KR100370451B1 - Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process - Google Patents

Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process Download PDF

Info

Publication number
KR100370451B1
KR100370451B1 KR1019980015027A KR19980015027A KR100370451B1 KR 100370451 B1 KR100370451 B1 KR 100370451B1 KR 1019980015027 A KR1019980015027 A KR 1019980015027A KR 19980015027 A KR19980015027 A KR 19980015027A KR 100370451 B1 KR100370451 B1 KR 100370451B1
Authority
KR
South Korea
Prior art keywords
thin film
layer
film transistor
source
forming
Prior art date
Application number
KR1019980015027A
Other languages
Korean (ko)
Other versions
KR19990081221A (en
Inventor
장진
조규식
김창수
김경욱
Original Assignee
장 진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장 진 filed Critical 장 진
Priority to KR1019980015027A priority Critical patent/KR100370451B1/en
Publication of KR19990081221A publication Critical patent/KR19990081221A/en
Application granted granted Critical
Publication of KR100370451B1 publication Critical patent/KR100370451B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: A method for manufacturing an amorphous silicon TFT(Thin Film Transistor) and an LCD(Liquid Crystal Display) using a simple process is provided to be capable of effectively reducing parasitic capacitance and improving productivity. CONSTITUTION: A gate electrode(11) is formed on an insulating substrate(10). Then, a gate isolating layer(12) made of a silicon nitride layer and a channel active layer(13) made of an amorphous silicon layer are sequentially formed on the resultant structure. An SiOF thin film(14) is formed on the channel active layer as an etching mask and an ion implanting mask. Then, a source/drain electrode(16) are selectively formed on the resultant structure. A silicide layer is formed at the source/drain electrode region as an ohmic contact layer.

Description

단순 공정에 의한 비정질 실리콘 박막 트랜지스터와 액정표시소자(LCD) 제조 방법Method for manufacturing amorphous silicon thin film transistor and liquid crystal display device (LCD) by simple process

본 발명은 LCD의 스윗칭 소자로서 사용되는 박막 트랜지스터에 관한 것으로서, 특히 2장의 마스크를 이용한 완전 자기정렬형 박막 트랜지스터의 제작 및 LCD 제작에 응용시 마스크 수를 절감할 수 있는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to thin film transistors used as switching elements of LCDs, and more particularly, to a method capable of reducing the number of masks when fabricating a fully self-aligning thin film transistor using two masks and applying them to LCDs.

일반적으로 LCD의 화소전극 구동용 스위칭소자로서 사용되는 박막 트랜지스터 (Thin Film Transistor : 이하 TFT라 칭함)는 활성층인 반도체 층을 사이에 두고 게이트 전극과 소오스/드레인 전극이 분리되어 있는 스테거드(staggered)형과 반도체의 일면에 게이트 전극과 소오스/드레인 전극이 형성되어 있는 코플라나(coplanar)형으로 크게 분류된다.In general, a thin film transistor (hereinafter referred to as a TFT) used as a switching element for driving a pixel electrode of an LCD is staggered in which a gate electrode and a source / drain electrode are separated with an active semiconductor layer interposed therebetween. The molds are largely classified into coplanar types in which gate electrodes and source / drain electrodes are formed on one surface of the semiconductor.

그리고 이러한 박막 트랜지스터는 활성층의 물질에 따라 비정질 실리콘, 또는 다결정질 실리콘을 이용한 박막 트랜지스터와 화합물 반도체를 이용한 박막 트랜지스터가 있다. 이들 중 비정질 실리콘 (Amorphous Silicon : 이하 a-Si:H라 칭함) 박막 트랜지스터는 양산성과 대면적화 측면에서 우수한 장점을 갖는다. 그러나 일반적으로 박막 트랜지스터의 게이트 전극과 소오스/드레인 전극사이에서 발생하는 기생용량 (parasitic capacitance)은 게이트 펄스의 지연효과를 일으켜 깜박거림 (flicker) 현상, 잔상 (residual image) 현상 등과 같은 TFT-LCD 이미지의 질적인 저하를 일으키는 문제점이 있다. 따라서 박막 트랜지스터에서 일반적으로 존재하는 게이트와 소오스/드레인 사이의 겹침 길이를 줄임으로써 기생용량을 줄여 TFT-LCD 이미지상의 깜빡거림 현상과 잔상현상을 개선하여 TFT-LCD의 화질을 향상시킬 수 있다.Such thin film transistors include thin film transistors using amorphous silicon or polycrystalline silicon and thin film transistors using compound semiconductors, depending on the material of the active layer. Among these, amorphous silicon (hereinafter referred to as a-Si: H) thin film transistor has excellent advantages in terms of mass production and large area. However, in general, parasitic capacitance generated between the gate electrode and the source / drain electrode of a thin film transistor causes a delay effect of the gate pulse, thereby causing a TFT-LCD image such as flicker and residual image. There is a problem that causes quality deterioration. Therefore, by reducing the overlap length between the gate and the source / drain which are generally present in the thin film transistor, the parasitic capacitance can be reduced to improve flicker and afterimage on the TFT-LCD image, thereby improving the image quality of the TFT-LCD.

