−B’に沿った断面図を
示す。TFTは基板31上に形成され、薄膜半導体領域
は不純物領域(ソース、ドレイン領域、ここではN型の
導電型を示す)33とゲイト電極37の下に位置し、実
質的に真性のチャネル形成領域32に分けられ、この半
導体領域を覆って、ゲイト絶縁膜35が設けられる。不
純物領域33には、層間絶縁物39を通してコンタクト
ホールが開けられ、電極・配線38が設けられる。
An insulating film formed by a CVD method or a sputtering method has poor step coverage (step coverage) and adversely affects reliability, yield, and characteristics. FIG. 3 is a top view of a typical conventional TFT,
And a cross-sectional view along AA ′ and BB ′ of the drawing. The TFT is formed on a substrate 31, and the thin film semiconductor region is located below an impurity region (source / drain region, here, N-type conductivity type) 33 and a gate electrode 37, and is substantially an intrinsic channel forming region. The gate insulating film 35 is provided to cover the semiconductor region. In the impurity region 33, a contact hole is opened through an interlayer insulator 39, and an electrode / wiring 38 is provided.

【0004】図から分かるように、ゲイト絶縁膜35の
半導体領域の端部における被覆性は著しく悪く、典型的
には平坦部の厚さの半分しか厚みが存在しない。一般に
島状半導体領域が厚い場合には甚だしい。特にゲイト電
極に沿ったA−A’断面からこのような被覆性の悪化が
TFTの特性、信頼性、歩留りに及ぼす悪影響が分か
る。すなわち、図5のA−A’断面図において点線円で
示した領域36に注目してみれば、ゲイト電極37の電
界が薄膜半導体領域の端部に集中的に印加される。すな
わち、この部分ではゲイト絶縁膜の厚さが平坦部の半分
であるので、その電界強度は2倍になるためである。
[0004] As can be seen from the figure, the coverage of the gate insulating film 35 at the end of the semiconductor region is extremely poor, and typically there is only half the thickness of the flat portion. Generally, it is severe when the island-shaped semiconductor region is thick. In particular, it can be seen from the AA 'cross section along the gate electrode that such a deterioration in the covering property has an adverse effect on the characteristics, reliability, and yield of the TFT. That is, focusing on the region 36 indicated by the dotted circle in the AA 'cross-sectional view of FIG. 5, the electric field of the gate electrode 37 is applied intensively to the end of the thin film semiconductor region. That is, since the thickness of the gate insulating film is half that of the flat portion in this portion, the electric field intensity is doubled.

【0005】この結果、この領域36のゲイト絶縁膜は
長時間のあるいは高い電圧印加によって容易に破壊され
る。ゲイト電極に印加される信号が正であれば、この領
域36の半導体もN型であるので、ゲイト電極37と不
純物領域38(特に、ドレイン領域)が導通してしま
い、信頼性低下の原因となる。
As a result, the gate insulating film in the region 36 is easily broken by a long-time or high voltage application. If the signal applied to the gate electrode is positive, the semiconductor in this region 36 is also N-type, so that the gate electrode 37 and the impurity region 38 (especially, the drain region) conduct, causing a decrease in reliability. Become.

【0006】また、ゲイト絶縁膜が破壊された際には、
何らかの電荷がトラップされることが起こり、例えば、
負の電荷がトラップされれば、ゲイト電極に印加される
電圧にほとんど関わりなく、領域36の半導体はN型を
呈し、2つの不純物領域38が導通することとなり、特
性を劣化させる。また、以上のような劣化を引き起こさ
ずにTFTを使用するには、理想的な場合の半分の電圧
しか印加できず、性能を十分に利用することができな
い。
When the gate insulating film is broken,
Some charge is trapped, for example,
If the negative charge is trapped, the semiconductor in the region 36 becomes N-type, regardless of the voltage applied to the gate electrode, and the two impurity regions 38 become conductive, thereby deteriorating the characteristics. In addition, in order to use a TFT without causing the above-described deterioration, only half the voltage in an ideal case can be applied, and the performance cannot be fully utilized.

