JP3352191B2 - Method for manufacturing thin film transistor - Google Patents
Method for manufacturing thin film transistorInfo
- Publication number
- JP3352191B2 JP3352191B2 JP30804393A JP30804393A JP3352191B2 JP 3352191 B2 JP3352191 B2 JP 3352191B2 JP 30804393 A JP30804393 A JP 30804393A JP 30804393 A JP30804393 A JP 30804393A JP 3352191 B2 JP3352191 B2 JP 3352191B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- thin film
- sih
- film transistor
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Thin Film Transistor (AREA)
- Chemical Vapour Deposition (AREA)
Description
【0001】本発明は、アクティブ方式液晶表示装置等
に適用される薄膜トランジスタの製造方法に関する。The present invention relates to a method for manufacturing a thin film transistor applied to an active liquid crystal display device and the like.
【0002】[0002]
【従来の技術】従来から、高精細な画像を得るための液
晶表示装置として非単結晶シリコン薄膜トランジスタ
(以後TFTと記す。)をスイッチング素子として用い
た、いわゆるアクティブ方式液晶表示装置が提案され、
既に実用化されている。2. Description of the Related Art Conventionally, a so-called active type liquid crystal display device using a non-single-crystal silicon thin film transistor (hereinafter referred to as TFT) as a switching element has been proposed as a liquid crystal display device for obtaining a high-definition image.
It has already been put to practical use.
【0003】液晶表示装置として、実用化されている非
単結晶TFTには、アモルファスシリコン(以後、a−
siと記す。)を半導体層に用いるa−siTFTと、
結晶性シリコン(以後poly−siと記す。)を半導
体層に用いるpoly−siTFTの2種類がある。[0003] Non-single-crystal TFTs put into practical use as liquid crystal display devices include amorphous silicon (hereinafter referred to as a-type TFTs).
Notated as si. A) the a-si TFT using the semiconductor layer as a semiconductor layer;
There are two types of poly-si TFTs using crystalline silicon (hereinafter referred to as poly-si) for the semiconductor layer.
【0004】TFTの構成としては、コプラナ型とスタ
ガー型とが一般に良く知られているが、a−siTFT
の場合、スタガー型(逆スタガー型)が製造プロセス上
容易であるためほとんどは、(逆)スタガー型の構成で
ある。As a structure of a TFT, a coplanar type and a stagger type are generally well known.
In the case of (1), the stagger type (reverse stagger type) is easy in terms of the manufacturing process, and thus most of the configurations are of the (reverse) stagger type.
【0005】一方、poly−siTFTは、セルフア
ライン技術が使えることからコプラナ型の構成をとるこ
とが多い。On the other hand, poly-siTFTs often have a coplanar structure because self-alignment technology can be used.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、a−s
iTFTは低温プロセスで製造できるため安価なガラス
基板が使えるという利点があるものの、TFTのキャリ
アー移動度が小さく、周辺の駆動回路は別体で作って、
たとえば単結晶SiのICを用いなければならないとい
う不都合があった。However, a-s
Although the iTFT has the advantage of being able to use an inexpensive glass substrate because it can be manufactured by a low-temperature process, the carrier mobility of the TFT is small, and the peripheral drive circuit is made separately.
For example, there is a disadvantage that an IC of single crystal Si must be used.
【0007】一方、poly−siTFTは、キャリア
ー移動度が大きく、周辺の駆動回路も一体で形成できる
という利点があるものの、半導体層の成膜温度はガラス
基板の歪点(例えば一般によく使われているコーニング
社製7059ガラスは593℃)を越える温度が必要な
ことから、安価なガラス基板が使えず、高価な石英基板
を使わなければならずコストがかかるという不都合があ
った。図8に熱処理温度に対するガラスの収縮率のグラ
フを示す。71はコーニング社製7059ガラス、72
はBLCガラスについてのものである。On the other hand, the poly-siTFT has the advantage that the carrier mobility is large and the peripheral driving circuit can be formed integrally, but the film forming temperature of the semiconductor layer is set at the strain point of the glass substrate (for example, a commonly used type). However, since Corning 7059 glass requires a temperature exceeding 593 ° C.), an inexpensive glass substrate cannot be used, and an expensive quartz substrate must be used. FIG. 8 shows a graph of the shrinkage ratio of the glass with respect to the heat treatment temperature. 71 is Corning 7059 glass, 72
Is for BLC glass.
