JPS615579A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS615579A
JPS615579A JP12611384A JP12611384A JPS615579A JP S615579 A JPS615579 A JP S615579A JP 12611384 A JP12611384 A JP 12611384A JP 12611384 A JP12611384 A JP 12611384A JP S615579 A JPS615579 A JP S615579A
Authority
JP
Japan
Prior art keywords
amorphous silicon
thin film
gas
layer
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12611384A
Other languages
Japanese (ja)
Inventor
Setsuo Kaneko
節夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12611384A priority Critical patent/JPS615579A/en
Publication of JPS615579A publication Critical patent/JPS615579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To eliminate the dispersion of an OFF-state resistance and to prevent the manufacturing yield from lowering by a method wherein an ohmic layer consisting of hydrogenerated amorphous silicon carbon comprising an element or elements of at least one kind or more of arsenic and phosphorus as its impurity is provided. CONSTITUTION:A chrome electrode 2 as a gate metal film is vacuum-evaporated on a glass substrate 1. A silicon nitride layer 3 is formed by decomposing mixed gas of silane and ammonia according to glow discharge, an amorphous silicon layer 4 is formed by decomposing silane gas according to glow discharge and an n type a-SixC1-x (x=0.05) layer 6 is formed by decomposing gas, which is obtained by mixing phosphine in silane gas using methane gas as doping gas, according to glow discharge. A source electrode 7 and a drain electrode 7 are formed. The ohmic layer consists of amorphous silicon carbon comprising an impurity or impurities of at least one kind or more of arsenic and phosphorus. As a result, a stable and high OFF-state resistance can be obtained even though an etching is not performed on the ohmic layer between the source and drain electrodes 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発−は水素化非晶質シリコンを用いた薄膜トランジス
タに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a thin film transistor using hydrogenated amorphous silicon.

(従来技術とその問題点) 最近、、パーソナルコンビーータや各種情報処理機器を
小型化することが望まれてい斧が、−この中で最も小型
化しにくいものの1つにディスブレイカ忰げられる。現
在ディス−プレイの大部分はCRTであるが、CRTは
真空中で電子銃から照射された電子線を電界等の手段に
より制御して螢光体に照射し、発光させるため、電子線
を走査する部分だけ装置が厚くなり、薄、型化が困難で
ある。
(Prior Art and its Problems) Recently, there has been a desire to downsize personal computer beaters and various information processing equipment, and among these, the disk breaker is one of the items that is most difficult to downsize. Currently, most displays are CRTs, but CRTs scan electron beams in a vacuum to control the electron beam emitted from an electron gun using means such as an electric field to irradiate a phosphor and cause it to emit light. The device is thicker in the area where it is attached, making it difficult to make it thinner and more compact.

ディスプレイを薄型化にすることを目的とした液晶を用
いた薄型のディスプレイの開発が注目されている。この
液晶ディ、スプレィは電極が付いた2枚のガラス板の間
に10μm厚程度0液晶をはさみ、該電極に印加した電
圧番こよって液晶の動きを制御するために、真空中の電
子の走行を制御する・CRTと比較して非常に薄いディ
スプレイが可能になる。
2. Description of the Related Art The development of thin displays using liquid crystals is attracting attention for the purpose of making displays thinner. In this liquid crystal display, a liquid crystal about 10 μm thick is sandwiched between two glass plates with electrodes attached, and the movement of the liquid crystal is controlled by the voltage applied to the electrodes, which controls the movement of electrons in a vacuum.・Available for extremely thin displays compared to CRT.

液晶を動作させる場合、例えば電圧平均化法では、単純
なXYマトリクス動作では解像度を上げるために絵票数
を増加させる時フン、トラストが低下する問題があった
。このコントラスト低下を解決する方法として薄膜トラ
ンジスタを用いたアクティブマトリクス動作法が研究さ
れている。ここで用いられる薄膜材料には多結晶シリコ
ンやテルル、非晶質シリコンなどがあるが、低温プロセ
スで低価格の基板が使えることや安定で量産しやすいと
いう特徴を有する非晶質シリコンが最も適している。
When operating a liquid crystal, for example, in the voltage averaging method, there is a problem in that the trust deteriorates when the number of picture slips is increased in order to increase the resolution in a simple XY matrix operation. An active matrix operation method using thin film transistors is being researched as a method to solve this contrast reduction. The thin film materials used here include polycrystalline silicon, tellurium, and amorphous silicon, but amorphous silicon is the most suitable because it can be used in low-temperature processes, uses low-cost substrates, and is stable and easy to mass-produce. ing.

非晶質シリコンを用いた薄膜トランジスタを平面ディス
プレイ等に応用する場合、歩留り良く、かつ低価格な薄
膜トランジスタアレイを形成する場合にはなるべく単純
な構造で少ないプロセス数であるのが望ましい。
When applying a thin film transistor using amorphous silicon to a flat display or the like, it is desirable to have a structure as simple as possible and a small number of processes in order to form a thin film transistor array with high yield and low cost.

従来の薄膜トランジスタは第1図)こ示す様にゲート金
属が付いたガラス等の絶縁性基板上にプラズマCVD法
あるいは反応性スパッタ法を用いて例えば窒化シリコン
、非晶質シリコン層、りん等の不純物を含んだn+非晶
質シリコンオーミック層を形成し、その後ソース・ドレ
イン両全属′電極を形成した後、ゲート金属上部のn+
非晶質シリコンオーミック層をエツチングして逆スタガ
ード型薄膜トランジスタ構造にしていた。この時n+非
晶質シリコン層はソース・ドレイン電極のオーミック層
として働く、このn子弁晶質シリコン層−をエツチング
する時に例えばプラズマエツチングを用いると、プラズ
マのダメージによって暗電流が増加したり、あるいはエ
ツチングむらによって部分的に暗電流が増加したりして
、素子欠陥の原因や歩留り低下の一因となっていた。
As shown in Figure 1, a conventional thin film transistor is formed using a plasma CVD method or a reactive sputtering method on an insulating substrate such as glass with a gate metal attached, for example, silicon nitride, an amorphous silicon layer, impurities such as phosphorus, etc. After forming an n+ amorphous silicon ohmic layer containing a
The amorphous silicon ohmic layer was etched to form an inverted staggered thin film transistor structure. At this time, the n+ amorphous silicon layer acts as an ohmic layer for the source/drain electrodes.If plasma etching is used to etch this n-type crystalline silicon layer, dark current may increase due to plasma damage. Alternatively, dark current may increase locally due to etching unevenness, contributing to device defects and a decrease in yield.

そこで、このエツチング工程をなくす方法としてn子弁
晶質シリコン層の厚さを薄くする方法が考えられるが、
この場合ソース・ドレイン間に。
Therefore, one possible method to eliminate this etching step is to reduce the thickness of the n-cell crystalline silicon layer.
In this case, between source and drain.

n+非晶質シリコンが付いているため1例えばオフ抵抗
を109Ω以上とするためにはn+層の厚さを数十へと
する必要があり、厚さの制御が困難であるばかりか、薄
膜トランジスタアレイのオフ抵抗のばらつきにあられれ
、かえって歩留りが低下する。
Because n+ amorphous silicon is attached, the thickness of the n+ layer must be several tens of tens of ohms, for example, in order to increase the off-resistance to 109Ω or more, which not only makes it difficult to control the thickness, but also makes thin film transistor arrays difficult to control. This results in variations in off-resistance, which actually reduces yield.

(発明の目的) 本発明はこのような歩留り低下の原因をなくシ。(Purpose of the invention) The present invention eliminates this cause of yield decline.

均一な特性の薄膜トランジスタを提供することにある。The object of the present invention is to provide a thin film transistor with uniform characteristics.

                         
    1(発明の構成)             
          1本発明によれば、水素化非晶質
シリコン膜が絶縁層とオーミック層とでサンドイッチ状
に積層された構造を備えた薄膜トランジスタにおいて、
前記オーミック層が砒素、りんのうち少なくとも1種以
上を不純物として含ませた水素化非晶質シリコン炭素か
らなることを特徴とする薄膜トランジスタが得られる、 (発明の概要と効果) 本発明は上述の構造をとることにより、従来の薄膜トラ
ンジスタのn+非晶質シリコンノーをエツチングすると
きに生ずる薄膜トランジスタの特性のばらつきを軽減さ
せた。すなわち、シリコンと炭素の非晶質合金である非
晶質゛シリコン炭素は。

1 (Structure of the invention)
1. According to the present invention, in a thin film transistor having a structure in which a hydrogenated amorphous silicon film is laminated in a sandwiched manner with an insulating layer and an ohmic layer,
A thin film transistor is obtained in which the ohmic layer is made of hydrogenated amorphous silicon carbon containing at least one of arsenic and phosphorus as an impurity. By adopting this structure, variations in characteristics of thin film transistors that occur when etching the n+ amorphous silicon layer of conventional thin film transistors are reduced. In other words, amorphous silicon carbon is an amorphous alloy of silicon and carbon.

炭素濃度が増加すると共に禁止帯幅が増加し、抵抗率が
増加する。この非晶質シリコン炭素に不純物である砒素
やりんをドーピングしたときの抵抗率と不純物濃度との
関係を第2図に実線で示す。
As the carbon concentration increases, the forbidden band width increases and the resistivity increases. The solid line in FIG. 2 shows the relationship between resistivity and impurity concentration when this amorphous silicon carbon is doped with impurities such as arsenic and phosphorus.

非晶質シリコンの抵抗率と不純物濃度との関係(破線)
の場合に比べて、非晶質シリコン炭素では薄膜トランジ
スタのオフ抵抗を1010Ω以上にすることにできる1
φ〜IQ’ QC1rL以上の抵抗率を有する不純物濃
度範囲が広くとれる。これは、第3図に示す様な逆スタ
ガード型薄膜トランジスタにおいて、オーミック層を砒
素またはりんのうち少なくとも1種類以上の不純物を含
ませた非晶質シリコン炭素で構成し、ソースドレイン間
の該オーミック層をエツチングしないでも安定して高い
オフ抵抗が得ら′れることを示す、このようにしてプロ
セスを簡単化し、低価格な薄膜トランジスタを供給する
ことができる。′この場合、非晶質シリコン中に含まれ
る炭素の量は1チ以上70%までが、抵抗率を高くする
ことができて有効であるが、最も望ましい炭素濃度は5
%以上50俤である。
Relationship between resistivity and impurity concentration of amorphous silicon (dashed line)
Compared to the case of
A wide impurity concentration range having a resistivity of φ to IQ' QC1rL or more can be obtained. In an inverted staggered thin film transistor as shown in FIG. 3, the ohmic layer is made of amorphous silicon carbon containing at least one impurity of arsenic or phosphorus, and the ohmic layer is formed between the source and drain. This shows that a stable high off-resistance can be obtained without etching. In this way, the process can be simplified and low-cost thin film transistors can be provided. 'In this case, it is effective to increase the resistivity if the amount of carbon contained in the amorphous silicon is 1 to 70%, but the most desirable carbon concentration is 5%.
% or more is 50 yen.

また、第1図に示す様な従来構造においても。Also, in the conventional structure as shown in FIG.

オーミック層に非晶質シリコン炭素を用いることにより
、エツチングむらがたとえ起って、オーミック層が薄膜
トランジスタのソース曇ドレイン電極間に残ったとして
も、該オーミック層の抵抗率が高いため、均一性良くオ
フ抵抗の高い薄膜トランジスタが得られる。
By using amorphous silicon carbon for the ohmic layer, even if etching unevenness occurs and the ohmic layer remains between the source and drain electrodes of the thin film transistor, the resistivity of the ohmic layer is high, resulting in good uniformity. A thin film transistor with high off-resistance can be obtained.

さらに、第4図に示す様なスタガード型薄膜トランリス
タにおいても、非晶質シリコン炭素オーミック層、非晶
質シリコン層、ゲート絶縁膜と連続的に形成して、オフ
抵抗の高い薄膜トランジスタが形成できる。従来、スタ
ガード型薄膜トランジスタを形成する時には、非晶質シ
リコンオーミック層を付け、これをエツチング処理して
ソース・ドレイン間のオーミック層を除去した後、非晶
質シリコン層ゲート絶縁層を付けていたが、本発明にお
いてはプロセスが簡単化し、低価格の薄膜トランジスタ
が供給できる。
Furthermore, even in a staggered thin film transistor as shown in FIG. 4, an amorphous silicon carbon ohmic layer, an amorphous silicon layer, and a gate insulating film can be successively formed to form a thin film transistor with high off-resistance. Conventionally, when forming a staggered thin film transistor, an amorphous silicon ohmic layer was attached, this was etched to remove the ohmic layer between the source and drain, and then an amorphous silicon gate insulating layer was attached. In the present invention, the process is simplified and a low-cost thin film transistor can be provided.

(実施例1) 以下、本発明の実施例について図面を参照して説明する
。第3図は本発明の一実施例を示す断面図である。ガラ
ス基板1上にゲート金属であるクロム電極2を1000
^真空蒸着し、フォトリングラフィにより幅20μmに
加工する。続いてシランガスとアンモニアガスの混合ガ
スをソースとし、プラズマCVD装置を用い、グロー放
電分解により窒化シリコン層3を300OA形成する1
次lこシランガスのグロー放電分解により非晶質シリコ
ン層4を300OA形成する。さらにシランガスにメタ
ンガスを40憾、ドーピングガスとしてホスフィンを1
.000ppm混合したガスをグロー放電分解してn型
非晶質シリコン炭素(a  8 ’ x Ct−x  
X==Q、Q5 )層6を200A形成する。最後にソ
ースΦドレイン電極7であるモリブデンを200OA形
成し、フォトリングラフィによりゲート長が80μm、
ゲート幅が20μmになるように電極金属を加工し、ト
ランジスタ構造にする。さらにパッシベーション膜や遮
光膜の形成やトランジスタを島状にエツチングしトラン
ジスタマトリクスアレイを形成する。
(Example 1) Hereinafter, examples of the present invention will be described with reference to the drawings. FIG. 3 is a sectional view showing one embodiment of the present invention. A chromium electrode 2, which is a gate metal, is placed on a glass substrate 1 at a thickness of 1000 nm.
^Vacuum evaporated and processed into a width of 20 μm using photolithography. Next, using a mixed gas of silane gas and ammonia gas as a source, a silicon nitride layer 3 with a thickness of 300 OA is formed by glow discharge decomposition using a plasma CVD device.
Next, an amorphous silicon layer 4 having a thickness of 300 OA is formed by glow discharge decomposition of silane gas. Furthermore, 40 ml of methane gas was added to the silane gas, and 1 ton of phosphine was added as a doping gas.
.. 000ppm mixed gas is decomposed by glow discharge to produce n-type amorphous silicon carbon (a8' x Ct-x
X==Q, Q5) Layer 6 is formed to a thickness of 200A. Finally, 200 OA of molybdenum which is the source Φ drain electrode 7 is formed, and the gate length is 80 μm by photolithography.
The electrode metal is processed so that the gate width is 20 μm to form a transistor structure. Furthermore, a passivation film and a light shielding film are formed, and transistors are etched into island shapes to form a transistor matrix array.

非晶質シリコン炭素を形成する手段としてはガスとして
ジシランやエタンガス、プロパンガスを使用することも
可能であり1反応性スパッタ法も使用することが可能で
ある。
As a means for forming amorphous silicon carbon, it is also possible to use disilane, ethane gas, or propane gas as a gas, and it is also possible to use a one-reactive sputtering method.

上記の方法で得られた128 X 64素子の薄膜トラ
ンジスタマトリクスアレイの静特性を評価した結果、ゲ
ート電圧10V、ソース・ドレイン間電圧lO■での平
均オン電流は7XlO=A平均オフ電流は1.2 X1
O=” Aであった。この値は従来素子に比べ 。
As a result of evaluating the static characteristics of the thin film transistor matrix array of 128 x 64 elements obtained by the above method, the average on current at a gate voltage of 10 V and a source-drain voltage of lO is 7X lO = A average off current is 1.2 X1
O = "A. This value is lower than that of the conventional element.

平均オフ電流が2倍に増加しているものの画像欠陥の恐
れとなる1O−1OAにくらべ著しく小さく画素欠陥を
大幅tこ減らすことができる。このように本発明は従来
よりプロセスが簡単化することができる。
Although the average off-current is doubled, it is significantly smaller than 1O-1OA, which poses a risk of image defects, and pixel defects can be significantly reduced. In this way, the present invention can simplify the process compared to the conventional method.

また、上記薄膜トランジスタのソース・ドレイン間のn
型非晶質シリコン炭素6をCF4を用いたドライエツチ
ングで除去し、特性を調べたところ平均オフ電流が6X
10−12Aに改善され、しかも画像欠陥の恐れのある
I Xl0−10A以上のオフ電流を示す素子が全体の
0.3%以下と従来技術に比べ半分以下とすることがで
き安定してオフ抵抗の高い薄膜トランジスタが得られる
Furthermore, n between the source and drain of the thin film transistor is
When the type amorphous silicon carbon 6 was removed by dry etching using CF4 and the characteristics were investigated, the average off-state current was 6X.
The off-state resistance has been improved to 10-12A, and moreover, the number of elements exhibiting an off-state current of I A thin film transistor with high

(実施例2) 第4図に示すスタガード型薄膜トランジスタについても
本発明を実施できる。即ち、ガラス基板1上にソース・
ドレイン電極であるモリブデン7を1500^形成し、
フォトリングラフィによりゲート長和μm、ゲート幅1
0μmにな、るように形成する。その後、シランガスに
メタンガスを80%。
(Example 2) The present invention can also be practiced with respect to the staggered thin film transistor shown in FIG. That is, a source is placed on the glass substrate 1.
1500^ of molybdenum 7 which is a drain electrode is formed,
Gate length sum μm, gate width 1 by photolithography
It is formed to have a thickness of 0 μm. After that, add 80% methane gas to silane gas.

ドーピングガスとしてホスフィンを]000fl!m混
合したガスをグロー放電分解してn型非晶質シリコン炭
素(a”’XCI−x + X =0.15 )層6を
100^形成し、次lこシランガスをグロー放電分解し
て非晶質シリコン層4を3000λ、形成し、さらlこ
シランガスとN、Oガスの混合ガスをグロー放電分解し
て酸化シリコン層3を2000^形成する6最後にゲー
ト電極2であるアルミニウムを2000大形成し、た後
フォトリングラフィにより20μm幅に加工してトラン
ジスタ構造にする。次に遮光膜の形成やパッシベーショ
ン用絶縁膜の形成を形成して薄膜トランジスタマトリク
スアレイを形成する。このように形成したスタガード構
造薄膜トランジスタにおいても平均オン電流5XIF’
A、平均オフ電流8 XIO”’ Aがゲート電圧10
V、ソース・ドレイン電圧10vで得られ、本発明が低
価格で安定にオフ電流の小さい薄膜トランジスタを提供
することができることを示した。
Phosphine as doping gas]000fl! The mixed gas is decomposed by glow discharge to form 100 layers of n-type amorphous silicon carbon (a"'XCI-x + Form a crystalline silicon layer 4 with a thickness of 3000λ, and then decompose a mixed gas of silane gas, N, and O gas by glow discharge to form a silicon oxide layer 3 of 2000λ. After forming, it is processed into a width of 20 μm by photolithography to form a transistor structure.Next, a light shielding film and a passivation insulating film are formed to form a thin film transistor matrix array.The staggered structure formed in this way is Even in structural thin film transistors, the average on-current is 5XIF'
A, average off-current 8 XIO”' A is gate voltage 10
V and a source-drain voltage of 10 V, indicating that the present invention can stably provide a thin film transistor with low off-state current at a low cost.

(以 トゴj〈自)(hereinafter ``togoj〈self'')

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の逆スタガード型薄膜トランジスタの断面
図、茅2図は非晶質シリコン炭素の抵抗率と不純物濃度
との関係を示す図。第3図は本発明による逆スタガード
型薄膜トランジスタの断面図、第4図は本発明によるズ
タガート型薄膜トランジスタの断面図である。 図において、 1・・・絶縁性基板、2・・・ゲート金属、3・・絶縁
体層、4・・・非晶質シリコン半導体層、5・・・n+
非晶質シリコンオーミック層、6・・・n−非晶質シリ
コン炭素オーミックノー、7・・・ソース・ドレイン醒
極である。
Fig. 1 is a cross-sectional view of a conventional inverted staggered thin film transistor, and Fig. 2 is a diagram showing the relationship between resistivity and impurity concentration of amorphous silicon carbon. FIG. 3 is a cross-sectional view of an inverted staggered thin film transistor according to the present invention, and FIG. 4 is a cross-sectional view of a staggered thin film transistor according to the present invention. In the figure, 1... insulating substrate, 2... gate metal, 3... insulator layer, 4... amorphous silicon semiconductor layer, 5... n+
Amorphous silicon ohmic layer, 6...n-amorphous silicon carbon ohmic layer, 7... source/drain awakening pole.

Claims (1)

【特許請求の範囲】[Claims] 水素化非晶質シリコン膜が絶縁層とオーミック層とでサ
ンドイッチ状に積層された構造を備えた薄膜トランジス
タにおいて、前記オーミック層が、砒素、りんのうち少
なくとも1種以上を不純物として含ませた水素化非晶質
シリコン炭素からなることを特徴とする薄膜トランジス
タ。
In a thin film transistor having a structure in which a hydrogenated amorphous silicon film is laminated in a sandwiched manner with an insulating layer and an ohmic layer, the ohmic layer is hydrogenated and contains at least one of arsenic and phosphorus as an impurity. A thin film transistor characterized by being made of amorphous silicon carbon.
JP12611384A 1984-06-19 1984-06-19 Thin film transistor Pending JPS615579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12611384A JPS615579A (en) 1984-06-19 1984-06-19 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12611384A JPS615579A (en) 1984-06-19 1984-06-19 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS615579A true JPS615579A (en) 1986-01-11

Family

ID=14926951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12611384A Pending JPS615579A (en) 1984-06-19 1984-06-19 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS615579A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2601801A1 (en) * 1986-07-16 1988-01-22 Morin Francois ACTIVE MATRIX DISPLAY SCREEN USING HYDROGENIC AMORPHOUS SILICON CARBIDE AND METHOD OF MANUFACTURING THE SAME
JPS63178559A (en) * 1987-01-19 1988-07-22 Sanyo Electric Co Ltd Thin-film transistor
US5065202A (en) * 1988-02-26 1991-11-12 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5114869A (en) * 1988-05-30 1992-05-19 Seikosha Co., Ltd. Method for producing reverse staggered type silicon thin film transistor
US5399387A (en) * 1993-01-28 1995-03-21 Applied Materials, Inc. Plasma CVD of silicon nitride thin films on large area glass substrates at high deposition rates
US5510631A (en) * 1991-02-25 1996-04-23 Canon Kabushiki Kaisha Non-monocrystalline silicon carbide semiconductor and semiconductor device employing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2601801A1 (en) * 1986-07-16 1988-01-22 Morin Francois ACTIVE MATRIX DISPLAY SCREEN USING HYDROGENIC AMORPHOUS SILICON CARBIDE AND METHOD OF MANUFACTURING THE SAME
JPS63178559A (en) * 1987-01-19 1988-07-22 Sanyo Electric Co Ltd Thin-film transistor
US5065202A (en) * 1988-02-26 1991-11-12 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5114869A (en) * 1988-05-30 1992-05-19 Seikosha Co., Ltd. Method for producing reverse staggered type silicon thin film transistor
US5510631A (en) * 1991-02-25 1996-04-23 Canon Kabushiki Kaisha Non-monocrystalline silicon carbide semiconductor and semiconductor device employing the same
US5399387A (en) * 1993-01-28 1995-03-21 Applied Materials, Inc. Plasma CVD of silicon nitride thin films on large area glass substrates at high deposition rates

Similar Documents

Publication Publication Date Title
US5852481A (en) Liquid crystal display with two gate electrodes each having a non-anodizing and one anodizing metallic layer and method of fabricating
US4697331A (en) Method of fabrication of a control transistor for a flat-panel display screen
US6600524B1 (en) Active matrix type liquid crystal display apparatus with silicon oxide at different portions
US20160276377A1 (en) Array substrate, manufacturing method thereof and display device
JP2001517377A (en) Thin film transistor and electronic device comprising such a transistor
JP2584290B2 (en) Manufacturing method of liquid crystal display device
JPS615579A (en) Thin film transistor
JPS615578A (en) Thin film transistor
JPH04360583A (en) Thin film transistor
KR20010043439A (en) Field emission device, its manufacturing method and display device using the same
JP2823178B2 (en) Metal wiring board and manufacturing method thereof
JPS60198865A (en) Thin film transistor
CN106910780B (en) Thin film transistor, manufacturing method, array substrate, display panel and display device
JP2675587B2 (en) Matrix type liquid crystal display panel
JPS59213169A (en) Thin film transistor
US7163868B2 (en) Method for forming a lightly doped drain in a thin film transistor
US20080105871A1 (en) Thin film transistor array substrate having lightly doped amorphous silicon layer and method for fabricating same
JP2505662B2 (en) Method for manufacturing thin film transistor
JPH0554271B2 (en)
JPH04275437A (en) Thin film transistor and its manufacture
US5672251A (en) Metallic wiring board and a method for producing the same
JPS60198864A (en) Thin film transistor
JPH09153621A (en) Thin film transistor, manufacture thereof, and liquid-crystal display device using thin film transistor
JPH02150067A (en) Thin film semiconductor device
Kim et al. Integration and characterization of amorphous silicon thin-film transistor and Mo-tips for active-matrix cathodes