JPS615578A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS615578A
JPS615578A JP12611284A JP12611284A JPS615578A JP S615578 A JPS615578 A JP S615578A JP 12611284 A JP12611284 A JP 12611284A JP 12611284 A JP12611284 A JP 12611284A JP S615578 A JPS615578 A JP S615578A
Authority
JP
Japan
Prior art keywords
thin film
amorphous silicon
film transistor
layer
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12611284A
Other languages
Japanese (ja)
Inventor
Setsuo Kaneko
節夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12611284A priority Critical patent/JPS615578A/en
Publication of JPS615578A publication Critical patent/JPS615578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a thin film transistor having a high OFF-state resistance by a method wherein a semiconductor layer containing an amorphous silicon layer comprising elements of at least more than one kind of oxygen, nitrogen and carbon as its principal component is provided. CONSTITUTION:A chrome electrode 2, which is a gate metal film, is vacuum- evaporated on a glass substrate 1 and a silicon nitride layer 3 is formed. An N<-> type amorphous silicon layer 4 is formed by decomposing silane gas according to glow discharge, an N<-> type amorphous SixC1-x (x=0.05) layer 5 is formed by decomposing mixed gas of silane and methane according to glow discharge and an N<+> type amorphous silicon layer 6 is formed by decomposing mixed gas of silane and phosphine according to glow discharge. A source electrode 7 and a drain electrode 8 are formed. By providing the amorphous silicon layer comprising more than 1% and less than 70% of carbon, nitrogen or oxygen, this thin film transistor can be made to hold a sufficient resistivity even when the resistivity of the surface is lowered due to dry etching, contamination and so forth.

Description

【発明の詳細な説明】 (産業上の利用分野) 本特許は非晶質シリコンを用いた薄膜トランジスタ特に
OFF抵抗や高い非晶質シリコンを用いた薄膜トランジ
スタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This patent relates to a thin film transistor using amorphous silicon, particularly a thin film transistor using amorphous silicon with high OFF resistance.

(従来技術とその問題点) 最近、パーソナルコンビーータや各種情報処理機器を小
型化することが望まれている。この中で最も小型化しに
くいものの1つにディスプレイがあげられる。現在ディ
スプレイの大部分はCRTであるが、CRTは真空中で
電子線を電界等で制御して螢光体に照射し発光させるた
め、電子線を走査する部分だけ装置が厚くなり、小型化
が困難である。ディスプレイを小型化にすることを目的
とした液晶を用いた薄型のディスプレイの開発が注目さ
れている。この液晶ディスプレイは電極が付いた2枚の
ガラス板の間にlOミクロン厚程度の液晶をはさみ、2
枚のガラ大板についた走査電極によって液晶に電界を印
加し、液晶の動きを制御するために、真空中の電子の走
向を制御するC、BTと比較して薄いディスプレイが可
能になる。しかし、液晶を動作させる場合1例えば電圧
平均化法では単純なXYマ) IJクス動作では絵素数
が増加した時コントラストが低下する問題があった。こ
のコントラストの低下を解決する方法どして薄膜トラン
ジスタを用いたアクティブマトリクス動作法が研究され
ている。ここで用いられる薄膜材料′には多結晶8iや
テルル、非晶質シリコンなどを用いたものがあるが、低
温プロセスで低価格の基板が使えることや安定で量産し
やすいという特徴を有する非晶質シリコンが最も適して
いる。
(Prior art and its problems) Recently, there has been a desire to downsize personal computer beaters and various information processing devices. Among these, displays are one of the things that is most difficult to miniaturize. Currently, the majority of displays are CRTs, but in a CRT, electron beams are controlled in a vacuum using an electric field, etc. to irradiate a phosphor to emit light, so the device becomes thicker in the area where the electron beams are scanned, making it easier to downsize. Have difficulty. 2. Description of the Related Art The development of thin displays using liquid crystals is attracting attention for the purpose of downsizing displays. This liquid crystal display consists of a liquid crystal about 10 microns thick sandwiched between two glass plates with electrodes attached.
Since an electric field is applied to the liquid crystal using scanning electrodes attached to two large glass plates, and the movement of the liquid crystal is controlled, a thinner display is possible compared to C and BT, which control the direction of electrons in a vacuum. However, when operating a liquid crystal (for example, in a voltage averaging method using a simple XY matrix), in an IJ operation, there is a problem in that the contrast decreases as the number of picture elements increases. An active matrix operation method using thin film transistors is being researched as a method to solve this decrease in contrast. Thin film materials used here include those using polycrystalline 8i, tellurium, amorphous silicon, etc.; High quality silicone is the most suitable.