일반적으로 역스테거드형 박막 트랜지스터는 게이트 전극과 소오스/드레인 전극 사이의 겹침 길이에 의해 기생용량이 발생한다. 이 기생용량은 역스테거드형 박막 트랜지스터를 스윗칭 소자로 사용하는 액정 표시소자에서 이미지상의 깜박거림 현상과 잔상현상을 유발하는데, 본 발명에서는 2장이 마스크를 이용해서 기생용량을 효과적으로 줄일 수 있는 완전 자기정렬형 박막 트랜지스터를 제작하는 방법을 제공한다. 이와 더불어 LCD제작에 응용할 경우 기존의 방법에 비해 적은 마스크수로서 LCD제작이 가능하므로 생산성 향상과 비용절감 효과를 기대할 수 있다.In general, parasitic capacitance is generated by the overlap length between a gate electrode and a source / drain electrode in an inverted staggered thin film transistor. This parasitic capacitance causes flicker and image retention in an image in a liquid crystal display device using an inverted staggered thin film transistor as a switching element. In the present invention, two parasitic masks effectively reduce parasitic capacitance. A method of manufacturing a self-aligning thin film transistor is provided. In addition, when applied to LCD production, it is possible to produce LCD with fewer masks than existing methods, so productivity and cost reduction effect can be expected.

제 1 도는 본 발명의 실시 예에 따른 2장의 마스크를 이용한 완전 자기정렬형 박막 트랜지스터의 단면 구조도(a)와 평면 구조도(b).1 is a cross-sectional structural diagram (a) and a planar structural diagram (b) of a fully self-aligned thin film transistor using two masks according to an embodiment of the present invention.

제 2 도는 본 발명의 실시 예에 따른 2장의 마스크를 이용한 완전 자기정렬형 박막 트랜지스터의 전계효과 이동도 특성을 나타낸 그래프.2 is a graph showing field effect mobility characteristics of a fully self-aligned thin film transistor using two masks according to an embodiment of the present invention.

제 3 도는 본 발명의 실시 예에 따른 2장의 마스크를 이용한 완전 자기정렬형 박막 트랜지스터의 로그드레인 전류-게이트 전압 특성을 나타낸 그래프.3 is a graph showing the log drain current-gate voltage characteristics of a fully self-aligned thin film transistor using two masks according to an embodiment of the present invention.

제 4 도는 본 발명의 실시 예에 따라 2장의 마스크를 이용한 완전 자기정렬형 박막 트랜지스터의 출력 특성을 나타낸 그래프.4 is a graph showing output characteristics of a fully self-aligned thin film transistor using two masks according to an embodiment of the present invention.

제 5 도는 본 발명의 실시 예에 따른 LCD 제작 순서도.5 is a flowchart of manufacturing an LCD according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10 : 절연 기판 11 : 게이트 전극10 insulating substrate 11 gate electrode

12 : 게이트 절연막 (실리콘 질화막)12: gate insulating film (silicon nitride film)

13 : 활성층 (비정질 실리콘층)13: active layer (amorphous silicon layer)

14 : 식각 마스크/이온 주입 마스크 (불소가 함유된 실리콘 산화막:이하14 etching mask / ion implantation mask (fluorine-containing silicon oxide film:

SiOF로 칭함, 밴조 사이클로 부틴(BenzoCycloButene): 이하 BCB로칭함,Referred to as SiOF, Benzo CycloButene: referred to as BCB,

실리콘 질화막)Silicon nitride film)

15 : 고농도 이온 불순물 비정질층15: high concentration ion impurity amorphous layer

16 : 소오스/드레인 전극 (실리사이드층)16 source / drain electrode (silicide layer)

상기 목적을 달성하기 위한 본 발명은 절연 기판상에 게이트, 게이트 절연막, 채널 활성층 및 실리사이드를 이용한 소오스/드레인 전극이 형성된 완전자기정렬형 박막 트랜지스터에 있어서 2장의 마스크를 이용함을 특징으로 한다.In order to achieve the above object, the present invention is characterized in that two masks are used in a fully self-aligned thin film transistor in which a source / drain electrode using a gate, a gate insulating film, a channel active layer, and silicide is formed on an insulating substrate.

