JPS60198864A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS60198864A
JPS60198864A JP5563784A JP5563784A JPS60198864A JP S60198864 A JPS60198864 A JP S60198864A JP 5563784 A JP5563784 A JP 5563784A JP 5563784 A JP5563784 A JP 5563784A JP S60198864 A JPS60198864 A JP S60198864A
Authority
JP
Japan
Prior art keywords
layer
resistance
thin film
amorphous silicon
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5563784A
Other languages
Japanese (ja)
Inventor
Setsuo Kaneko
節夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5563784A priority Critical patent/JPS60198864A/en
Publication of JPS60198864A publication Critical patent/JPS60198864A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To enable to obtain a high OFF resistance by a method wherein a high resistance amorphous Si layer containing boron and nitrogen or oxygen is provided in the semiconductor layer laminated on an insulated substrate. CONSTITUTION:A gate electrode 2 is formed on a glass substrate 1. Then, an insulating layer 3 is formed, and an N<-> amorphous Si layer 4, an anorphous Si layer 5, and an amorphous Si layer 6 are successively formed on said layer 3. Subsequently, an Mo layer to be turned to a source electrode 7 and a drain electrode 8 is formed, electrodes 7 and 8 and a layer 6 are formed by performing a dry etching in such a manner that the prescribed gate length and the gate width will be obtained, and a transistor is completed. In this transistor, an element of 0.1-1,000ppm selected from boron and nitrogen or oxygen is contained in the layers 4 and 6, and a high resistance amorphous SiOX layer 5 having the resistance one figure larger than the resistivity of the layer 4 is provided. As a result, a sufficient resistivity can be maintained even when the resistance is reduced by one or two figures due to a dry etching, contamination and the like, thereby enabling to obtain a large OFF resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜トランジスタに関し、特KOFF抵抗の高
い非晶質シリコンを用いた薄膜トランジスタに関すふ− (従来技術と問題点) 最近、パーソナルコンピュータや各種情報処理機器の小
型化が望まれているが、この中で小型化の困難なものの
1つにディスプレイがある。現在、ディスプレイは大部
分がCRTであるが、このCRTは真空中で電子線が電
界等で制御されて螢光体に照射されて発光するため、こ
の電子線を走査させる部分の装置が大きくなυ小型化が
困難となる。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to thin film transistors, and particularly relates to thin film transistors using amorphous silicon with high KOFF resistance. (Prior Art and Problems) Recently, personal computers and various There is a desire to downsize information processing equipment, and one of the items that is difficult to downsize is a display. Currently, most displays are CRTs, but in a CRT, an electron beam is controlled by an electric field in a vacuum and illuminates a phosphor to emit light, so the device that scans the electron beam has to be large. υIt becomes difficult to downsize.

このディスプレイの小型化のために液晶を用いた薄型の
ディスプレイが注目されている。この液晶ディスプレイ
は電極が付いた2枚のガラス板の間に10μm厚程度0
液晶を挾み、これら2枚のガラス板に付いた電極によっ
て液晶に電界を印加し液晶の動きを制御するため薄いデ
ィスプレイが可能になる。しかし、この液晶を動作させ
る場合、例えば電圧平均化法によると単純なXYマトリ
クス動作において絵素数が増加した時、コントラスト等
が低下する問題があった。
In order to reduce the size of these displays, thin displays using liquid crystals are attracting attention. This liquid crystal display has a thickness of about 10 μm between two glass plates with electrodes.
A thin display is made possible by sandwiching the liquid crystal and applying an electric field to the liquid crystal using electrodes attached to these two glass plates to control the movement of the liquid crystal. However, when this liquid crystal is operated, for example, when the voltage averaging method is used, there is a problem that when the number of picture elements increases in a simple XY matrix operation, the contrast etc. decrease.

このコントラストの低下を解決する方法として、薄膜ト
ランジスタを用いたアクティブマトリクス動作法が研究
されており、その薄膜としては多結晶Slやテルル、非
晶質シリコンを用いたものがあるが、低温プロセスで低
価格の基板を使用でき、安定で゛量産しやすいという特
徴をもつ非晶質シリコンが最も適している。
As a method to solve this decrease in contrast, active matrix operation methods using thin film transistors are being researched, and some of these thin films use polycrystalline Sl, tellurium, and amorphous silicon, but they can be Amorphous silicon is most suitable because it can use inexpensive substrates, is stable, and is easy to mass produce.

この非晶質シリコンを用いた薄膜トランジスタをこのよ
うな平面ディスプレイに応用する場合、画素欠陥のない
ディスプレイを得るためにON抵抗とOFF抵抗の比が
十分高い薄膜トランジスタ素子を大面積に均一に形成す
ることが必要となる。
When applying a thin film transistor using this amorphous silicon to such a flat display, it is necessary to uniformly form thin film transistor elements over a large area with a sufficiently high ratio of ON resistance to OFF resistance in order to obtain a display without pixel defects. Is required.

従来の薄膜トランジスタは、第1図の断面図に示す様に
、ゲート金属2が付いたガラス等の絶縁性基板上1に、
プラズマCVD法を用いて、例えば窒化シリコン3.n
−非晶質シリコン層4.#)ん等を0.1〜1チ程度の
濃度にドープしたn+非晶質シリコン層6を順次形成し
、その後ソース7゜ドレイン8電極を形成し、ゲート金
属部に対応する上部のn+非晶質シリコンをエツチング
して薄膜トランジスタを構成にしていた。また、この薄
膜のトランジスタの表面を安定化させるために、窒化シ
リコン等からなる絶縁層9を設置している。
As shown in the cross-sectional view of FIG. 1, a conventional thin film transistor has a gate metal 2 on an insulating substrate 1 such as glass.
Using a plasma CVD method, for example, silicon nitride 3. n
-Amorphous silicon layer 4. An n+ amorphous silicon layer 6 doped with #) etc. to a concentration of about 0.1 to 1 is sequentially formed, and then source 7 and drain 8 electrodes are formed, and the upper n+ amorphous silicon layer 6 corresponding to the gate metal part is formed. Thin film transistors were constructed by etching crystalline silicon. Further, in order to stabilize the surface of this thin film transistor, an insulating layer 9 made of silicon nitride or the like is provided.

しかし、とのn+非晶質シリコン(6)ヲエッチングす
る工程や、窒化シリコン等のバッシペーシラン膜(4)
全形成する時に、n−非晶質シリコン層4表面の抵抗値
が減少し、薄膜トランジスタのOFF抵抗が小さくなり
、平面ディスプレイに用いた時に画像欠陥となって歩留
りを低下させるという欠点があった。
However, there is a process of etching the n+ amorphous silicon (6), and a process of etching the n+ amorphous silicon (4)
When completely formed, the resistance value of the surface of the n-amorphous silicon layer 4 decreases, the OFF resistance of the thin film transistor decreases, and when used in a flat display, image defects occur and the yield decreases.

例えば、従来の薄膜トランジスタを用いた場合、平均O
N電流3.4xlO’A、平均OFF電流2.3XIO
”Aであり、平均的な0NOFF比は十分あるものの、
OFF電流1O−10A以上の素子が全体の4チも含ま
れていた。
For example, when using conventional thin film transistors, the average O
N current 3.4xlO'A, average OFF current 2.3XIO
“A, and although the average 0NOFF ratio is sufficient,
A total of four devices had an OFF current of 10-10A or more.

(発明の目的) 本発明の目的は、このような従来の欠点を除き、OFF
抵抗が高く、安定に製造できる薄膜トランジスタを提供
することにある。
(Object of the Invention) The object of the present invention is to eliminate such conventional drawbacks and to
An object of the present invention is to provide a thin film transistor that has high resistance and can be manufactured stably.

(発明の構成) 本発明の構成は、ゲート金属層を上面に設けた絶縁性基
板上にゲート絶縁膜と非晶質シリコンを基体とした半導
体層とを積層しこの積層上にオーミック層、ソース電極
およびドレイン電極を配設した薄膜トランジスタにおい
て、前記半導体層に9.11)Pm以上11000pp
以下の濃度の硼素を含みかつ窒素または酸素を含む非晶
質シリコン層とが含まれることを特徴とする。
(Structure of the Invention) The structure of the present invention is such that a gate insulating film and a semiconductor layer based on amorphous silicon are laminated on an insulating substrate having a gate metal layer on the top surface, and an ohmic layer and a source layer are formed on this laminated layer. In a thin film transistor in which an electrode and a drain electrode are provided, the semiconductor layer contains 9.11) Pm or more of 11,000 ppp or more.
It is characterized by containing an amorphous silicon layer containing boron at the following concentration and containing nitrogen or oxygen.

(実施例) 以下本発明を図面によシ詳細に説明する。(Example) The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の実施例を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the present invention.

本実施例は、まずガラス基板1上にゲート金属であるモ
リブデン電極2を1000人真空蒸着し、フォトリソグ
ラフィによって幅15μmに加工する。
In this example, first, a molybdenum electrode 2, which is a gate metal, is vacuum-deposited by 1000 people on a glass substrate 1, and then processed into a width of 15 μm by photolithography.

続いて、シランガスとアンモニア、窒素ガスの混合ガス
をプラズマCVD装置を用いてグロー放電分解させS 
i N、絶縁層3を5000人形成する。次に、同じ装
置内で連続してシランガスのグロー放電分解によυn−
非晶質シリコン層4を1500人形成し、窒素とシラン
とを1対1に混合したガスにディボランを50 ppm
ドープした混合ガスをグロー放電分解し非晶質シリコン
層5i800人形成し、シランにホスフィンf2000
ppmドープしたn+非晶質シリコン層6’1800人
形成する。続いて、ソース電極7.ドレイン電極8とな
るモリブデン層を2000人形成し、ゲート長が40μ
m1 ゲート幅が10μmになるようにドライエツチン
グしてソース、ドレイン電極7,8およびn+非晶質シ
リコン層6を形成しトランジスタを完成させる。
Next, a mixed gas of silane gas, ammonia, and nitrogen gas is decomposed by glow discharge using a plasma CVD device.
iN, 5000 people formed the insulating layer 3. Next, υn-
1,500 layers of amorphous silicon layer 4 were formed, and 50 ppm of diborane was added to a gas containing a 1:1 mixture of nitrogen and silane.
The doped mixed gas was decomposed by glow discharge to form an amorphous silicon layer of 5i800m, and phosphine f2000 was added to the silane.
A 1800 ppm doped n+ amorphous silicon layer 6' is formed. Next, source electrode 7. 2000 molybdenum layers were formed to become the drain electrode 8, and the gate length was 40μ.
m1 Dry etching is performed so that the gate width is 10 μm to form source and drain electrodes 7 and 8 and an n+ amorphous silicon layer 6 to complete the transistor.

サラニ、パッジペイジオン膜9となる酸化シリコンをス
パッタ法によって形成する。
Silicon oxide, which will become the SaraniPudgeon film 9, is formed by sputtering.

なお、こζでは高抵抗非晶質シリコンの形成において非
晶質S i Nx を用いているが、シランと酸素、シ
ランとNO2あるいはシランとN20、シランとCO2
等の混合ガスによって形成される高抵抗非晶質シリコン
層でおってもかまわない。
Note that in this ζ, amorphous Si Nx is used to form high-resistance amorphous silicon, but silane and oxygen, silane and NO2, silane and N20, silane and CO2
A high-resistance amorphous silicon layer formed by a mixed gas such as the like may also be used.

従来の薄膜トランジスタのOFF抵抗低下の原因は、抵
抗率108〜109Ω−αのn−非晶質シリコン層4が
、ドライエツチング時のプラズマ損傷やよごれ等により
その抵抗率が1桁から2桁程度小さくなってしまったも
のと考えられる。このため本発明においては、非晶質シ
リコン層(4,6) 内に、硼素と窒素または酸素のう
ちの一元素とを含みn−非晶質シリコンの抵抗率よシ1
桁以上大きい109〜1014Ω−備の高抵抗非晶質S
in、層(5)を設けることによシ、ドライエツチング
や汚れなどによυその抵抗率が1〜2桁小さくなったと
しても十分な抵抗率を維持させるようにしたものである
The reason for the decrease in OFF resistance of conventional thin film transistors is that the resistivity of the n-amorphous silicon layer 4, which has a resistivity of 108 to 109 Ω-α, decreases by about one to two orders of magnitude due to plasma damage and dirt during dry etching. It is thought that this has happened. Therefore, in the present invention, the amorphous silicon layer (4, 6) contains boron and one element of nitrogen or oxygen, which increases the resistivity of n-amorphous silicon.
High resistance amorphous S with an order of magnitude higher 109~1014Ω
By providing the layer (5), a sufficient resistivity can be maintained even if the resistivity decreases by one to two orders of magnitude due to dry etching, dirt, etc.

通常、硼素をドープした非晶質シリコンを薄膜トランジ
スタに用いる時に電子の走向性を阻害することがあるが
、本発明においては、ゲート絶縁膜3と接し、チャネル
部を形成する非晶質シリコンには電子の走向性の良いn
−非晶質シリコン層(一般的にはドープしない非晶質シ
リコン層)4を用い、ソース、ドレイン電極とのオーミ
ックコンタクトにはn+非晶質シリコン層6を用いてい
るため、電子の走向性が阻害されずON抵抗が低く、か
つON、OFF比の高い薄膜トランジスタが得られる。
Normally, when amorphous silicon doped with boron is used in a thin film transistor, electron mobility may be inhibited, but in the present invention, the amorphous silicon that is in contact with the gate insulating film 3 and forms the channel portion n with good electron transportability
- Since an amorphous silicon layer (generally an undoped amorphous silicon layer) 4 is used, and an n+ amorphous silicon layer 6 is used for ohmic contact with the source and drain electrodes, the electron trajectory is A thin film transistor with low ON resistance and high ON/OFF ratio without being inhibited can be obtained.

また、酸素や窒素を非晶質シリコン層に含ませることは
、硼素をドープすることによって低下した電子の走向性
を回復させる働きもあるのでその特性が改善される。
Furthermore, the inclusion of oxygen or nitrogen in the amorphous silicon layer has the effect of restoring the electron transport properties that have been reduced by doping with boron, thereby improving its properties.

このようにして形成された薄膜トランジスタを用いて、
128X64素子の液晶駆動用薄膜トランジスタアレイ
を試作してその静特性合評価した。
Using the thin film transistor formed in this way,
A prototype thin film transistor array for driving a liquid crystal with 128×64 elements was fabricated and its static characteristics were evaluated.

その結果、ゲート電圧15v1 ソースドレイン間電圧
15VでO平均ON電流ti2.2X10 ’A。
As a result, when the gate voltage is 15v1 and the source-drain voltage is 15V, the average ON current is 2.2x10'A.

平均OFF電流は1.I X 10 ”Aであシ、画像
欠陥のおそれのあるlXl0−”A以上のOFF電流が
流れる素子は全体の0.1チ以下であシ、従来の薄膜ト
ランジスタの割合(4%)に対して大幅に歩留シを改善
している。
The average OFF current is 1. IX10"A, and the elements that flow an OFF current of 1X10-"A or more, which may cause image defects, must be less than 0.1 inch of the total, compared to the proportion of conventional thin film transistors (4%). Yield has been significantly improved.

(発明の効果) 以上説明したように1本発明によれば、OFF電流の小
さい薄膜トランジスタを安定に製造することが出来、こ
の薄膜トランジスタを多数用いたディスプレイ装置の歩
留bt−上げることが出来る。
(Effects of the Invention) As described above, according to the present invention, thin film transistors with small OFF current can be stably manufactured, and the yield of display devices using a large number of these thin film transistors can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜トランジスタの断面図、第2図は本
発明の一実施例の断面図である。図において、 ■・・・・・・絶縁性基板、2・・・・・・ゲート電極
、3・・・・・・絶縁体層、4・・・・・・n−非晶質
シリコン半導体層、5・・・・・・硼素と酸素または窒
素とを含む非晶質シリコン半導体層、6・・・・・・n
+非晶質シリコン半導体層、7・・・・・・ソース電極
、8・・・・・・ドレイン電極、96.101.バ、シ
ペイション膜、 である。 ゛ぐ−、7′ 卒1瓢
FIG. 1 is a sectional view of a conventional thin film transistor, and FIG. 2 is a sectional view of an embodiment of the present invention. In the figure, ■...Insulating substrate, 2...Gate electrode, 3...Insulator layer, 4...N-amorphous silicon semiconductor layer , 5...Amorphous silicon semiconductor layer containing boron and oxygen or nitrogen, 6...n
+Amorphous silicon semiconductor layer, 7...source electrode, 8...drain electrode, 96.101. It is a cypation membrane.゛gu-, 7' graduation 1 gourd

Claims (1)

【特許請求の範囲】[Claims] ゲート金属層を上面に設けた絶縁性基板上にゲート絶縁
膜と非晶質シリコンを基体とした半導体層とを積層しこ
の積層上にオーミック層、ソース電極およびドレイン電
極を配設した薄膜トランジスタにおいて、前記半導体層
内に0. lppm以上11000pp以下の硼素を含
みかつ窒素または酸素を含む非晶質シリコン層が含まれ
ることをIrfg、とじた薄膜トランジスタ。
In a thin film transistor, a gate insulating film and a semiconductor layer based on amorphous silicon are laminated on an insulating substrate having a gate metal layer on the top surface, and an ohmic layer, a source electrode, and a drain electrode are disposed on this laminated layer. 0.0 within the semiconductor layer. A thin film transistor defined by Irfg to include an amorphous silicon layer containing 1 ppm to 11000 ppm of boron and nitrogen or oxygen.
JP5563784A 1984-03-23 1984-03-23 Thin film transistor Pending JPS60198864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5563784A JPS60198864A (en) 1984-03-23 1984-03-23 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5563784A JPS60198864A (en) 1984-03-23 1984-03-23 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS60198864A true JPS60198864A (en) 1985-10-08

Family

ID=13004313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5563784A Pending JPS60198864A (en) 1984-03-23 1984-03-23 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS60198864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275672A (en) * 1989-03-30 1990-11-09 Nippon Steel Corp Thin film transistor
JP2009212497A (en) * 2007-03-27 2009-09-17 Fujifilm Corp Thin film field effect transistor and display using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275672A (en) * 1989-03-30 1990-11-09 Nippon Steel Corp Thin film transistor
JP2009212497A (en) * 2007-03-27 2009-09-17 Fujifilm Corp Thin film field effect transistor and display using the same

Similar Documents

Publication Publication Date Title
US5834071A (en) Method for forming a thin film transistor
US20110163310A1 (en) Thin-film transistor having etch stop multi-layer and method of manufacturing the same
JPH11121761A (en) Thin-film transistor
JPH0519830B2 (en)
JPH11112004A (en) Manufacture of thin film transistor
JPH0614548B2 (en) Method for manufacturing semiconductor device
Parsons Enhanced mobility top-gate amorphous silicon thin-film transistor with selectively deposited source/drain contacts
JPH01144682A (en) Manufacture of thin-film transistor
JPS615578A (en) Thin film transistor
JPS6357944B2 (en)
JPH01309378A (en) Thin-film semiconductor element
JPS60198864A (en) Thin film transistor
JPS60198865A (en) Thin film transistor
JPH0637314A (en) Thin-film transistor and manufacture thereof
JPH02310932A (en) Manufacture of inverted stagger-type thin-film transistor
JPS615579A (en) Thin film transistor
JPH04275437A (en) Thin film transistor and its manufacture
JPH01309379A (en) Thin-film semiconductor element
JPH0554271B2 (en)
JPS62219574A (en) Semiconductor device
JPS61150278A (en) Thin film transistor
JPH0534837B2 (en)
JP2000332248A (en) Thin-film transistor and manufacture thereof
JPH02150067A (en) Thin film semiconductor device
JP2505662B2 (en) Method for manufacturing thin film transistor