非晶質シリコンを用いた薄膜トランジスタをこのような
平面ディスプレイに応用する場合1画素欠陥のないディ
、スプレィを得るためには薄膜トランジスタのON抵抗
とOFF抵抗の比が十分大きい薄膜トランジスタ素子が
大面積に均一に形成できることが必要となる。
When applying a thin film transistor using amorphous silicon to such a flat display, in order to obtain a display without a single pixel defect, the thin film transistor element must have a sufficiently large ratio of ON resistance to OFF resistance and be uniform over a large area. It is necessary to be able to form

従来の薄膜トランジスタは第1図にその構造を示す様に
ゲート金属が付いたガラス等の絶縁性基板上にプラズマ
CVD法を用いて例えば窒化シリコン層、 n−非晶質
シリコン層、りん等を0.1〜1%ドープしたn子弁晶
質シリコン層を形成し。
As shown in Figure 1, a conventional thin film transistor has a structure in which, for example, a silicon nitride layer, an n-amorphous silicon layer, phosphorus, etc. are deposited on an insulating substrate such as glass with a gate metal using the plasma CVD method. .1 to 1% doped n-child crystalline silicon layer is formed.

その後ソース−ドレイン電極を形成した後、ゲート金属
上のn子弁晶質シリコン層をエツチングして薄膜トラン
ジスタを作製していた。また最後に表面の安定化を計る
ためや遮光膜を設置するために窒化シリコン等のベッシ
ベーシlン用絶縁層を形成する。しかし、このn子弁晶
質シリコン層を工、チングする工程や窒化シリコン等の
パッジベージ目ン膜を形成する時にn−非晶質シリコン
層表面の抵、抗値が減少し、薄膜トランジスタのOFF
抵抗が小さくなり、平面ディスプレイにした時に画像欠
陥となって歩どまり低下の原因となりていた。
Thereafter, after forming source-drain electrodes, the n-type crystalline silicon layer on the gate metal was etched to fabricate a thin film transistor. Finally, an insulating layer for the bass basin, such as silicon nitride, is formed in order to stabilize the surface and provide a light shielding film. However, during the process of etching and etching this n-amorphous silicon layer or when forming a padding film such as silicon nitride, the surface resistance of the n-amorphous silicon layer decreases, and the thin film transistor becomes OFF.
The resistance became smaller, which caused image defects and lower yields when flat displays were produced.

(発明の目的) 本発明はこのような従来の欠点を除去せしめてOFF抵
抗の高い薄膜トランジスタを提供することにある。
(Object of the Invention) An object of the present invention is to eliminate such conventional drawbacks and provide a thin film transistor with high OFF resistance.

(発明の構成) 本発明によれば絶縁性基板上にゲート金属、ゲート絶縁
膜非晶質シリコンを基体とした半導体層とオーミック層
、ソース・ドレイン電極からなる積層構造薄膜トランジ
スタにおいて前記半導体層の1部に1%以上70チ未満
の炭素、窒素及び酸素の少なくとも一つ以上の元素を含
ませてなることを特徴とする薄膜トランジスタが得られ
る、(発明の概要) 本発明は上述の構成をとることにより従来のような薄膜
トランジスタのOFF抵抗が小さくなることを解決した
。すなわち従来構造におけるOFF抵抗低下の原因は抵
抗率10’−10’Ω1のn−非晶質シリコン層がドラ
イエツチング時のプラズマ損傷を受けることや表面汚染
によって抵抗率が1桁から2桁程度小さくなってしまっ
たことと考えられるが1本発明ではれ一非晶質シリコン
層内に抵抗率の大きい酸素、窒素や炭素の少なくとも1
つ以上の元素を含んだ非晶質シリコン合金を設けること
によりドライエツチングや汚染等により表面の抵抗率が
小さくなったとしても十分な抵抗率を保持させることが
できるようにした。この時、上記元°素は1チ以上の濃
度で非晶質シリコン内に混入させることが抵抗率を高め
る上で必要であり、デバイス動作時のキャリアの走向を
考慮すると70チ以下の濃度で非晶質シリコンとの合金
化をおさえる必要がある。このようにすることにより、
薄膜トランジスタのOFF抵抗を安定的に大きくするこ
とができ、薄膜トランジスタを多数使用したディスプレ
イの歩どまりを向上させることができる。また別の効果
として、上記元素が含まれている非晶質トリコンはエツ
チング速度が比較的遅く非晶質シリコンとのエツチング
速度差を利用して均一性良くn+非晶質シリコン層をエ
ツチングすることができる。これはOFF抵抗の高い薄
膜トランジスタが再現性良く得られるもう一つの理由で
ある。
(Structure of the Invention) According to the present invention, in a thin film transistor with a laminated structure consisting of a gate metal, a gate insulating film, a semiconductor layer based on amorphous silicon, an ohmic layer, and source/drain electrodes on an insulating substrate, one of the semiconductor layers is There is obtained a thin film transistor characterized in that at least one element of carbon, nitrogen, and oxygen is contained in a portion of the thin film transistor in an amount of 1% or more and less than 70%. This solves the problem of reducing the OFF resistance of conventional thin film transistors. In other words, the cause of the decrease in OFF resistance in the conventional structure is that the n-amorphous silicon layer, which has a resistivity of 10'-10'Ω1, is plasma damaged during dry etching and the resistivity is reduced by one to two orders of magnitude due to surface contamination. However, in the present invention, at least one of oxygen, nitrogen, and carbon having high resistivity is added to the amorphous silicon layer.
By providing an amorphous silicon alloy containing three or more elements, sufficient resistivity can be maintained even if the surface resistivity is reduced due to dry etching, contamination, etc. At this time, it is necessary to mix the above elements into the amorphous silicon at a concentration of 1 or more in order to increase the resistivity, and considering the direction of carriers during device operation, it is necessary to mix the above elements into the amorphous silicon at a concentration of 70 or less. It is necessary to suppress alloying with amorphous silicon. By doing this,
The OFF resistance of a thin film transistor can be stably increased, and the yield of a display using a large number of thin film transistors can be improved. Another effect is that amorphous tricone containing the above elements has a relatively slow etching speed, and by utilizing the difference in etching speed with amorphous silicon, the n+ amorphous silicon layer can be etched with good uniformity. Can be done. This is another reason why thin film transistors with high OFF resistance can be obtained with good reproducibility.

本発明においては、n−非晶質シリコン層に炭素、窒素
又は酸素を含んだ非晶質シリコン層を設けることでOF
F抵抗の高い薄膜トランジスタを得、ることができる。
In the present invention, by providing an amorphous silicon layer containing carbon, nitrogen or oxygen in the n-amorphous silicon layer, OF
A thin film transistor with high F resistance can be obtained.

(実施例) 以下5本発明の実栴例について図面を参照して説明する
。第2図は本発明あ実施例を示す断面図である。ガラス
基板1上にゲート金属であるクロム電極2を1000^
真空蒸着し、フォトリウグラフィにより幅20μmに加
工する。続いてシランガスとアンモニアガスの混合ガス
をプラズマCVD装置を用いグロー放電分解して窒化シ
リコン層3を3000^形成し5次にシランガスのグロ
ー放電分解によりn−非晶質シリコン層4を100OA
、シランガスにメタンガスを40チ混合したガスをグロ
ー放電分解してn−非晶質3i、0l−x(* −’o
、os )層5を1500^、シランにホスフィンを1
000 p%混合したガスをグロー放電分解してn+非
非晶質シロ3フ レイン電極7であるモリブデンを2000λ形成し。
(Example) Five practical examples of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional view showing an embodiment of the present invention. A chromium electrode 2, which is a gate metal, is placed on a glass substrate 1 at a thickness of 1000^.
It is vacuum deposited and processed into a width of 20 μm by photolithography. Subsequently, a mixed gas of silane gas and ammonia gas is decomposed by glow discharge using a plasma CVD device to form a silicon nitride layer 3 of 3000 OA, and then an n-amorphous silicon layer 4 of 100 OA is formed by glow discharge decomposition of silane gas.
, glow discharge decomposition of a mixture of silane gas and methane gas to form n-amorphous 3i, 0l-x (* -'o
, os) 1500^ for layer 5, 1 phosphine for silane
000 p% of the mixed gas was decomposed by glow discharge to form 2000 λ of molybdenum, which is the n+ amorphous white 3-frain electrode 7.

CF,を用いたドライエツチングにより、ゲート長が1
00μm,ゲート幅が10μmになるようにソース・ド
レイン電極およびn子弁晶質シリコンをエツチングし、
トランジスタ構造とする.さらに表面安定のために窒化
シリコン等の絶縁物をパッジベージ日ン膜として被覆す
る。ここでは非晶質シリコンの高抵抗化に炭素元素を混
入する方法としてシランとメタンの混合ガスを用いてい
るが、他の炭素を含むガス例えばエタン会プロパン等の
ガスを原料ガスとして用いたとしても有効に作用する.
また酸素、あるいは窒素を非晶質シリコン内に混合する
場合には,酸素ガス、炭酸ガス、N,0ガス、NO,ガ
スあるいは窒素ガス、アンモニアガスを原料ガスとして
用いれば艮い。
The gate length was reduced to 1 by dry etching using CF.
Etch the source/drain electrodes and n-type crystalline silicon so that the gate width is 00 μm and the gate width is 10 μm.
It has a transistor structure. Further, to stabilize the surface, an insulating material such as silicon nitride is coated as a padding film. Here, a mixed gas of silane and methane is used as a method of mixing carbon elements to increase the resistance of amorphous silicon, but other carbon-containing gases such as ethane propane may also be used as the raw material gas. also works effectively.
Further, when mixing oxygen or nitrogen into amorphous silicon, oxygen gas, carbon dioxide gas, N,0 gas, NO gas, nitrogen gas, or ammonia gas may be used as the raw material gas.

(発明の効果) この薄膜トランジスタを用いて128X64素子の液晶
駆動用薄膜トランジスタアレイを試作してその静特性を
評価した.その結果ゲート電圧15V、ソース・ドレイ
ン間鴫圧15vでの平均ON電流は1、2 X1O−s
A, 平均0FF1[、iGt 1.6 XIO”−”
 A テあり1画像欠陥の恐れのあるlXloA以上の
OFF電流が流れる素子は全体の0.5チ 以下におさ
えることができた。これに対し、従来の薄膜トランジス
タを用いた場合には平均ON鑞流3.4×1O−5A.
平均OFF電流2.3 X 10−”A  であり、平
均的なON 0FIS比は十分あるものの、OFF’電
流10 10Å以上の素子が全体の4チ含まれていた.
このように本発明によって0FF−tl流の小さい薄膜
トランジスタを安定的に製造できることが明らかになつ
た.                       
    1
(Effects of the Invention) Using this thin film transistor, a 128x64 element thin film transistor array for driving a liquid crystal was prototyped and its static characteristics were evaluated. As a result, the average ON current at a gate voltage of 15V and a source-drain voltage of 15V is 1.2 X1O-s
A, Average 0FF1 [, iGt 1.6 XIO”-”
A. With Te 1 The number of elements in which an OFF current of 1XloA or more flows, which may cause image defects, was kept to less than 0.5 of the total. In contrast, when conventional thin film transistors are used, the average ON current is 3.4×1O-5A.
The average OFF current was 2.3 x 10-''A, and although the average ON 0FIS ratio was sufficient, four of the devices contained OFF' currents of 1010 Å or more.
As described above, it has become clear that thin film transistors with a small 0FF-tl current can be stably manufactured by the present invention.
1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜トランジスタの断面図、第2図は本
発明の一実施例を説明するための薄膜トランジスタの断
面図である。 l・・・絶縁性基板,2・・・ゲート電極,3・・・絶
縁体層、4・・・n−非晶質シリコン半導体層, 5・
・・炭素を含む非晶質シリコン半導体層、6・・・n子
弁晶質シリコン半導体層、7・・・ソース電極,8・−
・ドレインgL 9・・・パッシベイション膜。
FIG. 1 is a sectional view of a conventional thin film transistor, and FIG. 2 is a sectional view of a thin film transistor for explaining an embodiment of the present invention. l... insulating substrate, 2... gate electrode, 3... insulator layer, 4... n-amorphous silicon semiconductor layer, 5.
...Amorphous silicon semiconductor layer containing carbon, 6...N-cell crystalline silicon semiconductor layer, 7...Source electrode, 8.-
・Drain gL 9... Passivation film.

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基板上にゲート金属、ゲート絶縁膜、非晶質シ
リコンを基体とした半導体層、オーミック層、ソース・
ドレイン電極からなる積層構造薄膜トランジスタにおい
て、前記半導体層の1部に1%以上70%未満の炭素、
窒素又は酸素の少なくとも一つ以上の原素を含ませてな
ることを特徴とする薄膜トランジスタ。
Gate metal, gate insulating film, semiconductor layer based on amorphous silicon, ohmic layer, source layer, etc. are formed on an insulating substrate.
In a laminated thin film transistor consisting of a drain electrode, a portion of the semiconductor layer contains 1% or more and less than 70% carbon,
A thin film transistor characterized by containing at least one element of nitrogen or oxygen.
JP12611284A 1984-06-19 1984-06-19 Thin film transistor Pending JPS615578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12611284A JPS615578A (en) 1984-06-19 1984-06-19 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12611284A JPS615578A (en) 1984-06-19 1984-06-19 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS615578A true JPS615578A (en) 1986-01-11

Family

ID=14926924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12611284A Pending JPS615578A (en) 1984-06-19 1984-06-19 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS615578A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221631A (en) * 1989-02-17 1993-06-22 International Business Machines Corporation Method of fabricating a thin film transistor having a silicon carbide buffer layer
JPH0783526A (en) * 1993-09-13 1995-03-28 Hitachi Ltd Compression type refrigerator
EP0744776A2 (en) * 1995-05-25 1996-11-27 Central Glass Company, Limited Amorphous silicon thin film transistor and method preparing same
WO2008126878A1 (en) * 2007-04-10 2008-10-23 Fujifilm Corporation Organic electroluminescence display device
WO2008126884A1 (en) * 2007-04-05 2008-10-23 Fujifilm Corporation Organic electroluminescent display device
JP2008276211A (en) * 2007-04-05 2008-11-13 Fujifilm Corp Organic electroluminescent display device and patterning method
JP2009021554A (en) * 2007-06-11 2009-01-29 Fujifilm Corp Electronic display
JP2009094465A (en) * 2007-09-21 2009-04-30 Fujifilm Corp Radiation imaging element
WO2009093410A1 (en) * 2008-01-25 2009-07-30 Sharp Kabushiki Kaisha Semiconductor element and method for manufacturing the same
JP2009212476A (en) * 2007-03-27 2009-09-17 Fujifilm Corp Thin film field effect transistor and display using the same
JP2010016126A (en) * 2008-07-02 2010-01-21 Fujifilm Corp Thin film field effect transistor, fabrication process therefor, and display device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199564A (en) * 1982-05-17 1983-11-19 Canon Inc Semiconductor element
JPS60111472A (en) * 1983-11-22 1985-06-17 Matsushita Electric Ind Co Ltd Semiconductor device
JPS60113971A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Thin-film field-effect type semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199564A (en) * 1982-05-17 1983-11-19 Canon Inc Semiconductor element
JPS60111472A (en) * 1983-11-22 1985-06-17 Matsushita Electric Ind Co Ltd Semiconductor device
JPS60113971A (en) * 1983-11-26 1985-06-20 Matsushita Electric Ind Co Ltd Thin-film field-effect type semiconductor device and manufacture thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221631A (en) * 1989-02-17 1993-06-22 International Business Machines Corporation Method of fabricating a thin film transistor having a silicon carbide buffer layer
JPH0783526A (en) * 1993-09-13 1995-03-28 Hitachi Ltd Compression type refrigerator
EP0744776A2 (en) * 1995-05-25 1996-11-27 Central Glass Company, Limited Amorphous silicon thin film transistor and method preparing same
EP0744776A3 (en) * 1995-05-25 1997-11-26 Central Glass Company, Limited Amorphous silicon thin film transistor and method preparing same
JP4727684B2 (en) * 2007-03-27 2011-07-20 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP2015038895A (en) * 2007-03-27 2015-02-26 富士フイルム株式会社 Thin-film field-effect transistor and display device using the same
US8178926B2 (en) 2007-03-27 2012-05-15 Fujifilm Corporation Thin film field effect transistor and display
JP2009212476A (en) * 2007-03-27 2009-09-17 Fujifilm Corp Thin film field effect transistor and display using the same
WO2008126884A1 (en) * 2007-04-05 2008-10-23 Fujifilm Corporation Organic electroluminescent display device
JP2008276211A (en) * 2007-04-05 2008-11-13 Fujifilm Corp Organic electroluminescent display device and patterning method
JP2008276212A (en) * 2007-04-05 2008-11-13 Fujifilm Corp Organic electroluminescent display device
WO2008126878A1 (en) * 2007-04-10 2008-10-23 Fujifilm Corporation Organic electroluminescence display device
JP2009021554A (en) * 2007-06-11 2009-01-29 Fujifilm Corp Electronic display
JP2009094465A (en) * 2007-09-21 2009-04-30 Fujifilm Corp Radiation imaging element
WO2009093410A1 (en) * 2008-01-25 2009-07-30 Sharp Kabushiki Kaisha Semiconductor element and method for manufacturing the same
US8378348B2 (en) 2008-01-25 2013-02-19 Sharp Kabushiki Kaisha Semiconductor element and method for manufacturing the same
JP2010016126A (en) * 2008-07-02 2010-01-21 Fujifilm Corp Thin film field effect transistor, fabrication process therefor, and display device using the same

Similar Documents

Publication Publication Date Title
KR100257158B1 (en) Thin film transistor and method for manufacturing the same
JP3122453B2 (en) Insulation structure for amorphous silicon thin film transistor
JPH0542833B2 (en)
KR101218090B1 (en) Oxide thin film transistor and method of fabricating the same
JPS6187371A (en) Thin-film semiconductor device
JPS615578A (en) Thin film transistor
JP2001517377A (en) Thin film transistor and electronic device comprising such a transistor
US6124153A (en) Method for manufacturing a polysilicon TFT with a variable thickness gate oxide
KR20050105204A (en) Transistor for active matrix display and a method for producing said transistor
JPS615579A (en) Thin film transistor
JPS60198865A (en) Thin film transistor
JPS59213169A (en) Thin film transistor
JPH03225721A (en) Field electron emission element and manufacture thereof
US6579749B2 (en) Fabrication method and fabrication apparatus for thin film transistor
JPH02310932A (en) Manufacture of inverted stagger-type thin-film transistor
JPS60260155A (en) Thin film transistor
JPH0534837B2 (en)
JP2505662B2 (en) Method for manufacturing thin film transistor
JPS60198864A (en) Thin film transistor
JPH04275437A (en) Thin film transistor and its manufacture
JPH03263323A (en) Forming method of plasma cvd silicon nitride film
JPH0454992B2 (en)
KR100328848B1 (en) Manufacturing Method of Thin Film Transistor
JPS63155766A (en) Thin film transistor
JPS58219768A (en) Semiconductor device and manufacture thereof