본 발명의 실시 예에 따라 절연기판상에 게이트, 게이트 절연막, 채널 활성층 및 실리사이드를 이용한 소오스/드레인 전극이 형성된 완전 자기 정렬형 박막 트랜지스터에 있어서 상기 채널 활성층상에 식각 마스크/이온 주입 마스크로 SiOF,BCB 박막을 이용함을 특징으로 한다.In a fully self-aligned thin film transistor having a gate, a gate insulating film, a channel active layer and a source / drain electrode using silicide formed on an insulating substrate according to an embodiment of the present invention, SiOF, BCB thin film is used.

본 발명의 실시 예에 따라 절연 기판상에 게이트, 게이트 절연막, 채널 활성층 및 실리사이드를 이용한 소오스/드레인 전극이 형성된 완전 자기 정렬형 박막 트랜지스터에 있어서 소오스/드레인 전극은 자기정렬방식으로 이루어짐을 특징으로 한다.In a fully self-aligned thin film transistor in which a source / drain electrode using a gate, a gate insulating film, a channel active layer, and silicide is formed on an insulating substrate, the source / drain electrodes are formed in a self-aligning manner. .

본 발명의 실시 예에 따라 제작된 LCD의 데이터 라인은 실리사이드층과 투명전극(ITO)으로 이루어짐을 특징으로 한다.The data line of the LCD manufactured according to the embodiment of the present invention is characterized in that the silicide layer and the transparent electrode (ITO).

본 발명의 실시 예에 따라 제작된 LCD는 기존의 공정보다 하나, 혹은 두개의 마스크 수를 줄일 수 있음을 특징으로 한다.LCD manufactured according to an embodiment of the present invention is characterized in that the number of one or two masks can be reduced than the conventional process.

[실시예]EXAMPLE

이하 본 발명에 따른 바람직한 실시 예를 첨부도면을 참조하여 보다 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

제 1 도는 본 발명의 실시 예에 따른 SiOF, 혹은 BCB를 식각 마스크/이온 주입 마스크로 사용한 완전 자기정렬형 박막 트랜지스터의 단면 구조를 도시한 것이다.1 illustrates a cross-sectional structure of a fully self-aligned thin film transistor using SiOF or BCB as an etching mask / ion implantation mask according to an embodiment of the present invention.

제 1 도를 참조하면, 본 발명의 실시 예에 따른 박막 트랜지스터는 절연기판(10)의 소정부분에 게이트(11)가 형성된다. 게이트(11)는 후속의 공정에서 형성되는 박막들의 스텝 커버리지(step coverage)를 향상시키기 위하여 양측 면이 기울기를 갖도록 형성되며, Cr, Al 등의 금속으로 형성된다. 게이트(11)를 포함하는 절연 기판(10)상에 게이트 절연막(12)이 형성된다. 제 1 도에는 게이트절연막(12)으로서 실리콘 질화막을 사용하였다. 게이트(11)상부의 게이트 절연막(12)상에는 활성층(13)이 형성된다. 본 발명에서는 활성층(13)으로 비정질 실리콘 층이 형성되나, 수소화된 비정질 실리콘막, 다결정질 실리콘막 또는 화합물 반도체가 사용될 수 있다. 활성층(13)중 게이트(11)에 대응되는 부분이 채널영역이 된다. 소오스/드레인 전극 영역의 저 저항성 접촉층 형성을 위한 고농도 이온 주입으로부터 활성화층의 채널영역 보호를 위해 채널영역 상부에 이온 주입 마스크 또는 식각 마스크로서 SiOF, 혹은 BCB(14) 박막을 형성시킨다. 소오스/드레인 전극을 형성하기 위하여 니켈을 스퍼터링 방법으로 증착 후 소오스/드레인 전극을 형성한다.Referring to FIG. 1, in the thin film transistor according to the exemplary embodiment, the gate 11 is formed on a predetermined portion of the insulating substrate 10. The gate 11 is formed to have slopes at both sides in order to improve step coverage of the thin films formed in a subsequent process, and is formed of metal such as Cr or Al. The gate insulating film 12 is formed on the insulating substrate 10 including the gate 11. In FIG. 1, a silicon nitride film is used as the gate insulating film 12. As shown in FIG. The active layer 13 is formed on the gate insulating film 12 above the gate 11. In the present invention, an amorphous silicon layer is formed as the active layer 13, but a hydrogenated amorphous silicon film, a polycrystalline silicon film, or a compound semiconductor may be used. A portion of the active layer 13 corresponding to the gate 11 becomes a channel region. A thin film of SiOF or BCB 14 is formed as an ion implantation mask or an etching mask on the channel region to protect the channel region of the active layer from the high concentration ion implantation for forming a low ohmic contact layer in the source / drain electrode region. Nickel is deposited by sputtering to form a source / drain electrode to form a source / drain electrode.