【0007】また、TFTの一部にこのような弱い部分
が存在するということは製造工程における帯電等によっ
て容易にTFTが破壊されることであり、歩留り低下の
大きな要因となる。本発明はこのような問題を解決する
ことを課題とする。
The presence of such a weak portion in a portion of the TFT means that the TFT is easily destroyed due to charging or the like in a manufacturing process, which is a major factor in lowering the yield. An object of the present invention is to solve such a problem.

【0008】[0008]

【発明を解決するための手段】本発明では、このように
電気的に弱い領域の半導体を抵抗の高い真性半導体、あ
るいはチャネル形成領域と同じ導電型とすることによっ
て補うことを特徴とする。本発明の典型的な構造を図1
に示す。図1(A)に示すように、本発明では,島状半
導体領域の端部でゲイト電極11が横断する部分の近傍
において、従来のTFTでは不純物領域(ソース、ドレ
イン)とされていた部分に真性の領域もしくはチャネル
形成領域と同じ導電型の領域14を設けた。すなわち、
本発明のTFTでは、島状半導体領域において、ゲイト
電極で覆われていない部分に関して、不純物がドーピン
グされた不純物領域(ソース、ドレイン)13以外に、
実質的に真性な領域もしくはチャネル形成領域と同じ導
電型の領域14が存在する。
The present invention is characterized in that the semiconductor in such an electrically weak region is supplemented by using an intrinsic semiconductor having a high resistance or the same conductivity type as that of a channel forming region. FIG. 1 shows a typical structure of the present invention.
Shown in As shown in FIG. 1A, in the present invention, in the vicinity of a portion where the gate electrode 11 traverses at the end of the island-shaped semiconductor region, a portion which is regarded as an impurity region (source, drain) in the conventional TFT is used. A region 14 of the same conductivity type as the intrinsic region or the channel formation region was provided. That is,
In the TFT of the present invention, the portion of the island-shaped semiconductor region that is not covered with the gate electrode is replaced with the impurity regions (source and drain) 13 doped with impurities.
There is a region 14 of substantially the same conductivity type as the intrinsic region or the channel formation region.

【0009】図1(B)には、本発明の別な例を示す
が、島状半導体領域の形状が違うだけで、実質的な構造
は図1(A)と同じである。なお、図中の16はソー
ス、ドレインに接続する電極を示す。
FIG. 1B shows another example of the present invention. The substantial structure is the same as that of FIG. 1A except that the shape of the island-shaped semiconductor region is different. In the figure, reference numeral 16 denotes an electrode connected to the source and the drain.

【0010】このように、真性な領域14もしくはチャ
ネル形成領域と同じ導電型の領域が設けられたことの効
果は図4で説明される。図4(A)は従来のTFTの構
造および等価回路を示す。図中のX、Yは島状半導体領
域をゲイト電極が横断する部分であるが、この部分のゲ
イト絶縁膜は先に述べた通り、平坦な部分よりも薄い。
したがって、等価回路に示すように本来のTFTよりも
しきい値や耐圧の低い寄生TFTが形成されている。
The effect of the provision of the region of the same conductivity type as the intrinsic region 14 or the channel formation region is described with reference to FIG. FIG. 4A shows a structure and an equivalent circuit of a conventional TFT. In the figure, X and Y are portions where the gate electrode crosses the island-shaped semiconductor region, and the gate insulating film in this portion is thinner than the flat portion as described above.
Therefore, as shown in the equivalent circuit, a parasitic TFT having a lower threshold voltage and lower breakdown voltage than the original TFT is formed.

【0011】もし、ゲイトに過大な電圧が印加される
と、本来のTFTが破壊される前に、この寄生TFTが
破壊されて、寄生TFTは単なる導体となり、ソース、
ドレイン間、もしくはソース、ゲイト間のリーク電流が
増大する。
If an excessive voltage is applied to the gate, the parasitic TFT is destroyed before the original TFT is destroyed.
The leakage current between the drains or between the source and the gate increases.