【0008】[0008]
【課題を解決するための手段及び作用】薄膜シリコンを
半導体層として用いる薄膜トランジスタの製造方法にお
いて、基板上にシリコン半導体層を形成するに際し、前
記半導体層のうちゲート電極側の第1半導体層としてS
iF4とSiH4とを含むガス雰囲気下でプラズマCV
D法を用いて結晶性シリコンを形成する第1の工程と、
前記半導体層のゲート電極とは反対側の第2半導体層と
して、前記第1半導体層を形成する際のガス雰囲気に比
べてSiH4に対するSiF4の割合を小さくしたガス
雰囲気下でプラズマCVD法により非晶質シリコンを形
成する第2の工程を含み、第1の工程と第2の工程との
間で、真空を破らないことを特徴とするものである。In a method of manufacturing a thin film transistor using thin film silicon as a semiconductor layer, when a silicon semiconductor layer is formed on a substrate, a first semiconductor layer on the gate electrode side of the semiconductor layer is formed as a semiconductor layer.
Plasma CV under a gas atmosphere containing iF 4 and SiH 4
A first step of forming crystalline silicon using the D method;
As a second semiconductor layer on the side opposite to the gate electrode of the semiconductor layer, by a plasma CVD method in a gas atmosphere in which the ratio of SiF 4 to SiH 4 is smaller than the gas atmosphere when forming the first semiconductor layer. The method includes a second step of forming amorphous silicon, and does not break a vacuum between the first step and the second step.
【0009】本発明の薄膜トランジスタの製造方法によ
れば、キャリアーの移動度が大きく、off抵抗の大き
い即ち、on/off比との大きいTFTを低温で提供
することができる。According to the method of manufacturing a thin film transistor of the present invention, a TFT having a large carrier mobility and a large off resistance, that is, a large on / off ratio can be provided at a low temperature.
【0010】更に、ガラス基板上に、周辺駆動回路をも
形成することができるという利点がある。Further, there is an advantage that a peripheral driving circuit can be formed on a glass substrate.
【0011】poly−siは前述したように、抵抗率
が低くTFTのoff電源が大きいことから、このof
f時のリーク電流を低減するために本発明では、ゲート
電極とは反対側の、チャネルを形成しない半導体層の領
域をa−siで構成し、チャネルを形成するゲート側の
半導体層をpoly−siで構成する。As described above, since the poly-si has a low resistivity and a large off power supply of the TFT,
In order to reduce the leakage current at the time of f, in the present invention, the region of the semiconductor layer on which the channel is not formed, which is opposite to the gate electrode, is formed of a-si, and the semiconductor layer on the gate side which forms the channel is poly-. It consists of si.
【0012】このような半導体層は、ゲート電極側の半
導体層をSiF4 とSiH4 を含むガス雰囲気のプラズ
マCVDによりpoly−siを形成し、ゲート電極と
は反対側の層はSiF4 の量を減らしプラズマCVDに
よりa−siを形成することで実現できる。In such a semiconductor layer, the semiconductor layer on the gate electrode side is poly-si formed by plasma CVD in a gas atmosphere containing SiF 4 and SiH 4, and the layer on the side opposite to the gate electrode has an amount of SiF 4 . Can be realized by forming an a-si by plasma CVD.
【0013】図4に、SiH4 とSiF4 の流量比Si
H4 /SiF4 で成膜した際の流量比と、Si膜の結晶
性を示すラマンスペクトルの520cm-1付近の半値幅
(F、W、H、M)と、の関係を示す。FIG. 4 shows a flow ratio SiH 4 and SiF 4.
The relationship between the flow rate ratio when forming a film of H 4 / SiF 4 and the half width (F, W, H, M) around 520 cm −1 of the Raman spectrum indicating the crystallinity of the Si film is shown.
【0014】SiH4 /SiF4 が9%以上ではアモル
ファス構造を示し、SiH4 /SiF4 が9%未満でp
oly−siになることが示されている。SiH4 /S
iF4 =3%ではpoly−siの粒径は200nmで
あった。SiH4 /SiF4=0では、Si膜は堆積し
なかった。[0014] SiH 4 / SiF 4 showed an amorphous structure is 9% or more, SiH 4 / SiF 4 is less than 9% p
It is shown to be poly-si. SiH 4 / S
When iF 4 = 3%, the particle size of poly-si was 200 nm. When SiH 4 / SiF 4 = 0, no Si film was deposited.
【0015】図5に、SiH4 /SiF4 比と抵抗率α
の関係を示す。SiH4 /SiF4が9%以上で抵抗率
が大きくなり、9%未満で抵抗率が下がるが、これはS
i膜の結晶性と対応する。FIG. 5 shows the SiH 4 / SiF 4 ratio and the resistivity α.
Shows the relationship. When SiH 4 / SiF 4 is 9% or more, the resistivity increases, and when it is less than 9%, the resistivity decreases.
Corresponds to the crystallinity of the i-film.
【0016】SiF4 で希釈することで何故結晶化する
のかは、不明であるが、SiF4 はエッチング性があ
り、エッチング作用と堆積作用が並行して進み、Siと
結合している水素や他の不純物元素をSiF4 のFが引
き抜いているのではないかと考えられる。It is unclear why dilution with SiF 4 causes crystallization. However, SiF 4 has an etching property, the etching action and the depositing action proceed in parallel, and hydrogen and other substances bonded to Si have to be etched. It is conceivable that F of SiF 4 may have extracted the impurity element of (2).
【0017】[0017]
【実施例】(実施例1)図1は本発明の方法の1例を示
すプロセス図である。(Embodiment 1) FIG. 1 is a process diagram showing an example of the method of the present invention.
【0018】ガラス基板1(コーニング社製7059ガ
ラス)上にCr、Al、Ta等の金属を用いてゲート電
極2を形成する。A gate electrode 2 is formed on a glass substrate 1 (Corning 7059 glass) using a metal such as Cr, Al, or Ta.
【0019】その後、図1(b)のようにゲート電極が
形成されたガラス基板1上にプラズマCVD(以後P−
CVDと記す)法により窒化シリコン膜(以後SiNx
膜と記す)からなるゲート絶縁膜3を基板温度400℃
で形成する。この時のSiNx は、ガス流量比をNH3
/SiH4 =10:1とし、P−CVDのR、F、パワ
ー密度20mw/cm2 、成膜圧力27Pa…の条件下
で400nmの厚みに形成した。Thereafter, as shown in FIG. 1B, a plasma CVD (hereinafter referred to as P-type) is formed on the glass substrate 1 on which the gate electrode is formed.
A silicon nitride film (hereinafter referred to as SiN x ) is formed by a CVD method.
A gate insulating film 3 composed of
Formed. At this time, the SiN x has a gas flow ratio of NH 3
/ SiH 4 = 10: 1, R-F of P-CVD, power density 20 mw / cm 2 , film forming pressure 27 Pa...
【0020】その後、poly−siからなる第1半導
体層4をガス流量比をSiH4 :SiF4 =1:30と
し、R、F、パワー20mw/cm2 、成膜圧力13P
a、基板温度400℃条件下で100nmの厚みで形成
した。Thereafter, the first semiconductor layer 4 made of poly-si is set to have a gas flow ratio of SiH 4 : SiF 4 = 1: 30, R, F, power 20 mw / cm 2 , and a film forming pressure of 13 P.
a, It was formed with a thickness of 100 nm under the condition of a substrate temperature of 400 ° C.
【0021】その後、真空を破ることなく、a−siか
らなる第2半導体層5を水素で希釈したSiH4 (流量
比SiH4 :H2 =1:10)を用いて、R、F、パワ
ー12mw/cm2 、圧力66Pa、基板温度300℃
の条件下で200nm膜厚で形成した。Then, without breaking the vacuum, the second semiconductor layer 5 made of a-si is diluted with hydrogen using SiH 4 (flow ratio SiH 4 : H 2 = 1: 10) to obtain R, F, and power. 12mw / cm 2 , pressure 66Pa, substrate temperature 300 ° C
Under a condition of 200 nm in thickness.
【0022】オーミックコンタクト層であるpoly−
sin+ 層6を100nmの膜厚で形成した。poly
−sin+ 層の形成条件は、PH3 /SiH4 =200
0ppm、SiH4 /SiF4 =0.03、RFパワー
40mw/cm2 、基板温度300℃とした。The ohmic contact layer, poly-
The sin + layer 6 was formed with a thickness of 100 nm. poly
The formation condition of the −sin + layer is PH 3 / SiH 4 = 200
0 ppm, SiH 4 / SiF 4 = 0.03, RF power 40 mw / cm 2 , and substrate temperature 300 ° C.
【0023】続いて、図1(c)に示すように、第1、
第2半導体層、poly−sin+層についてTFTと
して使用する部分7のみを島状に残した。Subsequently, as shown in FIG.
With respect to the second semiconductor layer and the poly-sin + layer, only a portion 7 used as a TFT was left in an island shape.
【0024】この工程の後に、必要なコンタクトホール
(不図示)を開けた。After this step, necessary contact holes (not shown) were opened.
【0025】図2(d)のように、ソート・ドレイン電
極材となる。例えばAl、Cr、Ti等の金属8をスパ
ッタ法により堆積し、更に所定の配線形状にパターニン
グした。その後、画素電極となるITO等の透明電極を
スパッタ法で堆積し、画素電極9の形状にパターニング
した。As shown in FIG. 2D, the material becomes a sort / drain electrode material. For example, a metal 8 such as Al, Cr, and Ti was deposited by a sputtering method, and further patterned into a predetermined wiring shape. Thereafter, a transparent electrode such as ITO serving as a pixel electrode was deposited by a sputtering method and patterned into the shape of the pixel electrode 9.
【0026】次いで図2(e)のように、ソート・ドレ
イン電極材を所望のドレイン電極8(a)、ソース電極
8(b)の形状にパターニングし、さらにチャネル部の
不要なpoly−sin+ 層を除去した。この時n+ 層
のチャネル部の除去のマスクには、ドレイン電極8
(a)、ソース電極8(b)をパターニングした時のマ
スクであるレジストをそのまま用いて、マスクにしても
よいし、あるいはドレイン電極、ソース電極をパターニ
ングした後に、レジストを剥離し、ドレイン電極、ソー
ス電極をマスクにしてもかまわない。Next, as shown in FIG. 2E, the sort / drain electrode material is patterned into desired drain electrode 8 (a) and source electrode 8 (b) shapes, and furthermore, a poly-sin + which does not require a channel portion. The layer was removed. At this time, the drain electrode 8 is used as a mask for removing the channel portion of the n + layer.
(A) The resist used as a mask when patterning the source electrode 8 (b) may be used as it is as a mask, or the resist may be peeled off after patterning the drain electrode and the source electrode, The source electrode may be used as a mask.
【0027】その後、図2(f)のように、基板全体に
パッシベーション膜であるSiNx膜10をP−CVD
法により堆積した。Thereafter, as shown in FIG. 2F, a SiN x film 10 as a passivation film is formed on the entire substrate by P-CVD.
Deposited by the method.
【0028】この時、TFTの作成温度は、全てガラス
基板の歪点より低くした。At this time, the temperature for forming the TFTs was all lower than the strain point of the glass substrate.
【0029】図8に示したガラス基板の収縮率から、例
えば収縮率が200ppmでは、300mmの基板長で
は、60μmの収縮になる。From the shrinkage ratio of the glass substrate shown in FIG. 8, for example, when the shrinkage ratio is 200 ppm, the shrinkage is 60 μm when the substrate length is 300 mm.
【0030】従って、パターンのずれ、ゆがみを考慮す
るとガラスの歪点より150℃以上低い温度でTFTの
作成の全工程が行われることが必要となる。Therefore, in consideration of pattern shift and distortion, it is necessary to perform all steps of TFT fabrication at a temperature lower than the strain point of glass by 150 ° C. or more.
【0031】その後、対向するガラス基板を貼り合わ
せ、基板間に液晶を注入して液晶表示装置を完成した。Thereafter, opposing glass substrates were bonded together, and liquid crystal was injected between the substrates to complete a liquid crystal display device.
【0032】図7に本発明の実施例でTFTを作成した
P−CVD装置の概略図を示す。FIG. 7 is a schematic view of a P-CVD apparatus in which a TFT is formed in the embodiment of the present invention.
【0033】61は基板を挿入するロード室、62はゲ
ート絶縁膜をP−CVD法で作成する成膜室、63は第
1半導体層を形成する成膜室、64は第2半導体層を形
成する成膜室、65はn+ 層を形成する成膜室、66は
基板を取り出すアンロード室であり、61から66まで
は大気に触れることなく基板が搬送される。Reference numeral 61 denotes a load chamber for inserting a substrate, 62 denotes a film forming chamber for forming a gate insulating film by a P-CVD method, 63 denotes a film forming chamber for forming a first semiconductor layer, and 64 denotes a film forming chamber for forming a second semiconductor layer. The reference numeral 65 denotes a film formation chamber for forming an n + layer, and the reference numeral 66 denotes an unload chamber for taking out a substrate. The substrates are transported from 61 to 66 without exposure to the atmosphere.
【0034】各室には、排気系67が接続されており、
各室間にはゲートバルブ68があり、室間を区切ってい
る。An exhaust system 67 is connected to each chamber.
A gate valve 68 is provided between each chamber, and separates the rooms.
【0035】本実施例では、プロセスのスループットア
ップのため第1半導体層と第2半導体層の成膜室を分け
てある。In this embodiment, the first semiconductor layer and the second semiconductor layer are formed in separate chambers in order to increase the throughput of the process.
【0036】図3は、本発明を用いて作成した液晶表示
装置の1画素分の断面図である。FIG. 3 is a sectional view of one pixel of a liquid crystal display device manufactured by using the present invention.
【0037】図3において、TFT7は背面に偏光板1
1を有するガラス基板1上に形成されている。In FIG. 3, the TFT 7 has a polarizing plate 1 on the back.
1 is formed on a glass substrate 1.
【0038】液晶表示装置は背面(外側)に偏光板18
を有し、液晶側にカラーフィルター15と、TFT及び
ドレイン、ゲートのバスライン上部のブラックマトリク
ス16を設け、更にその上にITO等の透明電極からな
る共通電極14を形成して、ガラス基板17と、TFT
を形成したガラス基板の間に液晶13を注入して形成し
た。The liquid crystal display has a polarizing plate 18 on the back (outside).
A color filter 15 and a black matrix 16 above the bus lines of TFT, drain and gate are provided on the liquid crystal side, and a common electrode 14 made of a transparent electrode such as ITO is formed thereon. And TFT
The liquid crystal 13 was injected between the glass substrates on which was formed.
【0039】ここで、12(a)、12(b)は、液晶
の電位を保持するために、液晶に並列に設けられた蓄積
容量を保持するための対向電極である。Here, 12 (a) and 12 (b) are opposing electrodes for holding a storage capacitor provided in parallel with the liquid crystal in order to hold the potential of the liquid crystal.
【0040】図6に逆スタガー型TFTのVg−Id特
性を示す。FIG. 6 shows the Vg-Id characteristics of the inverted stagger type TFT.
【0041】51は実施例の製造方法により作成したT
FTのVg−Id特性で、52は半導体層を全てガス流
量比SiF4 :SiH4 =1:30で作成した全層po
ly−siからなるTFTのVg−Id特性である。5
3は、半導体層を全てSiH4 のみ(SiF4 なし)を
SiH4 /H2 =0.1に希釈して作成したa−siか
らなるTFTのVg−Id特性である。51は、on特
性がほとんど全層poly−siのTFTのon特性に
近く、off特性は、52と53の間であった。Reference numeral 51 denotes a T formed by the manufacturing method of the embodiment.
The Vg-Id characteristic of the FT is denoted by reference numeral 52, in which all the semiconductor layers are formed with a gas flow ratio of SiF 4 : SiH 4 = 1: 30, and all layers po
5 is a Vg-Id characteristic of a TFT composed of ly-si. 5
3 is a Vg-Id characteristic of an a-si TFT prepared by diluting the entire semiconductor layer with only SiH 4 (without SiF 4 ) to SiH 4 / H 2 = 0.1. In the case of No. 51, the on characteristic was almost close to the on characteristic of the TFT of all layers poly-si, and the off characteristic was between 52 and 53.
【0042】本実施例の51の移動度は45cm2 /V
・Sであり全層poly−siで構成した52の移動度
50cm2 /V・Sとほぼ同じであり、全層a−siの
53の移動度0.5cm2 /V・Sに比べ大きく増加し
ている。The mobility of 51 in this embodiment is 45 cm 2 / V
S, which is almost the same as the mobility 50 cm 2 / V · S of 52 composed of all layers poly-si, and greatly increased compared to the mobility 0.5 cm 2 / V · S of 53 of all layers a-si are doing.
【0043】(実施例2)実施例1では、逆スタガー型
TFTの製造方法について説明したが、他の3つの構造
αTFT、即ち正スタガー型、下コプラナ型(電極が基
板側)、上コプラナ型(電極が基板とは反対側)につい
て製造した。これらのTFTについては、ゲート電極が
基板側にあるか、基板とは半導体層をはこんで反対側に
あるかにより、poly−siとa−siを堆積する順
序が変わるだけで、作用効果は実施例1と同様であっ
た。(Embodiment 2) In Embodiment 1, the method of manufacturing an inverted staggered TFT has been described. However, the other three structures αTFT, namely, a normal staggered type, a lower coplanar type (electrode is on the substrate side), and an upper coplanar type. (The electrode was on the side opposite to the substrate). For these TFTs, only the order in which poly-si and a-si are deposited changes depending on whether the gate electrode is on the substrate side or on the opposite side of the substrate with the semiconductor layer interposed therebetween. Same as Example 1.
【0044】[0044]
【発明の効果】以上説明したように、本発明の薄膜トラ
ンジスタの製造方法によれば移動度が大きく、off抵
抗の大きいTFTを低温で提供することができる。As described above, according to the method for manufacturing a thin film transistor of the present invention, a TFT having a large mobility and a large off resistance can be provided at a low temperature.
【0045】また、ガラス基板上に周辺駆動回路をも形
成することができる。Further, a peripheral driving circuit can be formed on a glass substrate.
【図1】本発明のTFTの製造工程の1例を示す模式
図。FIG. 1 is a schematic view showing one example of a manufacturing process of a TFT of the present invention.
【図2】本発明のTFTの製造工程の1例を示す模式
図。FIG. 2 is a schematic view showing one example of a manufacturing process of the TFT of the present invention.
【図3】本発明のTFTを用いた液晶表示装置を示す
図。FIG. 3 is a diagram showing a liquid crystal display device using the TFT of the present invention.
【図4】ガス流量SiH4 /SiF4 比と得られた膜の
結晶性を示すグラフの図。FIG. 4 is a graph showing the gas flow rate SiH 4 / SiF 4 ratio and the crystallinity of the obtained film.
【図5】ガス流量SiH4 /SiF4 比と得られ膜のα
の関係を示すグラフの図。FIG. 5: Gas flow rate SiH 4 / SiF 4 ratio and α of the obtained film
The figure of the graph which shows the relationship of.
【図6】TFTのVg−Id特性を示すグラフの図。FIG. 6 is a graph showing a Vg-Id characteristic of a TFT.
【図7】P−CVD成膜装置の概略図。FIG. 7 is a schematic diagram of a P-CVD film forming apparatus.
【図8】ガラスの収縮を示すグラフの図。FIG. 8 is a graph showing the contraction of glass.
1 ガラス基板 2 ゲート電極 3 ゲート絶縁膜 4 第1半導体層 5 第2半導体層 6 n+ 層Reference Signs List 1 glass substrate 2 gate electrode 3 gate insulating film 4 first semiconductor layer 5 second semiconductor layer 6 n + layer
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 21/336 H01L 21/205 C23C 16/24 C23C 16/50 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 29/786 H01L 21/336 H01L 21/205 C23C 16/24 C23C 16/50
Claims (3)
膜トランジスタの製造方法において、基板上にシリコン
半導体層を形成するに際し、前記半導体層のうちゲート
電極側の第1半導体層としてSiF4とSiH4とを含
むガス雰囲気下でプラズマCVD法を用いて結晶性シリ
コンを形成する第1の工程と、前記半導体層のゲート電
極とは反対側の第2半導体層として、前記第1半導体層
を形成する際のガス雰囲気に比べてSiH4に対するS
iF4の割合を小さくしたガス雰囲気下でプラズマCV
D法により非晶質シリコンを形成する第2の工程を含
み、第1の工程と第2の工程との間で、真空を破らない
ことを特徴とする薄膜トランジスタの製造方法。In a method of manufacturing a thin film transistor using thin film silicon as a semiconductor layer, when forming a silicon semiconductor layer on a substrate, SiF 4 and SiH 4 are used as a first semiconductor layer on the gate electrode side of the semiconductor layer. A first step of forming crystalline silicon using a plasma CVD method in a gas atmosphere containing the first semiconductor layer, and a step of forming the first semiconductor layer as a second semiconductor layer opposite to a gate electrode of the semiconductor layer. S for SiH 4 compared to gas atmosphere
Plasma CV in a gas atmosphere having a reduced proportion of iF 4
A method for manufacturing a thin film transistor, comprising: a second step of forming amorphous silicon by a method D, wherein a vacuum is not broken between the first step and the second step.
体層形成後に形成し、前記第2の半導体層の形成時の基
板温度は、前期第1の半導体層の形成時の基板温度以下
である請求項1記載の薄膜トランジスタの製造方法。2. The method according to claim 1, wherein the second semiconductor layer is formed after the formation of the first semiconductor layer, and the substrate temperature during the formation of the second semiconductor layer is lower than the substrate temperature during the formation of the first semiconductor layer. The method for manufacturing a thin film transistor according to claim 1, wherein:
は、基板となるガラスの歪点より150℃以上低い温度
で行われる請求項1に記載の薄膜トランジスタの製造方
法。3. The method according to claim 1, wherein the step of manufacturing the thin film transistor is performed at a temperature lower by at least 150 ° C. than a strain point of glass serving as a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30804393A JP3352191B2 (en) | 1993-12-08 | 1993-12-08 | Method for manufacturing thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30804393A JP3352191B2 (en) | 1993-12-08 | 1993-12-08 | Method for manufacturing thin film transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07162003A JPH07162003A (en) | 1995-06-23 |
JP3352191B2 true JP3352191B2 (en) | 2002-12-03 |
Family
ID=17976199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30804393A Expired - Fee Related JP3352191B2 (en) | 1993-12-08 | 1993-12-08 | Method for manufacturing thin film transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3352191B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4194436B2 (en) | 2003-07-14 | 2008-12-10 | キヤノン株式会社 | Field effect organic transistor |
US8591650B2 (en) | 2007-12-03 | 2013-11-26 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming crystalline semiconductor film, method for manufacturing thin film transistor, and method for manufacturing display device |
JP5709579B2 (en) | 2010-03-02 | 2015-04-30 | 株式会社半導体エネルギー研究所 | Method for manufacturing microcrystalline semiconductor film |
WO2011142443A1 (en) | 2010-05-14 | 2011-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Microcrystalline silicon film, manufacturing method thereof, semiconductor device, and manufacturing method thereof |
US8410486B2 (en) | 2010-05-14 | 2013-04-02 | Semiconductor Energy Labortory Co., Ltd. | Method for manufacturing microcrystalline semiconductor film and method for manufacturing semiconductor device |
US8778745B2 (en) | 2010-06-29 | 2014-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
CN102386072B (en) | 2010-08-25 | 2016-05-04 | 株式会社半导体能源研究所 | The manufacture method of microcrystalline semiconductor film and the manufacture method of semiconductor device |
JP2012089708A (en) | 2010-10-20 | 2012-05-10 | Semiconductor Energy Lab Co Ltd | Manufacturing method for microcrystalline silicon film, and manufacturing method for semiconductor device |
US8450158B2 (en) | 2010-11-04 | 2013-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming microcrystalline semiconductor film and method for manufacturing semiconductor device |
US8394685B2 (en) | 2010-12-06 | 2013-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Etching method and manufacturing method of thin film transistor |
US9048327B2 (en) | 2011-01-25 | 2015-06-02 | Semiconductor Energy Laboratory Co., Ltd. | Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device |
CN107408578B (en) * | 2015-03-30 | 2020-08-11 | 堺显示器制品株式会社 | Thin film transistor and display panel |
-
1993
- 1993-12-08 JP JP30804393A patent/JP3352191B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07162003A (en) | 1995-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100225098B1 (en) | Method of fabrication of thin transistor | |
US6936504B2 (en) | Poly-silicon thin film transistor having back bias effects and fabrication method thereof | |
US6395586B1 (en) | Method for fabricating high aperture ratio TFT's and devices formed | |
US6180438B1 (en) | Thin film transistors and electronic devices comprising such | |
KR100268007B1 (en) | Fabrication method of lcd | |
JP3352191B2 (en) | Method for manufacturing thin film transistor | |
US5827760A (en) | Method for fabricating a thin film transistor of a liquid crystal display device | |
US5652158A (en) | Method for making thin film transistors for a liquid crystal display | |
JPH05304171A (en) | Thin-film transistor | |
KR20000072230A (en) | fabrication method of amorphous silicon thin-film transistor for liquid-crystal display | |
JPS6113670A (en) | Method of producing thin film field effect transistor and transistor obtained by same method | |
US6656776B2 (en) | Thin film transistor and fabricating method thereof | |
JP2659976B2 (en) | Thin film transistor and method of manufacturing the same | |
TW400653B (en) | Thin film transistor, LCD having thin film transistors, and method for making TFT array board | |
JPH08172195A (en) | Thin film transistor | |
JPH10173195A (en) | Thin film transistor and its manufacturing method | |
JP3291069B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3141456B2 (en) | Thin film transistor and method of manufacturing the same | |
JPH05206166A (en) | Thin film transistor | |
KR100370451B1 (en) | Method for manufacturing amorphous silicon thin film transistor and liquid crystal display using simple process | |
JPH01227127A (en) | Thin-film transistor array | |
KR0172880B1 (en) | Method of manufacturing liquid crystal display device | |
JPH03114234A (en) | Thin film transistor and its manufacture | |
JPH0677486A (en) | Thin-film transistor element | |
KR950003942B1 (en) | Method of manufacturing thin film transistor for lcd |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020827 |
|
LAPS | Cancellation because of no payment of annual fees |