상기한 바와 같은 구조를 갖는 본 발명의 실시 예에 따른 저유전상수 SiOF, 혹은 BCB 박막을 이온 주입 마스크/식각 마스크로 갖는 완전 자기정렬형 박막 트랜지스터의 제조방법을 설명하면 다음과 같다.A method of manufacturing a fully self-aligned thin film transistor having a low dielectric constant SiOF or BCB thin film as an ion implantation mask / etch mask according to an embodiment of the present invention having the structure as described above is as follows.

먼저, 절연기판(10)상에 Cr, Al 등과 같은 금속 막을 증착한 다음 경사식각을 하여 게이트(11)를 형성하고, 게이트(11)를 포함한 절연 기판(10)상에 게이트 절연막(12)을 형성한다. 플라즈마 여기에 의한 NH3, SiH4, Hc 혼합기체를 이용하여 절연 기판상에 게이트 절연막으로서 질화막을 증착한다. 실리콘 질화막(두께 : 1,000∼3,500 Å)은 기판온도 280 ℃∼300 ℃, RF power는 80 W, 가스압력은 520 mTorr인 조건에서 증착한다.First, a metal film such as Cr, Al, etc. is deposited on the insulating substrate 10, and then the gate 11 is formed by inclined etching, and the gate insulating layer 12 is formed on the insulating substrate 10 including the gate 11. Form. A nitride film is deposited as a gate insulating film on an insulating substrate using NH 3 , SiH 4 , Hc mixed gas by plasma excitation. The silicon nitride film (thickness: 1,000 to 3,500 kPa) is deposited at a substrate temperature of 280 ° C to 300 ° C, RF power of 80 W, and gas pressure of 520 mTorr.

다음, 게이트 절연막(12)상에 비정질 실리콘층을 증착한다. 이때,활성층(13)인 비정질 실리콘 층은 사일렌 (SiH4) 가스유량이 1.0 sccm, 기판온도 280∼300℃, RF 전력은 40 W, 가스압력은 100 mTorr인 증착조건에서 CVD 장비 내에서 증착한다. 다음 고농도 이온이 주입된 저항성 접촉층 형성을 위한 이온 주입 마스크로서 SiOF 박막을 증착하거나, 혹은 BCB 박막을 스핀코팅 방법(4000/rpm,30초)으로 입힌다. SiOF 박막은 사일렌 (SiH4) 가스유량 0.5 sccm, SiF4가스유량 5 sccm, O2가스유량 40 sccm, He 가스 유량 100 sccm, 기판온도 300 ℃, RF 전력은 80 W, 가스압력은 190 mTorr인 조건으로 1,500∼3,000 Å으로 증착한다. 이어서 후면 노광 방식으로 활성층 채널 영역 상층 및 게이트 전극 영역을 제외한 모든 영역의 SiOF, 혹은 BCB 박막을 제거시킨다. 저 저항성 접촉층(15)인 고농도로 불순물 이온이 주입된 비정질 실리콘 층 형성을 위해 포스핀(PH3) 가스유량이 0.1 sccm, RF Power는 10 W, 가속전압 3 kV, 기판온도는 200 ℃인 조건으로 이온샤우어 방법으로 도핑한다.Next, an amorphous silicon layer is deposited on the gate insulating film 12. At this time, the amorphous silicon layer, which is the active layer 13, is deposited in the CVD apparatus under the deposition conditions in which the xylene (SiH 4 ) gas flow rate is 1.0 sccm, the substrate temperature is 280 to 300 ° C., the RF power is 40 W, and the gas pressure is 100 mTorr. do. Next, a SiOF thin film is deposited as an ion implantation mask for forming a resistive contact layer implanted with high concentration ions, or the BCB thin film is coated by a spin coating method (4000 / rpm, 30 seconds). SiOF thin films are four days alkylene (SiH 4) gas flow rate of 0.5 sccm, SiF 4 gas flow rate of 5 sccm, O 2 gas flow rate 40 sccm, He gas flow rate of 100 sccm, a substrate temperature of 300 ℃, RF power 80 W, gas pressure is 190 mTorr It deposits at 1,500-3,000 Pa by phosphorus conditions. Subsequently, SiOF or BCB thin films are removed in all regions except the upper layer of the active layer channel region and the gate electrode region by a back exposure method. Phosphine (PH 3 ) gas flow rate is 0.1 sccm, RF Power is 10 W, acceleration voltage is 3 kV, and substrate temperature is 200 Doping is carried out by the ion shower method under the conditions.

이어서, RF 스퍼터링 방법으로 RF 전력 80 W, 두께 400 Å으로 니켈 막을 기판전면에 증착한다. 상기 저 저항성 접촉층 및 소오스/드레인 전극형성을 위해 니켈 소오스/드레인 전극을 노광 식각작업을 통하여 형성하고, 게이트 전극 접촉구멍 역시 형성한다. 형성된 니켈의 소오스/드레인 전극영역의 실리사이드 형성을 위하여 200℃에서 1시간동안 열처리를 한다. 열처리를 통하여 소오스/드레인 전극부위 고농도 불순물이 주입된 비정질 실리콘상에 실리사이드(16)가 형성되며, 스톱퍼(14)층 위의 니켈은 스톱퍼로 사용된 SiOF나 BCB와 반응하지 않으므로 실리사이드를 형성하지 않은 니켈을 완전히 식각 해내면 소오스/드레인 전극부위만 실리사이드가 형성된다. 따라서 SiOF, 혹은 BCB 박막을 식각 마스크/이온 주입 마스크로 갖는 완전 자기정렬형 박막 트랜지스터가 얻어진다. 또한 본 발명의 실시 예에서는 활성층(13)으로 비정질 실리콘층이 형성되나, 수소화된 비정질 실리콘막, 다결정질 실리콘막 또는 화합물 반도체가 사용될 수 있다.Subsequently, a nickel film is deposited on the entire surface of the substrate with an RF power of 80 W and a thickness of 400 kW by the RF sputtering method. Nickel source / drain electrodes are formed through exposure etching to form the low resistance contact layer and source / drain electrodes, and gate electrode contact holes are also formed. Heat treatment is performed at 200 ° C. for 1 hour to form silicide of the formed source / drain electrode regions of nickel. Through the heat treatment, the silicide 16 is formed on the amorphous silicon into which the high concentration impurity is implanted at the source / drain electrode, and the nickel on the stopper 14 layer does not react with SiOF or BCB used as the stopper. When the nickel is completely etched, silicide is formed only at the source / drain electrodes. Thus, a fully self-aligned thin film transistor having an SiOF or BCB thin film as an etching mask / ion implantation mask is obtained. In addition, although an amorphous silicon layer is formed as the active layer 13 in the embodiment of the present invention, a hydrogenated amorphous silicon film, a polycrystalline silicon film, or a compound semiconductor may be used.

제 2 도는 본 발명의 실시 예에 따라 제작한 SiOF 박막을 식각 마스크/이온 주입 마스크로서 이용한 완전 자기정렬형 비정질 실리콘 박막 트랜지스터의 전계효과 이동도(field effect mobility:μFE)를 나타내는 그래프이다.FIG. 2 is a graph showing field effect mobility (μ FE ) of a fully self-aligned amorphous silicon thin film transistor using an SiOF thin film prepared according to an embodiment of the present invention as an etching mask / ion implantation mask.

의 식으로부터 구해진 문턱전압(threshold voltage)(VTH)은 대략 5.72V, 전계효과 이동도(μFE)는 0.55 ㎠/Vs임을 보여주고 있다. 여기서 ID는 드레인 전압, μFE는 전계효과 이동도, W는 채널의 폭, L은 채널의 길이, Ci는 절연막의 전기용량, VTH는 문턱전압, VD는 드레인 전압을 나타낸다. The threshold voltage (V TH ) obtained from Eq. (5 TH ) is approximately 5.72V and the field effect mobility (μ FE ) is 0.55 cm 2 / Vs. Where I D is the drain voltage, μ FE is the field effect mobility, W is the width of the channel, L is the length of the channel, C i is the capacitance of the insulating film, V TH is the threshold voltage, and V D is the drain voltage.

제 3 도는 본 발명의 실시 예에 따라 제 1 도의 구조로 제작한 SiOF 박막을 식각 마스크/이온 주입 마스크로서 이용한 완전 자기정렬형 비정질 실리콘 박막 트랜지스터의 로그 드레인 전류-게이트 전압 특성을 나타낸 그래프이다. 본 실시 예에서 제작한 수소화된 비정질 실리콘 박막 트랜지스터의 온.오프 전류 비율은 ≥ 106으로 측정되었다.FIG. 3 is a graph showing log drain current-gate voltage characteristics of a fully self-aligned amorphous silicon thin film transistor using an SiOF thin film manufactured by the structure of FIG. 1 according to an embodiment of the present invention as an etching mask / ion implantation mask. The on / off current ratio of the hydrogenated amorphous silicon thin film transistor fabricated in this example was measured to be ≥ 10 6 .

제 4 도는 제 1 도의 구조로 제작한 SiOF 박막을 식각 마스크/이온 주입 마스크로서 이용한 완전 자기정렬형 비정질 실리콘 박막 트랜지스터의 출력 특성을 나타낸 그래프이다. 도시된 바와 같이, TFT의 W/L(여기서, W는 TFT 채널(Channel)의 폭을, L은 길이를 나타냄)은 60㎛/19㎛이며, 게이트 전압이 20 V일 때, 본 발명의 실시에 따라 제작된 박막 트랜지스터의 드레인 전류가 3.4×10-6A에서 포화되는 것을 보여주고 있다.4 is a graph showing output characteristics of a fully self-aligned amorphous silicon thin film transistor using an SiOF thin film manufactured by the structure of FIG. 1 as an etching mask / ion implantation mask. As shown, the W / L of the TFT, where W represents the width of the TFT channel and L represents the length, is 60 μm / 19 μm, and when the gate voltage is 20 V, the implementation of the present invention Shows that the drain current of the thin film transistor fabricated according to the present invention is saturated at 3.4 × 10 −6 A.

제 5 도는 제 1 도에서 제시된 2장의 마스크를 이용한 완전 자기정렬형 박막 트랜지스터를 LCD제작에 응용한 예를 도식화한 것이다. 먼저 1번 마스크를 이용해 게이트 전극과 보조용량을 형성한다. 이어서 게이트 절연막과 비정질 실리콘층을 증착하고 식각 및 이온주입 마스크 역할을 하는 층으로 SiOF나 SiNx를 증착하거나 BCB를 스핀코팅 방법으로 입힌다. 다음으로 후면 노광 방법으로 스톱퍼를 형성하고 고농도 이온 불순물 비정질층을 형성하기 위하여 이온 샤우어 방법으로 도핑한다. 다음으로 소오스/드레인 데이터 라인을 형성하기 위해서 스퍼터링 방법으로 니켈을 증착한 후 2번 마스크를 이용해서 소오스/드레인 데이터 라인을 형성한다.이때 소오스/드레인 데이터 라인을 형성하는 부분은 도핑된 비정질 실리콘이 남아있게 된다.이어서 소오스/드레인 데이터 라인에 실리사이드층을 형성하기 위해서 200℃에서 1시간동안 열처리한후 실리사이드를 형성하지 않은 니켈을 식각한다. 다음으로 화소전극과 데이터 라인을 형성하기 위해 투명전극을 증착하고 3번 마스크를 이용해서 화소전극과 데이터 라인을 형성한다. 마지막으로 보호막을 증착하고 전극 접촉구멍을 형성한다. 그림에서 알 수 있듯이 스윗칭 소자인 완전 자기정렬형 비정질실리콘 박막 트랜지스터를 완성하는데는 2장의 마스크가 필요하며, 데이터 라인과 화소전극 형성에는 1장의 마스크가, 그리고 보호막과 게이트 접촉구멍에 1장의 마스크가 필요하므로 총 4장의 마스크로써 LCD를 제작할 수 있다.5 is a diagram illustrating an example in which a fully self-aligned thin film transistor using the two masks shown in FIG. 1 is applied to LCD manufacturing. First, the gate electrode and the storage capacitor are formed by using the first mask. Subsequently, a gate insulating layer and an amorphous silicon layer are deposited, and SiOF or SiNx is deposited as a layer serving as an etching and ion implantation mask, or BCB is coated by spin coating. Next, a stopper is formed by a backside exposure method and doped by an ion shower method to form a high concentration of ion impurity amorphous layer. Next, nickel is deposited by a sputtering method to form a source / drain data line, and then a source / drain data line is formed using the second mask. In this case, doped amorphous silicon remains in the portion forming the source / drain data line. Subsequently, in order to form a silicide layer on the source / drain data line, nickel is not annealed after the heat treatment at 200 ° C. for 1 hour. Next, a transparent electrode is deposited to form a pixel electrode and a data line, and a pixel electrode and a data line are formed using a mask # 3. Finally, a protective film is deposited and an electrode contact hole is formed. As shown in the figure, two masks are required to complete the switching element, a fully self-aligned amorphous silicon thin film transistor, one mask is required to form the data line and the pixel electrode, and one mask is formed in the protective layer and the gate contact hole. LCD can be manufactured with a total of four masks.