【0012】一方、本発明は図4(B)に示すような構
造、および等価回路である。本発明においても寄生TF
T、X、Yが形成されるのは従来の場合と同様である。
しかしながら、本発明では島状半導体領域の一部が真性
半導体領域となったために抵抗が高く、この抵抗Rは寄
生TFTに直列に挿入されて、ソース、ドレインの電圧
が直接、寄生TFTに印加されない構造となる。また、
チャネル形成領域と同じ導電型の領域を設けた場合に
は、その導電型はソース、ドレインとは逆であるので、
PN接合によって抵抗と同等なバリアが形成される。
On the other hand, the present invention has a structure and an equivalent circuit as shown in FIG. In the present invention, the parasitic TF
T, X, and Y are formed as in the conventional case.
However, in the present invention, since a part of the island-shaped semiconductor region is an intrinsic semiconductor region, the resistance is high. This resistance R is inserted in series with the parasitic TFT, and the source and drain voltages are not directly applied to the parasitic TFT. Structure. Also,
When a region of the same conductivity type as the channel formation region is provided, the conductivity type is opposite to that of the source and the drain.
The PN junction forms a barrier equivalent to a resistor.

【0013】したがって、過大な電圧がゲイト電極に印
加された場合においても、寄生抵抗のソース、ドレイン
に直列に挿入された上記の抵抗によって電圧が減じら
れ、寄生TFTが破壊されることがない。この結果、従
来のTFTにおいて問題となった信頼性の低下、歩留
り、特性の劣化は解決される。
Therefore, even when an excessive voltage is applied to the gate electrode, the voltage is reduced by the above-described resistor inserted in series with the source and drain of the parasitic resistor, and the parasitic TFT is not destroyed. As a result, the reliability degradation, the yield, and the characteristic degradation, which are problems in the conventional TFT, are solved.

【0014】本発明を実施する工程を図1(C)〜
(H)を用いて簡単に説明する。まず、基板上に島状半
導体領域10を形成する。通常はこの半導体領域は実質
的に真性であるが、弱いN型もしくはP型であってもよ
い。(図1(C))
The steps for implementing the present invention are shown in FIGS.
This will be described briefly using (H). First, an island-shaped semiconductor region 10 is formed on a substrate. Normally, this semiconductor region is substantially intrinsic, but may be weak N-type or P-type. (Fig. 1 (C))

【0015】そして、ゲイト絶縁膜を形成した後、図1
(D)に示すようにゲイト電極11を設ける。その後、
図1(E)に12で示すように不純物を注入する。この
結果、図1(F)のように、不純物領域13と不純物領
域とゲイト電極で挟まれた領域14が形成される。領域
14は2〜5μmのディメンジョンで示される領域とす
ると好ましい。この領域の導電型は島状半導体の導電型
と同じで、島状半導体が真性であれば、この領域14も
真性であり、典型的な抵抗率は106 Ωcm以上であ
る。
After the formation of the gate insulating film, FIG.
A gate electrode 11 is provided as shown in FIG. afterwards,
As shown by 12 in FIG. 1E, impurities are implanted. As a result, as shown in FIG. 1F, an impurity region 13 and a region 14 sandwiched between the impurity region and the gate electrode are formed. The region 14 is preferably a region indicated by a dimension of 2 to 5 μm. The conductivity type of this region is the same as the conductivity type of the island-shaped semiconductor. If the island-shaped semiconductor is intrinsic, this region 14 is also intrinsic, and the typical resistivity is 10 6 Ωcm or more.

【0016】図1(G)には、図1(F)で示されたT
FTのゲイト電極を除去した様子を示す。この図から明
らかなように、チャネル形成領域15と図1(F)で示
した領域14の導電型は同じである。最後にソース、ド
レインに電極16を形成してTFTが完成する。(図1
(H))
FIG. 1 (G) shows the T shown in FIG. 1 (F).
The state where the gate electrode of FT is removed is shown. As is clear from this figure, the conductivity type of the channel forming region 15 is the same as that of the region 14 shown in FIG. Finally, an electrode 16 is formed on the source and the drain to complete the TFT. (Figure 1
(H))

【0017】本発明においては、例えば、基板上にNチ
ャネル型もしくはPチャネル型のどちらか一方のTFT
だけを形成する場合にはフォトリソグラフィーの工程が
1つ増加するが、このことは、本発明によって得られる
特性、信頼性、歩留りの向上を勘案すれば何ら障害とは
ならない。
In the present invention, for example, either an N-channel type or a P-channel type TFT is provided on a substrate.
In the case of forming only one, the number of photolithography steps is increased by one, but this does not pose any obstacle in view of the improvement in characteristics, reliability and yield obtained by the present invention.

【0018】さらに、本発明をNチャネル型とPチャネ
ル型のTFTが混在する相補型回路(CMOS回路)に
適用するとその効果はより明らかになる。CMOS回路
においては、最も簡便な作製方法は、最初にN型もしく
はP型の不純物を基板全面に導入し、ついで、必要な箇
所をマスキングして、先に導入された不純物を打ち消す
だけの逆の導電型の不純物を導入するものである。この
方法を仮に第1の方法と称する。しかしながら、この第
1の方法では、例えば、N型領域は1×1015cm-2
ドーズ量であるのに、P型領域は、5×1015cm-2
ドーズ量が要求され、耐圧、しきい値等においてNチャ
ネル型TFTとPチャネル型TFTのバランスが取れな
いことがあった。
Further, when the present invention is applied to a complementary circuit (CMOS circuit) in which N-channel and P-channel TFTs are mixed, the effect becomes more apparent. In a CMOS circuit, the simplest manufacturing method is the reverse of simply introducing an N-type or P-type impurity over the entire surface of a substrate, then masking a necessary portion and canceling out the impurity introduced earlier. This is for introducing conductivity type impurities. This method is temporarily referred to as a first method. However, in the first method, for example, while the N-type region has a dose of 1 × 10 15 cm −2 , the P-type region requires a dose of 5 × 10 15 cm −2. In some cases, the N-channel TFT and the P-channel TFT cannot be balanced in terms of threshold value and the like.

【0019】もっとも、確実な方法は、最初にマスキン
グを施して、N型もしくはP型不純物を導入し、次に再
びマスキングを施して先の不純物の逆の導電型の不純物
を導入する方法である。この方法を第2の方法と称す
る。この場合には、N型不純物とP型不純物の濃度を全
く独立に設定できるのでCMOS回路として理想的な特
性を期待できる。しかし、この場合には、第1の方法に
比べてフォトリソグラフィー工程が1つ追加されること
となる。
However, a reliable method is to mask first to introduce N-type or P-type impurities, and then to mask again to introduce impurities of the opposite conductivity type to the previous impurities. . This method is called a second method. In this case, since the concentrations of the N-type impurity and the P-type impurity can be set completely independently, ideal characteristics can be expected as a CMOS circuit. However, in this case, one photolithography step is added as compared with the first method.

【0020】本発明をCMOS回路において、N型、P
型両TFTに実施しようとすれば、N型不純物とP型不
純物を別々にマスキングして導入せざるをえない。した
がって、上記2つの方法のうちの第2の方法を採用する
こととなる。第2の方法は、製造工程が複雑になるので
あるが、得られる特性が優れたものであることは先に説
明した通りである。そして、その効果に加えて本発明の
効果が得られるのであるから、フォトリソグラフィー工
程が1つ追加されることのデメリットは完全に打ち消さ
れてしまう。以下には、特にCMOS回路を作製する上
で、本発明を実施する場合について実施例を示す。
According to the present invention, in a CMOS circuit, an N-type, P-type
If it is to be applied to both TFTs, N-type impurities and P-type impurities must be separately masked and introduced. Therefore, the second of the above two methods is adopted. Although the second method complicates the manufacturing process, the obtained characteristics are excellent as described above. Since the effect of the present invention can be obtained in addition to the effect, the disadvantage of adding one photolithography step is completely canceled. Hereinafter, an example will be described with respect to a case where the present invention is practiced particularly in manufacturing a CMOS circuit.

【0021】[0021]

【実施例】図2に本実施例の作製工程の断面図を示す。
基板(コーニング7059)20上にスパッタリングに
よって厚さ200nmの酸化珪素の下地膜21を形成し
た。さらに、プラズマCVD法によって、厚さ50〜
0nm、例えば150nmのアモルファスシリコン膜
を堆積した。引き続き、スパッタリング法によって、厚
さ20nmの酸化珪素膜を保護膜として堆積した。そし
て、これを還元雰囲気下、600℃で48時間アニール
して結晶化させた。結晶化工程はレーザー等の強光を用
いる方式でもよい。そして、得られた結晶シリコン膜を
パターニングして、島状シリコン領域22P、22Nを
形成した。
FIG. 2 is a sectional view showing a manufacturing process of this embodiment.
A 200 nm thick silicon oxide base film 21 was formed on a substrate (Corning 7059) 20 by sputtering. Further, by plasma CVD, a thickness of 50 to 1
An amorphous silicon film of 50 nm , for example, 150 nm was deposited. Subsequently, a silicon oxide film having a thickness of 20 nm was deposited as a protective film by a sputtering method. Then, this was annealed at 600 ° C. for 48 hours in a reducing atmosphere to be crystallized. The crystallization step may be a method using strong light such as a laser. Then, the obtained crystalline silicon film was patterned to form island-shaped silicon regions 22P and 22N.

【0022】次に、スパッタリング法によって厚さ10
0nmの酸化珪素膜23をゲイト絶縁膜として堆積し、
引き続いて、減圧CVD法によって、厚さ600〜80
0nm、例えば600nmのシリコン膜(0.01〜2
%の燐を含む)を堆積した。なお、この酸化珪素とシリ
コン膜の成膜工程は連続的におこなうことが望ましい。
そして、シリコン膜をパターニングして、ゲイト電極2
4P、24Nを形成した。(図2(A))
Next, a thickness of 10
A 0 nm silicon oxide film 23 is deposited as a gate insulating film,
Subsequently, a thickness of 600 to 80 is applied by a low pressure CVD method.
0 nm , for example, a 600 nm silicon film (0.01 to 2 nm ).
% Phosphorus). It is desirable that the step of forming the silicon oxide and the silicon film be performed continuously.
Then, the silicon film is patterned to form a gate electrode 2.
4P and 24N were formed. (Fig. 2 (A))

【0023】次に、半導体領域22Pをフォトレジスト
25Nでマスクして、プラズマドーピング法によって、
シリコン領域22Nに配線24Nをマスクとして不純物
(燐)を注入した。マスク25の材料としては、この他
にもクロム、チタン、窒化チタン、アルミニウム等の金
属材料、金属窒化物材料も使用できる。ドーピングのパ
ターンは図1(E)に示されるような形状とした。ドー
ピングガスとして、フォスフィン(PH3 )を用い、加
速電圧を60〜90kV、例えば80kVとした。ドー
ス量は1×1015〜8×1015cm-2、例えば1×10
15cm-2とした。この結果、N型の不純物領域26Nが
形成された。ドーピング終了後、レジストマスク25N
は酸素雰囲気中でのアッシング(灰化)工程によって除
去された。典型的なアッシング条件は1Torr、RF
パワー300Wであった。
Next, the semiconductor region 22P is masked with a photoresist 25N, and is subjected to a plasma doping method.
Impurity (phosphorus) was implanted into the silicon region 22N using the wiring 24N as a mask. As a material of the mask 25, a metal material such as chromium, titanium, titanium nitride, and aluminum, or a metal nitride material can also be used. The doping pattern was shaped as shown in FIG. Phosphine (PH 3 ) was used as the doping gas, and the acceleration voltage was 60 to 90 kV, for example, 80 kV. The dose amount is 1 × 10 15 to 8 × 10 15 cm −2 , for example, 1 × 10 15
It was 15 cm -2 . As a result, an N-type impurity region 26N was formed. After doping, resist mask 25N
Was removed by an ashing step in an oxygen atmosphere. Typical ashing conditions are 1 Torr, RF
The power was 300 W.

【0024】また、後で、レーザーによって活性化をお
こなう場合には、レジストマスクを除去する前に、フッ
化水素酸によって、シリコン領域22N上の酸化珪素2
3を選択的に除去するとよい。これは、レーザー照射時
に、酸化珪素23とシリコン領域22Nが反応すること
によって表面に凹凸が生じることを防止する上で効果的
である。(図2(B))
In the case where activation is performed later by a laser, before the resist mask is removed, the silicon oxide 2 on the silicon region 22N is removed with hydrofluoric acid.
3 may be selectively removed. This is effective in preventing irregularities on the surface due to the reaction between the silicon oxide 23 and the silicon region 22N during laser irradiation. (FIG. 2 (B))

【0025】さらに、今度は、半導体領域22Nをフォ
トレジスト25Pでマスクして、プラズマドーピング法
によって、シリコン領域22Pに配線24Pをマスクと
して不純物(ホウ素)を注入した。この場合もドーピン
グのパターンは図1(E)に示されるような形状とし
た。ドーピングガスとして、ジボラン(B2 6 )を用
い、加速電圧を20〜70kV、例えば65kVとし
た。ドース量は1×1015〜8×1015cm-2、例えば
1×1015cm-2とした。この結果、P型の不純物領域
26Pが形成された。ドーピング後、レジストマスク2
5Pはアッシング工程によって除去された。(図2
(C))
Further, this time, an impurity (boron) was implanted into the silicon region 22P by using the wiring 24P as a mask by plasma doping with the semiconductor region 22N being masked with a photoresist 25P. Also in this case, the doping pattern was shaped as shown in FIG. As the doping gas, diborane (B 2 H 6), the accelerating voltage 20~70KV, for example, 65 kV. The dose was 1 × 10 15 to 8 × 10 15 cm −2 , for example, 1 × 10 15 cm −2 . As a result, a P-type impurity region 26P was formed. After doping, resist mask 2
5P was removed by the ashing process. (Figure 2
(C))

【0026】その後、還元雰囲気中、600℃で48時
間アニールすることによって、不純物を活性化させた。
この工程はレーザーアニールによっておこなってもよ
い。その場合には、レーザーとしてはKrFエキシマー
レーザー(波長248nm)、XeFエキシマーレーザ
ー(波長353nm)、XeClエキシマーレーザー
(波長308nm)、ArFエキシマーレーザー(波長
193nm)等を用い、レーザーのエネルギー密度は、
200〜350mJ/cm2 、例えば250mJ/cm
2 とし、1か所につき2〜10ショット、例えば2ショ
ット照射すればよい。レーザー照射時に、基板を200
〜450℃程度に加熱してもよい。基板を加熱した場合
には最適なレーザーエネルギー密度が変わることに注意
しなければならない。
Thereafter, annealing was performed at 600 ° C. for 48 hours in a reducing atmosphere to activate the impurities.
This step may be performed by laser annealing. In that case, a KrF excimer laser (wavelength 248 nm), a XeF excimer laser (wavelength 353 nm), a XeCl excimer laser (wavelength 308 nm), an ArF excimer laser (wavelength 193 nm), or the like is used as a laser.
200 to 350 mJ / cm 2 , for example, 250 mJ / cm
It is sufficient to irradiate 2 to 10 shots, for example, 2 shots per one place. During laser irradiation, the substrate
You may heat to about 450 degreeC. It should be noted that the optimal laser energy density changes when the substrate is heated.

【0027】不純物の活性化後、続いて、厚さ300〜
1000nm、例えば600nmの酸化珪素膜27を層
間絶縁物としてプラズマCVD法によって形成し、これ
にコンタクトホールを形成して、金属材料、例えば、窒
化チタンとアルミニウムの多層膜によって配線28P、
28Nを形成した。以上の工程によってCMOSの半導
体回路が完成した。(図2(D))
[0027] After activation of impurities, followed by, thickness 30 0
A 1000 nm , for example, 600 nm , silicon oxide film 27 is formed as an interlayer insulator by a plasma CVD method, a contact hole is formed in the silicon oxide film 27, and a wiring 28P is formed by a metal material, for example, a multilayer film of titanium nitride and aluminum.
28N was formed. Through the above steps, a CMOS semiconductor circuit was completed. (FIG. 2 (D))

【0028】[0028]

【発明の効果】本発明によって、TFTの歩留りを向上
させ、また、その信頼性を高め、最大限の特性を引き出
すことが可能となった。しかも、かように大きな効果を
得るに際して、特に大きなプロセス変更や投資、技術開
発を伴わないで実施できることのメリットは大きい。本
発明では絶縁基板上のTFTを例にとって説明したが、
単結晶半導体基板上に形成されるTFTにも実施できる
ことは言うまでもない。このように本発明は工業上、有
益な発明である。
According to the present invention, it is possible to improve the yield of TFTs, increase the reliability thereof, and extract the maximum characteristics. In addition, in obtaining such a great effect, there is a great advantage that the method can be implemented without particularly large process change, investment, and technological development. In the present invention, a TFT on an insulating substrate has been described as an example.
Needless to say, the present invention can be applied to a TFT formed on a single crystal semiconductor substrate. As described above, the present invention is an industrially useful invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のTFTの構成および作製方法の概
念図を示す。
FIG. 1 shows a conceptual diagram of a structure and a manufacturing method of a TFT of the present invention.

【図2】 実施例のTFTの作製工程断面を示す。FIG. 2 is a cross-sectional view illustrating a manufacturing process of a TFT according to an example.

【図3】 従来のTFTの構成例を示す。FIG. 3 shows a configuration example of a conventional TFT.

【図4】 本発明および従来のTFTの電気特性を説
明する。
FIG. 4 illustrates electrical characteristics of the present invention and a conventional TFT.

【符号の説明】[Explanation of symbols]

10・・・島状半導体領域 11・・・ゲイト電極 12・・・不純物導入領域 13・・・不純物領域(ソース、ドレイン) 14・・・不純物の導入されなかった領域 15・・・チャネル形成領域 16・・・ソース電極、ドレイン電極 DESCRIPTION OF SYMBOLS 10 ... Island-shaped semiconductor area 11 ... Gate electrode 12 ... Impurity introduction area 13 ... Impurity area (source, drain) 14 ... Area where impurity was not introduced 15 ... Channel formation area 16 Source electrode, drain electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/266 H01L 21/324 H01L 21/336 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 29/786 H01L 21/266 H01L 21/324 H01L 21/336

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】島状の薄膜半導体を形成し、 前記島状の薄膜半導体上に絶縁膜を形成し、 前記絶縁膜上にゲイト電極を形成し、 前記島状の薄膜半導体の端部および前記ゲイト電極の端
部と接し、かつ前記島状の薄膜半導体の上方に前記ゲイ
ト電極がない領域の少なくとも一部をマスクし、 前記島状の薄膜半導体に不純物を導入し、 前記不純物を導入後、該マスクを用いて前記絶縁膜を除
去し、レーザーを照射することを特徴と する薄膜トラン
ジスタの作製方法。
An island-shaped thin film semiconductor is formed, an insulating film is formed on the island-shaped thin film semiconductor, a gate electrode is formed on the insulating film, and an end of the island-shaped thin film semiconductor and In contact with the end of the gate electrode, and masking at least a part of the region without the gate electrode above the island-shaped thin film semiconductor, introducing an impurity into the island-shaped thin film semiconductor, and after introducing the impurity, The mask is used to remove the insulating film.
And irradiating with a laser .
【請求項2】請求項1において、 前記絶縁膜は、フッ化水素酸によって除去される薄膜ト
ランジスタの作製方法。
2. The thin film transistor according to claim 1, wherein said insulating film is removed by hydrofluoric acid.
How to make a transistor.
JP07110393A 1993-03-05 1993-03-05 Method for manufacturing thin film transistor Expired - Fee Related JP3325945B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07110393A JP3325945B2 (en) 1993-03-05 1993-03-05 Method for manufacturing thin film transistor
KR1019940004360A KR940022911A (en) 1993-03-05 1994-03-05 Semiconductor integrated circuits, semiconductor devices, transistors, and manufacturing methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07110393A JP3325945B2 (en) 1993-03-05 1993-03-05 Method for manufacturing thin film transistor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001381187A Division JP3662881B2 (en) 2001-12-14 2001-12-14 Thin film transistor
JP2001381191A Division JP3535493B2 (en) 2001-12-14 2001-12-14 CMOS circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06260650A JPH06260650A (en) 1994-09-16
JP3325945B2 true JP3325945B2 (en) 2002-09-17

Family

ID=13450886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07110393A Expired - Fee Related JP3325945B2 (en) 1993-03-05 1993-03-05 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3325945B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853083B1 (en) 1995-03-24 2005-02-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transfer, organic electroluminescence display device and manufacturing method of the same
JP3256110B2 (en) * 1995-09-28 2002-02-12 シャープ株式会社 Liquid crystal display
US8603870B2 (en) 1996-07-11 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
TW556263B (en) 1996-07-11 2003-10-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
JP4727647B2 (en) * 2007-11-19 2011-07-20 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP2011171603A (en) * 2010-02-19 2011-09-01 Oki Semiconductor Co Ltd Method of manufacturing semiconductor element

Also Published As

Publication number Publication date
JPH06260650A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
US5962870A (en) Insulated gate field effect semiconductor devices
JP3193803B2 (en) Manufacturing method of semiconductor element
US7968886B2 (en) Semiconductor integrated circuit and method of fabricating same
JPH07176753A (en) Thin-film semiconductor device and its manufacture
JPH07153961A (en) Sequential stagger type thin-film transistor and its manufacture
USRE36314E (en) Insulated gate field effect semiconductor devices having a LDD region and an anodic oxide film of a gate electrode
JP3325945B2 (en) Method for manufacturing thin film transistor
JPH11514152A (en) Method of manufacturing electronic device including thin film transistor
JPH06314785A (en) Thin film semiconductor device and its manufacture
JPH06314698A (en) Thin-film semiconductor device and its manufacture
JP3535493B2 (en) CMOS circuit and manufacturing method thereof
JPH06314787A (en) Thin film semiconductor device and its manufacture
JP3134910B2 (en) Method for manufacturing semiconductor device and method for manufacturing integrated circuit for liquid crystal display
JPH06275640A (en) Thin film transistor and its forming method
JP2002231963A (en) Thin film transistor
JPH06314786A (en) Thin film semiconductor device and its manufacture
JP3175390B2 (en) Thin film transistor and method of manufacturing the same
JPH07176752A (en) Thin-film semiconductor device and its manufacture
JP3765936B2 (en) Method for manufacturing semiconductor device
JP2842112B2 (en) Method for manufacturing thin film transistor
JPH09172186A (en) Manufacture of thin film transistor
JPH09326495A (en) Thin film transistor and its manufacturing method
JPH07193245A (en) Manufacture of thin-film transistor
JP3315190B2 (en) Method for manufacturing thin film transistor
JP3244387B2 (en) Thin film semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees