JP2505662B2 - Method for manufacturing thin film transistor - Google Patents

Method for manufacturing thin film transistor

Info

Publication number
JP2505662B2
JP2505662B2 JP3174186A JP17418691A JP2505662B2 JP 2505662 B2 JP2505662 B2 JP 2505662B2 JP 3174186 A JP3174186 A JP 3174186A JP 17418691 A JP17418691 A JP 17418691A JP 2505662 B2 JP2505662 B2 JP 2505662B2
Authority
JP
Japan
Prior art keywords
metal layer
thin film
film transistor
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3174186A
Other languages
Japanese (ja)
Other versions
JPH04233738A (en
Inventor
圭正 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH04233738A publication Critical patent/JPH04233738A/en
Application granted granted Critical
Publication of JP2505662B2 publication Critical patent/JP2505662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜トランジスタの製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor.

【0002】[0002]

【従来の技術】薄膜トランジスタは、低電圧、低消費電
力、軽量および高画質を実現することができるという長
所のために、活性マトリックス液晶表示装置の素子とし
てよく用いられている。
2. Description of the Related Art A thin film transistor is often used as an element of an active matrix liquid crystal display device because of its advantages of low voltage, low power consumption, light weight and high image quality.

【0003】一般に、この薄膜トランジスタの製造方法
においては、図2に示すように、ガラス基板1上にIT
O(Indium Tin Oxide)をコーティング(coating )し
た後、所定のマスクを用いてゲート電極2を形成し、こ
のゲート電極2上に化学反応気相装置[Plasma Enhance
ment Chemical Vapor Deposition(PECVD) ]を用いてゲ
ート絶縁層3を3000オングストロームの厚さに蒸着
し、前記ゲート絶縁層3をエッチングして再び化学反応
気相装置を用いて1500オングストロームの厚さに非
晶質半導体層4とn+ オーミック層5を順次蒸着した
後、透明導電膜である画素電極8をゲート絶縁層3上に
蒸着する。次いで、スパッタ装置を用いて4000オン
グストローム程度の厚さに蒸着してソース電極6とドレ
イン電極7を形成する。
Generally, in this method of manufacturing a thin film transistor, as shown in FIG.
After coating O (Indium Tin Oxide), a gate electrode 2 is formed using a predetermined mask, and a chemical reaction gas phase device [Plasma Enhance] is formed on the gate electrode 2.
Chemical Chemical Vapor Deposition (PECVD)] is used to deposit the gate insulating layer 3 to a thickness of 3000 angstroms, the gate insulating layer 3 is etched, and the thickness of the gate insulating layer 3 is set to 1500 angstroms again using a chemical reaction vapor phase apparatus. After the crystalline semiconductor layer 4 and the n + ohmic layer 5 are sequentially deposited, the pixel electrode 8 which is a transparent conductive film is deposited on the gate insulating layer 3. Then, the source electrode 6 and the drain electrode 7 are formed by vapor deposition to a thickness of about 4000 Å using a sputtering device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記の
ように形成された薄膜トランジスタでは非晶質半導体層
4とソース/ドレイン電極6、7とのオーミック接触の
ためのオーミック層の形成の際、チャンネルの上部に残
っているn+ オーミック層5の残滓をエッチングで除去
する際に困難さがあり、汚れによる薄膜トランジスタの
破損が生ずるという問題点があり、さらに、この薄膜ト
ランジスタのオフ電流の減少に限界があった。
However, in the thin film transistor formed as described above, when the ohmic layer for ohmic contact between the amorphous semiconductor layer 4 and the source / drain electrodes 6 and 7 is formed, a channel of the channel is formed. There is a problem in removing the residue of the n + ohmic layer 5 remaining on the upper part by etching, and there is a problem that the thin film transistor is damaged due to dirt, and further, there is a limit to reduction of the off current of the thin film transistor. It was

【0005】本発明は前記のような点に鑑みてなされた
ものであり、その目的は、薄膜トランジスタの製造の際
に別途にn+ オーミック層を形成する必要がない方法を
提供するものである。
The present invention has been made in view of the above points, and an object thereof is to provide a method in which it is not necessary to separately form an n + ohmic layer at the time of manufacturing a thin film transistor.

【0006】[0006]

【問題点を解決するための手段】前記目的を達成するた
めに、請求項1に記載の本発明の薄膜トランジスタの製
造方法は、基板、ゲート電極、ゲート絶縁層、半導体と
ドレイン電極およびソース電極を有するTFTの前記半
導体上にドレイン電極およびソース電極を形成する薄膜
トランジスタの製造方法において、前記半導体上にAr
とPH3 を所定の比率に混合して、前記半導体層とオー
ミック接触するように第1の金属層を所定の厚さに蒸着
形成する段階と、前記蒸着された第1の金属層上に第2
の金属層を所定の時間前記蒸着形成する段階を備えて、
前記第1および第2金属層がドレイン電極あるいはソー
ス電極を形成することを特徴とする。
In order to achieve the above object, a method of manufacturing a thin film transistor according to the present invention according to claim 1 comprises a substrate, a gate electrode, a gate insulating layer, a semiconductor and a drain electrode, and a source electrode. In a method of manufacturing a thin film transistor, in which a drain electrode and a source electrode are formed on the semiconductor of the TFT having, Ar on the semiconductor is provided.
And PH 3 are mixed in a predetermined ratio to form a first metal layer with a predetermined thickness by vapor deposition so as to make ohmic contact with the semiconductor layer, and a first metal layer is formed on the deposited first metal layer. Two
The step of depositing the metal layer for a predetermined period of time,
The first and second metal layers form a drain electrode or a source electrode.

【0007】また、請求項2に記載の本発明の薄膜トラ
ンジスタの製造方法は、第1の金属層の形成段階におい
てArとPH3 のガス混合比率は99:1であることを
特徴とする。
The method of manufacturing a thin film transistor according to the second aspect of the present invention is characterized in that the gas mixture ratio of Ar and PH 3 is 99: 1 in the step of forming the first metal layer.

【0008】また、請求項3に記載の薄膜トランジスタ
の製造方法は、第1の金属層は、ArとPH3 の混合ガ
ス雰囲気下で、Al、Cr、Mo、Tiの中でいずれか
の一つの金属材質で蒸着形成されることを特徴とする。
In the method of manufacturing a thin film transistor according to a third aspect of the present invention, the first metal layer is formed of any one of Al, Cr, Mo and Ti in a mixed gas atmosphere of Ar and PH 3 . It is characterized in that it is formed by vapor deposition with a metal material.

【0009】また、請求項4に記載の薄膜トランジスタ
の製造方法は、第2の金属層は、Al、Cr、Mo、T
iの中でいずれかの一つの金属材質で形成されることを
特徴とする。
In the method of manufacturing a thin film transistor according to claim 4, the second metal layer is made of Al, Cr, Mo, T.
It is characterized in that it is formed of any one metal material in i.

【0010】また、請求項5に記載の薄膜トランジスタ
の製造方法は、第1の金属層の厚さは、500オングス
トローム乃至1000オングストロームであることを特
徴とする、請求項1に記載の薄膜トランジスタの製造方
法。
The method of manufacturing a thin film transistor according to claim 5 is characterized in that the thickness of the first metal layer is 500 angstroms to 1000 angstroms. .

【0011】また、請求項6に記載の薄膜トランジスタ
の製造方法は、第2の金属層の厚さは、3000オング
ストローム乃至5000オングストロームであることを
特徴とする。
The method of manufacturing a thin film transistor according to claim 6 is characterized in that the thickness of the second metal layer is 3000 angstroms to 5000 angstroms.

【0012】また、請求項7に記載の薄膜トランジスタ
の製造方法は、第2の金属層の厚さは、第1の金属層の
厚さより厚く形成されることを特徴とする。
The method of manufacturing a thin film transistor according to claim 7 is characterized in that the second metal layer is formed to be thicker than the first metal layer.

【0013】また、請求項8に記載の薄膜トランジスタ
の製造方法は、形成された金属層の全厚さは、3500
オングストローム乃至6000オングストロームである
ことを特徴とする。
Further, in the method of manufacturing a thin film transistor according to claim 8, the total thickness of the formed metal layer is 3500.
It is characterized in that it is from angstrom to 6000 angstrom.

【0014】[0014]

【作用】本発明によれば、PH3 およびArガスを一定
の比率に混合した雰囲気中にて一定の厚さの第1の金属
層を蒸着してその第1の金属層に少量のPH3 が含まれ
るようにし、次いでArガス雰囲気下でその第1の金属
層上に一定の厚さの第2の金属層を蒸着するようにした
ので、ソースおよびドレイン電極n+ オーミック層の役
割を同時にすることができる。
According to the present invention, a first metal layer having a constant thickness is vapor-deposited in an atmosphere in which PH 3 and Ar gas are mixed at a constant ratio, and a small amount of PH 3 is deposited on the first metal layer. And then depositing a second metal layer of a certain thickness on the first metal layer under Ar gas atmosphere, so that the role of the source and drain electrode n + ohmic layer can be achieved at the same time. can do.

【0015】[0015]

【実施例】以下、本発明の好ましい実施例を図1を参照
して詳細に説明する。図1において、従来と同一部分に
は同一符号を付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to FIG. In FIG. 1, the same parts as those of the related art are designated by the same reference numerals.

【0016】図1は、本発明が適用された薄膜トランジ
スタの一実施を示す断面図であって、ガラス基板1上に
ITOをコーティングした後、所定のマスクを用いてゲ
ート電極2を形成し、このゲート電極2上に化学反応気
相装置を用いてゲート絶縁層3を3000オングストロ
ームの厚さに蒸着し、前記ゲート絶縁層3をエッチング
して再び化学反応気相装置を用いて1500オングスト
ロームの厚さに例えば水素化アモルファスSiからなる
非晶質半導体層4を蒸着し、透明導電膜である画素電極
8をゲート絶縁層3上に蒸着する。
FIG. 1 is a cross-sectional view showing an embodiment of a thin film transistor to which the present invention is applied. After a glass substrate 1 is coated with ITO, a gate electrode 2 is formed by using a predetermined mask. A gate insulating layer 3 is deposited on the gate electrode 2 to a thickness of 3000 Å using a chemical reaction vapor deposition apparatus, the gate insulating layer 3 is etched, and a thickness of 1500 Å is applied again using a chemical reaction vapor deposition apparatus. Then, an amorphous semiconductor layer 4 made of , for example, hydrogenated amorphous Si is deposited, and a pixel electrode 8 which is a transparent conductive film is deposited on the gate insulating layer 3.

【0017】次いで、スパッタ装置のミキシングチャン
バで、Ar99%とPH3 1%を混合したガス雰囲気中
で、前記のように形成された非晶質半導体層4上に一定
時間第1の金属層を蒸着(deposition)して、500オ
ングストローム〜1000オングストローム程度の厚さ
に保持する。この第1の金属層の材質としては、ゲート
絶縁層3との間で電子の移動を可能とするものであれば
よく、例えば次の第2の金属層と同様のAl、Cr、M
o、Ti等を用いることができる。また、Arに対する
PH 3 の割合は、前記1%以外でもよく、この割合を変
化させることにより、前記第1の金属層のオーミック層
として作用する部分の状態を調整することができる。そ
後、Al、Cr、Mo、Ti等の金属ターゲットを用
いて、Ar雰囲気中で第2の金属層を一定時間蒸着して
3000オングストローム〜5000オングストローム
の厚さを有するようにする。同時に形成されるこの金属
層の断面は第1および第2の金属層の区分なしに図面に
示されている。このとき、第1の金属層は通常の金属電
極材質にPH3 が少量含まれた層として形成され、第2
の金属層は通常の金属層と同様な型である。したがっ
て、第1の金属層はオーミック層のような効果を有する
ために、従来のようにn+ オーミック層の形成のために
別途の工程が必要ではない。
Then, a first metal layer is formed on the amorphous semiconductor layer 4 formed as described above for a certain period of time in a gas atmosphere in which Ar 99% and PH 3 1% are mixed in a mixing chamber of a sputtering apparatus. Deposition is performed and the thickness is maintained at about 500 Å to 1000 Å . The material of the first metal layer is a gate
If it is possible to move electrons between the insulating layer 3 and
Well, for example, Al, Cr, M similar to the following second metal layer
O, Ti, etc. can be used. Also, for Ar
The proportion of PH 3 may be other than the above-mentioned 1%.
To be an ohmic layer of the first metal layer
The state of the part acting as can be adjusted. So
After, Al, Cr, Mo, using a metal target such as Ti, with a certain time depositing a second metal layer in an Ar atmosphere to have a thickness of 3000 Angstroms to 5000 Angstroms. The cross-section of this simultaneously formed metal layer is shown in the drawing without the division of the first and second metal layers. At this time, the first metal layer is formed as a layer in which a small amount of PH 3 is included in a normal metal electrode material,
The metal layer is of the same type as a normal metal layer. Therefore, since the first metal layer has an effect similar to that of the ohmic layer, a separate process is not required to form the n + ohmic layer as in the conventional case.

【0018】このように、本発明によるとn+ オーミッ
ク層を別途に形成する必要なくソース電極6とドレイン
電極7だけを形成することにより、半導体層と金属層と
のオーミック接触の効果が得られる。また、本発明によ
ると、非晶質半導体層4とソース電極6およびドレイン
電極7とのオーミック接触特性が向上され、カットオフ
電流が大きく減少され(10-12 オングストローム以
下)、従来のn+ オーミック層の形成に従う汚染により
薄膜トランジスタが破損されることを防止することがで
きる。
As described above, according to the present invention, the effect of ohmic contact between the semiconductor layer and the metal layer is obtained by forming only the source electrode 6 and the drain electrode 7 without the need to separately form the n + ohmic layer. . Further, according to the present invention, the ohmic contact characteristics between the amorphous semiconductor layer 4 and the source electrode 6 and the drain electrode 7 are improved, the cut-off current is greatly reduced (10 -12 Å or less), and the conventional n + ohmic contact is achieved. It is possible to prevent the thin film transistor from being damaged by the contamination due to the formation of the layer.

【0019】本発明は、半導体層とドレイン電極、ソー
ス電極とオーミック層を有するすべての薄膜トランジス
タに適用できるものであって、特許請求の範囲を逸脱し
ない範囲内で前記した実施例の外のすべての修正例を含
めることができる。
The present invention can be applied to all thin film transistors having a semiconductor layer and a drain electrode, and a source electrode and an ohmic layer, and can be applied to all the embodiments other than the above-mentioned embodiments within the scope of the claims. Modifications can be included.

【0020】[0020]

【発明の効果】このように本発明の薄膜トランジスタの
製造方法は構成され作用するものであるから、薄膜トラ
ンジスタの製造の際に、別途にn+ オーミック層を形成
する手段を設けることなく前記n+ オーミック層を形成
することができる等の効果を奏する。
[Effect of the Invention] Since a method of manufacturing a thin film transistor according to the present invention in this way is to act configured, in the production of a thin film transistor, said n + ohmic without providing means for forming a separately n + ohmic layer The effect that a layer can be formed is produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による薄膜トランジスタの構成を示す断
面図
FIG. 1 is a sectional view showing a structure of a thin film transistor according to the present invention.

【図2】従来による薄膜トランジスタの構成を示す断面
FIG. 2 is a sectional view showing the structure of a conventional thin film transistor.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ゲート電極 3 ゲート絶縁層 4 非晶質半導体 5 n+ オーミック層 6 ソース電極 7 ドレイン電極 8 画素電極1 glass substrate 2 gate electrode 3 gate insulating layer 4 amorphous semiconductor 5 n + ohmic layer 6 source electrode 7 drain electrode 8 pixel electrode

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板、ゲート電極、ゲート絶縁層、半導
体とドレイン電極およびソース電極を有するTFTの前
記半導体上にドレイン電極およびソース電極を形成する
薄膜トランジスタの製造方法において、前記半導体上に
ArとPH3を所定の比率に混合して、前記半導体層と
オーミック接触するように第1の金属層を所定の厚さに
蒸着形成する段階と、前記蒸着された第1の金属層上に
第2の金属層を所定の時間前記蒸着形成する段階を備え
て、前記第1および第2金属層がドレイン電極あるいは
ソース電極を形成することを特徴とする薄膜トランジス
タの製造方法。
1. A method of manufacturing a thin film transistor, wherein a drain electrode and a source electrode are formed on the semiconductor of a TFT having a substrate, a gate electrode, a gate insulating layer, a semiconductor and a drain electrode, and a source electrode, wherein Ar and PH are formed on the semiconductor. 3 is mixed in a predetermined ratio to form a first metal layer by vapor deposition to have an ohmic contact with the semiconductor layer, and a second metal layer is formed on the vapor-deposited first metal layer. A method of manufacturing a thin film transistor, comprising the step of forming a metal layer by vapor deposition for a predetermined time, wherein the first and second metal layers form a drain electrode or a source electrode.
【請求項2】 第1の金属層の形成段階においてArと
PH3 のガス混合比率は99:1であることを特徴とす
る、請求項1に記載の薄膜トランジスタの製造方法。
2. The method of manufacturing a thin film transistor according to claim 1, wherein the gas mixing ratio of Ar and PH 3 is 99: 1 in the step of forming the first metal layer.
【請求項3】 第1の金属層は、ArとPH3 の混合ガ
ス雰囲気下で、Al、Cr、Mo、Tiの中でいずれか
の一つの金属材質で蒸着形成されることを特徴とする、
請求項1または請求項2に記載の薄膜トランジスタの製
造方法。
3. The first metal layer is formed by vapor deposition of one of Al, Cr, Mo, and Ti in a mixed gas atmosphere of Ar and PH 3. ,
A method of manufacturing a thin film transistor according to claim 1 or 2.
【請求項4】 第2の金属層は、Al、Cr、Mo、T
iの中でいずれかの一つの金属材質で形成されることを
特徴とする請求項1に記載の薄膜トランジスタの製造方
法。
4. The second metal layer comprises Al, Cr, Mo, T
2. The method of manufacturing a thin film transistor according to claim 1, wherein the thin film transistor is formed of any one of i.
【請求項5】 第1の金属層の厚さは、500オングス
トローム乃至1000オングストロームであることを特
徴とする、請求項1に記載の薄膜トランジスタの製造方
法。
5. The method of manufacturing a thin film transistor according to claim 1, wherein the thickness of the first metal layer is 500 angstroms to 1000 angstroms.
【請求項6】 第2の金属層の厚さは、3000オング
ストローム乃至5000オングストロームであることを
特徴とする請求項1に記載の薄膜トランジスタの製造方
法。
6. The method of claim 1, wherein the second metal layer has a thickness of 3000 angstroms to 5000 angstroms.
【請求項7】 第2の金属層の厚さは、第1の金属層の
厚さより厚く形成されることを特徴とする請求項1に記
載の薄膜トランジスタの製造方法。
7. The method of manufacturing a thin film transistor according to claim 1, wherein the second metal layer is formed to be thicker than the first metal layer.
【請求項8】 形成された金属層の全厚さは、3500
オングストローム乃至6000オングストロームである
ことを特徴とする請求項1に記載の薄膜トランジスタの
製造方法。
8. The total thickness of the formed metal layer is 3500.
The method of manufacturing a thin film transistor according to claim 1, wherein the thickness is from angstrom to 6000 angstrom.
JP3174186A 1990-07-27 1991-07-15 Method for manufacturing thin film transistor Expired - Lifetime JP2505662B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1990-11417 1990-07-27
KR1019900011417A KR930001901B1 (en) 1990-07-27 1990-07-27 Manufacturing method of tft

Publications (2)

Publication Number Publication Date
JPH04233738A JPH04233738A (en) 1992-08-21
JP2505662B2 true JP2505662B2 (en) 1996-06-12

Family

ID=19301689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174186A Expired - Lifetime JP2505662B2 (en) 1990-07-27 1991-07-15 Method for manufacturing thin film transistor

Country Status (4)

Country Link
JP (1) JP2505662B2 (en)
KR (1) KR930001901B1 (en)
FR (1) FR2665300B1 (en)
NL (1) NL9100051A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335336A (en) * 1992-06-02 1993-12-17 Nec Corp Manufacture of thin-film transistor
TW406317B (en) * 1997-06-27 2000-09-21 Siemens Ag Method to produce a barrier-layer in a semiconductor-body and semiconductor component with such a barrier-layer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2044994B (en) * 1979-03-22 1983-06-15 Philips Electronic Associated Thin film transistors
JPS59124162A (en) * 1982-12-29 1984-07-18 Sharp Corp Thin film transistor
JPS60183770A (en) * 1984-03-01 1985-09-19 Asahi Glass Co Ltd Thin film transistor
JPS60211982A (en) * 1984-04-06 1985-10-24 Hitachi Ltd Thin film transistor
JPS6281057A (en) * 1985-10-04 1987-04-14 Hosiden Electronics Co Ltd Transparent conductive film

Also Published As

Publication number Publication date
FR2665300A1 (en) 1992-01-31
KR920003534A (en) 1992-02-29
KR930001901B1 (en) 1993-03-19
JPH04233738A (en) 1992-08-21
FR2665300B1 (en) 1997-09-05
NL9100051A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
JP2637079B2 (en) Method of fabricating a thin film field effect transistor in an active matrix liquid crystal display
US6300995B1 (en) Liquid crystal display device utilizing in-plane-switching system and having alignment film separating picture element electrode or counter electrode from liquid crystal layer
JPH0887033A (en) Production of active matrix display
JPH05235034A (en) Manufacture of thin-film transistor
JPH1093102A (en) Method of manufacture thin-film transistor
JPH0348671B2 (en)
JPH05304171A (en) Thin-film transistor
JP2505662B2 (en) Method for manufacturing thin film transistor
JPH11264995A (en) Manufacture of liquid crystal display device
JPH0554271B2 (en)
JPS615579A (en) Thin film transistor
US20090108261A1 (en) Array substrate and method of manufacturing the same
US20060077312A1 (en) TFD LCD device with high aperture ratio
JPH0830822B2 (en) Method for manufacturing active matrix liquid crystal display device
JPS6144467A (en) Thin film transistor
JP2905641B2 (en) Method for manufacturing thin film transistor
JPH08321621A (en) Thin film transistor
KR100275953B1 (en) Method of manufacturing thin film transistor
JPH0277159A (en) Thin film semiconductor element
JPH03116778A (en) Manufacture of active matrix substrate and manufacture of display device
JPH02163971A (en) Semiconductor device and its manufacture
JPH0548106A (en) Thin film transistor and its manufacture
JPH0895085A (en) Semiconductor device, manufacture thereof, and display device
JPH0730119A (en) Manufacture of thin film transistor for liquid crystal display device
JPH0851214A (en) Film transistor and its manufacture