상기한 바와 같이 본 발명에 따르면 SiOF, BCB 박막을 식각 마스크/이온 주입 마스크로 이용하고, 2장의 마스크를 이용한 완전 자기정렬형 비정질 실리콘 박막 트랜지스터를 제작함으로써 게이트 전극과 소오스/드레인 전극사이의 겹침길이에 의해 발생하는 기생용량을 효과적으로 줄일 수 있다.그리고 SiOF와 BCB는 저유전 상수 물질이므로 비정질 실리콘 질화막을 보호막으로 사용할 때에 비해서 게이트 신호지연을 감소 시킬 수 있고(Kyung WooK Kim, Kyu SiK Cho, Jai I1 Ryu, Keon Ho Yoo and Jin Jang, IEEE EDL vol. 21, pp. 301-303, 2000), 게이트 전극과 데이터 전극이 교차하는 지점에서 발생하는 신호간섭을 감소시킬 수 있다.이와 더불어 LCD 제작에 응용시 기존의 제작공정에 비해 필요한 마스크 수가 하나, 혹은 두 개 가 줄어듦으로써 생산성 향상은 물론 비용 절감 효과도 기대 할 수 있다.As described above, according to the present invention, the overlap length between the gate electrode and the source / drain electrode is fabricated by using a SiOF and BCB thin film as an etching mask / ion implantation mask and fabricating a fully self-aligned amorphous silicon thin film transistor using two masks. Can effectively reduce the parasitic capacity generated by Since SiOF and BCB are low dielectric constant materials, gate signal delay can be reduced compared to using amorphous silicon nitride as a protective film (Kyung WooK Kim, Kyu SiK Cho, Jai I1 Ryu, Keon Ho Yoo and Jin Jang, IEEE EDL vol. 21, pp. 301-303, 2000), can reduce signal interference occurring at the intersection of the gate electrode and the data electrode. In addition, the number of masks required for LCD manufacturing is reduced by one or two compared to the existing manufacturing process, which can improve productivity and reduce costs.

Claims (8)

절연기판상에 게이트 전극, 활성층 및 소오스/드레인 전극이 형성된 박막 트랜지스터에 있어서, 저항성 접촉층인 고농도로 이온이 주입된 실리콘층 또는 고농도 n+실리콘 층 형성을 위한 채널 활성층상의 식각 마스크/이온 주입 마스크로서 SiOF 박막이 형성되는 것을 특징으로 하는 박막 트랜지스터.In a thin film transistor in which a gate electrode, an active layer, and a source / drain electrode are formed on an insulating substrate, an etch mask / ion implant mask on a highly active ion implanted silicon layer as a resistive contact layer or a channel active layer for forming a high concentration n + silicon layer A thin film transistor, characterized in that the SiOF thin film is formed. 절연기판상에 게이트를 형성하는 단계와,Forming a gate on the insulating substrate, 상기 채널 활성층상에 식각 마스크/이온 주입 마스크로서 SiOF 박막을 형성하는 단계와,Forming a SiOF thin film as an etch mask / ion implantation mask on the channel active layer; 상기 채널 활성층상의 SiOF 박막과 소오스/드레인 전극을 오프셋 되도록 형성하는 단계와,Forming an SiOF thin film and a source / drain electrode on the channel active layer to be offset; 상기 소오스/드레인 전극영역의 오옴익 접촉층으로서 실리사이드를 형성하는 단계를 포함하는 박막 트랜지스터의 제조 방법.Forming a silicide as an ohmic contact layer of the source / drain electrode region. 제 1항에 있어서, 상기 활성층상의 식각 마스크/이온 주입 마스크로서 SiOF 박막과 소오스/드레인 전극이 오프셋된 자기정렬방식 박막 트랜지스터.The self-aligned thin film transistor of claim 1, wherein the SiOF thin film and the source / drain electrodes are offset as an etching mask / ion implantation mask on the active layer. 제 1항에 있어서, n+ 실리콘층상에 실리사이드가 형성된 완전 자기정렬방식의 박막 트랜지스터.The thin film transistor of claim 1, wherein silicide is formed on the n + silicon layer. 제 1항에 있어서, n+ 실리콘층상에 실리사이드가 형성된 완전 자기정렬방식의 박막 트랜지스터.The thin film transistor of claim 1, wherein silicide is formed on the n + silicon layer. 제2항에 있어서 2장의 마스크만을 사용하는 것을 특징으로 하는 박막 트랜지스터의 제조방법.The method of manufacturing a thin film transistor according to claim 2, wherein only two masks are used. LCD 제작에 있어서 데이터라인을 실리사이드층과 투명전극의 적층으로 형성하는 제조방법.A manufacturing method for forming a data line by laminating a silicide layer and a transparent electrode in LCD production. 절연기판상에 게이트전극과 보조용량을 형성하는 단계와,Forming a gate electrode and a storage capacitor on the insulating substrate; 상기 채널 활성층상에 식각 마스크/이온 주입 마스크로서 SiOF 박막을 형성하는 단계와,Forming a SiOF thin film as an etch mask / ion implantation mask on the channel active layer; 상기 채널 활성층상의 SiOF 박막과 소오스/드레인 전극을 오프셋되도록 형성하는 단계와,Forming an SiOF thin film and a source / drain electrode on the channel active layer to be offset; 상기 소오스/드레인 전극영역의 오옴익 접촉층으로서 실리사이드를 형성하는 단계와,Forming a silicide as an ohmic contact layer of the source / drain electrode region; 상기 데이터라인을 실리사이드와 투명전극의 적층으로 형성하는 단계를 포함하는 LCD 제조방법.Forming the data line by laminating a silicide and a transparent electrode.
KR1019980015027A 1998-04-28 1998-04-28 Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process KR100370451B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980015027A KR100370451B1 (en) 1998-04-28 1998-04-28 Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980015027A KR100370451B1 (en) 1998-04-28 1998-04-28 Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process

Publications (2)

Publication Number Publication Date
KR19990081221A KR19990081221A (en) 1999-11-15
KR100370451B1 true KR100370451B1 (en) 2003-06-19

Family

ID=37416446

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980015027A KR100370451B1 (en) 1998-04-28 1998-04-28 Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process

Country Status (1)

Country Link
KR (1) KR100370451B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100841371B1 (en) * 2006-12-19 2008-06-26 삼성에스디아이 주식회사 Thin Film Transistor and The Fabricating Method Using The Same
CN116195033A (en) * 2021-09-29 2023-05-30 京东方科技集团股份有限公司 Amorphous silicon thin film transistor, preparation method thereof and display panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181320A (en) * 1994-12-22 1996-07-12 Sharp Corp Thin-film transistor and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181320A (en) * 1994-12-22 1996-07-12 Sharp Corp Thin-film transistor and its manufacture

Also Published As

Publication number Publication date
KR19990081221A (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US5371025A (en) Method of making thin film transistors
US5658808A (en) Method of fabricating polycrystalline silicon thin-film transistor having symmetrical lateral resistors
KR19980016968A (en) Self-aligned thin film transistor manufacturing method
KR20040021758A (en) Method for fabricating of a poly-Si TFT
US20010012650A1 (en) Method of manufacturing thin film transistor
KR100272272B1 (en) Thin film transistor and method of manufacturing the same
JP3352191B2 (en) Method for manufacturing thin film transistor
JPH11274504A (en) Tft and its manufacture
KR20000072230A (en) fabrication method of amorphous silicon thin-film transistor for liquid-crystal display
KR20020050085A (en) Thin film transistor
US11469329B2 (en) Active switch, manufacturing method thereof and display device
KR100370451B1 (en) Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process
US20030027412A1 (en) Method for fabricating a low temperature polysilicon thin film transistor incorporating channel passivation step
WO2004040653A1 (en) Thin film transistors and methods of manufacture thereof
JP3210196B2 (en) Thin film transistor and manufacturing method thereof
JPH04240733A (en) Manufacture of thin film transistor
KR100303710B1 (en) Amorphous Silicon Thin Film Transistor and Liquid Crystal Display Device Structure and Manufacturing Method
KR100323736B1 (en) Thin film transistor and fabricating method thereof
KR100214460B1 (en) Method for fabricating thin film transistor
KR100196521B1 (en) Method of manufacturing thin film transistor
KR100382455B1 (en) Method for manufacturing thin film transistor
KR100304911B1 (en) Method for manufacturing thin film transistor
KR0162147B1 (en) Tft and its fabrication method
JP4278857B2 (en) Thin film transistor and manufacturing method thereof
JP2556850B2 (en) Method for manufacturing thin film transistor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee