JPH01144682A - Manufacture of thin-film transistor - Google Patents

Manufacture of thin-film transistor

Info

Publication number
JPH01144682A
JPH01144682A JP30351887A JP30351887A JPH01144682A JP H01144682 A JPH01144682 A JP H01144682A JP 30351887 A JP30351887 A JP 30351887A JP 30351887 A JP30351887 A JP 30351887A JP H01144682 A JPH01144682 A JP H01144682A
Authority
JP
Japan
Prior art keywords
layer
film
manufacturing
gas
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30351887A
Other languages
Japanese (ja)
Inventor
Kesao Noguchi
野口 今朝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30351887A priority Critical patent/JPH01144682A/en
Publication of JPH01144682A publication Critical patent/JPH01144682A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent the contamination and deterioration of the surface of an i-layer, and to improve the stability of TFT characteristics and reliability by etching a back channel section a-Si film and forming a modified layer onto the surface of the i-layer by plasma discharge in an atmosphere in which there is one kind or more of N, O, C and B. CONSTITUTION:A gate electrode 20 composed of NiCr is shaped onto a borosilicate glass substrate 10. An silicon nitride film and a gate insulating film 30 are formed onto the gate electrode 20 through plasma CVD. An i-layer 40 as an a-Si hydride film and an n<+> layer 50 are shaped simultaneously through plasma CVD, and ITO and Cr are shaped onto the layer 50 as source-drain electrode materials 670. Cr and ITO are wet-etched, using a resist 500 as a mask, thus forming a source electrode 60 and a drain electrode 70. The n<+> layer 50 is dry-etched by employing a gas in which O2 is added to CCl4 gas, the i-layer 40 is also etched slightly, and the surface 803 of the i-layer is exposed. Plasma discharge is conducted by using O2 gas, and the surface 803 is exposed and an oxidized surface modified layer 80 is shaped. Accordingly, the resist 500 is peeled, thus finishing a TFT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンを用いた逆スタガード、
チャネル堀込み形薄膜トランジスタの製造方法に関し、
特に安定性が良く、高信頼が得られるバックチャネルの
処理方法を含む薄膜トランジスタの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an inverted staggered structure using amorphous silicon;
Regarding the manufacturing method of channel-grooved thin film transistors,
In particular, the present invention relates to a method for manufacturing a thin film transistor, including a back channel processing method that provides good stability and high reliability.

〔従来の技術〕[Conventional technology]

水素化などされたアモルファスシリコン(a−8i)を
用いた薄膜トランジスタ(T F’ T)は、低温で大
面積基板に形成できることなどから、長尺イメージセン
サや大面積大容量液晶表示素子のスイッチング素子をガ
ラス等の低価格基板に多数素子集積した形で実用化され
つつある。
Thin film transistors (TF'T) using hydrogenated amorphous silicon (a-8i) can be formed on large-area substrates at low temperatures, so they are used as switching elements in long image sensors and large-area, large-capacity liquid crystal display devices. is being put into practical use in the form of a large number of integrated elements on low-cost substrates such as glass.

a−8i  TFTには、基盤上への薄膜の積層順の違
いから、順スタガード及び逆スタガードの共形的な構造
が知られている。このうち製造上の利点及びTPTの特
性の安定性から逆スタガード構造が比較的多く採用され
ており、又、オーミックコンタクトの形成方法の違いが
ある端子堀込み形よりチャネル堀込み形の方が比較的多
く採用されている。
For a-8i TFTs, conformal structures such as forward staggered and reverse staggered structures are known based on the difference in the order of stacking thin films on the substrate. Among these, the inverted staggered structure is relatively often adopted due to its manufacturing advantages and the stability of TPT characteristics, and the channel digging type is more popular than the terminal digging type, which has different ohmic contact formation methods. It is widely adopted.

チャネル堀込み逆スタガードa−3i  TFTの製造
工程の概略を第5図(I)〜(III)に示す。
An outline of the manufacturing process of the channel dug inverted staggered A-3i TFT is shown in FIGS. 5(I) to (III).

ガラス基板10の上にCtのゲート電極20をパターニ
ングする工程と、その上にS i O,又はS iNX
のゲート絶縁膜30とa−8i膜の1層40とn+層5
0とをプラズマCVDによりSiH4など分解させて積
層させる工程と、ITOやC1などのソース・ドレイン
電極材670をその上に形成する工程と、ソース・ドレ
イン電極を設けるパターニングのためにレジスト500
を塗布する工程とを経たものを第5図(1)に示す。
A step of patterning a Ct gate electrode 20 on a glass substrate 10, and a step of patterning a Ct gate electrode 20 on the glass substrate 10, and then patterning a Ct gate electrode 20 on it.
gate insulating film 30, one layer 40 of a-8i film, and n+ layer 5
A process of decomposing and stacking SiH4 etc. by plasma CVD, a process of forming a source/drain electrode material 670 such as ITO or C1 thereon, and a process of forming a resist 500 for patterning the source/drain electrodes.
FIG. 5(1) shows the product that has gone through the process of applying the .

しかる後(II)に示すように、ITOやC2をエツチ
ングしバックチャネル部90のソース・ドレイン電極材
670を除去する工程を経ると、a−8i膜のn+層5
0が表面に露出する。
After that, as shown in (II), after the process of etching ITO and C2 and removing the source/drain electrode material 670 of the back channel part 90, the n+ layer 5 of the a-8i film is removed.
0 is exposed on the surface.

チャネル堀込み形のTPTの場合は(II)のようにソ
ース・ドレイン電極670の分離の他にバックチャネル
部90に露出したa−8i膜のn+層50をエツチング
により堀込んで、第5図(III)に示すように除去す
る工程を経る。n+層50をエツチングするのはドライ
エツチングがよく用いられ、やや1層40まで堀込む工
程とすることが多い。
In the case of a channel digging type TPT, in addition to separating the source/drain electrodes 670 as shown in (II), the N+ layer 50 of the a-8i film exposed in the back channel part 90 is dug out by etching, as shown in FIG. The removal process is performed as shown in III). Dry etching is often used to etch the n+ layer 50, and it is often a process of digging down to just one layer 40.

従来のTPTの製造方法は(III)に示した後はレジ
スト500を除去すれば工程が終了し、第6図に示す構
造が得られるものであった。
In the conventional TPT manufacturing method, after the process shown in (III), the process is completed by removing the resist 500, and the structure shown in FIG. 6 is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したチャネル堀込み逆スタガードa−8iTFTの
製造方法は第6図に示すように、ソース電極60とドレ
イン電極70との間のバックチャネル部90が最上表面
となる製造方法である。
As shown in FIG. 6, the method for manufacturing the above-described inverted staggered A-8i TFT with channel trenching is a manufacturing method in which the back channel portion 90 between the source electrode 60 and the drain electrode 70 is the uppermost surface.

この結果、バックチャネル部90はi層a−8i表面8
03が露出した構造となる。そのため、表面汚染が直接
的にi層a−8i表面803の汚染原因となり、バック
チャネル90のポテンシャル変化をもたらす要因となる
。したがって、従来のチャネル堀込み逆スタガードa−
8i  TFTの製造方法ではTPT特性の安定した信
頼性のある素子を作ることは困難であった。
As a result, the back channel portion 90 has the i-layer a-8i surface 8
03 is exposed. Therefore, surface contamination directly causes contamination of the i-layer a-8i surface 803, and becomes a factor that causes a change in the potential of the back channel 90. Therefore, the conventional channel digging reverse staggered a-
It has been difficult to produce a reliable device with stable TPT characteristics using the 8i TFT manufacturing method.

なお、この解決策の一例として、バックチャネル部にパ
ッシベーション効果して、SiOxやSiN、膜を形成
し、汚染を防止し安定化を計ることが考えられる。しか
しながら、−船釣製造工程においては、ソース電極及び
ドレイン電極を形成する工程や、a−8i膜のn+層を
エツチングしてバックチャネル部を形成する工程と前述
のパッシベーション膜を形成する工程とは全く異なる製
造設備を用いて行わなければならず、分離した工程とな
る。
As an example of a solution to this problem, it may be possible to form a SiOx or SiN film to have a passivation effect on the back channel portion to prevent contamination and stabilize the device. However, in the boat fishing manufacturing process, the process of forming the source electrode and drain electrode, the process of etching the n+ layer of the a-8i film to form the back channel part, and the process of forming the above-mentioned passivation film are different. It must be done using completely different manufacturing equipment and is a separate process.

そのため、パッシベーション膜を形成する前にa−8i
膜のi層が外気及び作業環境下に曝される結果となり、
それらの影響をi層とパッシベーション膜界面に取り込
んだ形となり、完全なパッシベーション効果が得られ難
い問題を有していた。
Therefore, before forming the passivation film, a-8i
This results in the i-layer of the membrane being exposed to the outside air and working environment.
These effects are incorporated into the interface between the i-layer and the passivation film, making it difficult to obtain a complete passivation effect.

例えば、第7図(b)に示したように、初期TPT特性
42に比較し、従来品はバックチャネル形成後のパッシ
ベーション膜形成後のTPT特性、もしくは例えば液晶
表示素子組立後分解して検査した時のTPT特性44は
、OFF領域の電流値が著しく増加し、いわゆる表示素
子のスイッチング特性として不十分なものとなってしま
う欠点を有していた。
For example, as shown in FIG. 7(b), compared to the initial TPT characteristics 42, the conventional product has TPT characteristics after forming a passivation film after forming a back channel, or for example, after disassembling and inspecting a liquid crystal display element after assembling it. The TPT characteristic 44 at the time had a drawback that the current value in the OFF region increased significantly, resulting in insufficient switching characteristics of a display element.

そこで、本発明の目的は特性の安定性や再現性などが良
く高い信頼性を有するTPTの製造方法を提供すること
にある。
Therefore, an object of the present invention is to provide a method for manufacturing TPT having good stability and reproducibility of characteristics and high reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の薄膜トランジスタの製造方法は、絶縁基板上に
ゲート電極、ゲート絶縁膜、アモルファスシリコン膜、
ソース及びドレイン電極の順に形成される逆スタガード
、アモルファスシリコン薄膜トロンジスタ製造方法の工
程の中に、ソース電極トドレイン電極間のバックチャネ
ル部のアモルファスシリコン膜のn+層をエツチングす
るチャネル堀込み工程の後に、N、O%C,Bの少なく
とも1種以上が存在する雰囲気のプラズマ放電により、
エツチングしたアモルファスシリコン膜のi層表面を曝
して変質層を形成する工程を有している。
The method for manufacturing a thin film transistor of the present invention includes forming a gate electrode, a gate insulating film, an amorphous silicon film, and a gate electrode on an insulating substrate.
During the process of manufacturing an inverted staggered amorphous silicon thin film transistor in which source and drain electrodes are formed in this order, after a channel digging process in which the n+ layer of the amorphous silicon film in the back channel area between the source and drain electrodes is etched, By plasma discharge in an atmosphere containing at least one of N, O%C, and B,
The method includes a step of exposing the i-layer surface of the etched amorphous silicon film to form a degraded layer.

−6= 前述した従来の薄膜トランジスタの製造方法に対して、
本発明はバックチャネル部のアモルファスシリン膜i層
表面をプラズマ放電中に曝して、積極的にN、01C1
Bの少なくとも1成分が存在するように変質させる工程
を有している。このため、従来のパッシベーション膜の
ように後工程で積層するのと異なり、TPTチャネル活
性層のi層そのものを変質層とする工程を有するとめ、
その界面が汚染されることはなく、又界面をi層中に作
る工程である。又、バックチャネル部の処理としてn+
層も酸化膜にしてしまう工程より容易であり、さらに、
イオン注入によりドープする工程より簡易的でかつダメ
ージが少なく、特性劣化が生じなく、効果を上げること
ができる。
−6= Compared to the conventional thin film transistor manufacturing method described above,
In the present invention, the surface of the amorphous silin film i-layer in the back channel part is exposed to plasma discharge to actively
It has a step of altering the quality so that at least one component of B is present. For this reason, unlike conventional passivation films, which are laminated in a post-process, there is a step in which the i-layer itself of the TPT channel active layer is made into an altered layer.
The interface is not contaminated and is a step in which the interface is created in the i-layer. Also, as a back channel process, n+
The layer is also easier than the process of making an oxide film, and furthermore,
This method is simpler than the doping process by ion implantation, causes less damage, does not cause characteristic deterioration, and can be more effective.

〔実施例〕〔Example〕

以下、本発明について図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は本願発明の一実施例の製造方法を説明するため
の工程順を示す模式図である。
FIG. 1 is a schematic diagram showing a process order for explaining a manufacturing method according to an embodiment of the present invention.

第1図(I)において、硼硅酸ガラス基板10上にN 
i C、によるゲート電極20が1500人厚でバクー
ニングされて設けられている。この上にプラズマCVD
により窒化シリコン(SiN、)膜が3000人厚形シ
リれて、ゲート絶縁膜30が設けられている。同時にプ
ラズマCVDにより水素化a−Si膜の1層40を20
00人とn+層50を100人とが順次形成され、その
上にソース・ドレイン電極材670としてITOを10
00人及びC7を2000人形成されている。
In FIG. 1(I), N is applied on the borosilicate glass substrate 10.
A gate electrode 20 made of iC is provided with a thickness of 1500 nm. Plasma CVD on this
A gate insulating film 30 is provided by etching a silicon nitride (SiN) film to a thickness of 3000 nm. At the same time, one layer of hydrogenated a-Si film 40 20
00 layers and 100 layers of n+ layer 50 are sequentially formed, and 10 layers of ITO are formed as source/drain electrode material 670 thereon.
00 people and 2000 C7 people have been formed.

その上にソース・ドレイン電極のバターニンクヲ行うた
めのレジスト500が設けられている。
A resist 500 is provided thereon for performing butter coating of the source/drain electrodes.

次の工程として、第1図(II)に示すように、レジス
ト500をマスクとして、C1及びITOをウェットエ
ツチングしソース電極60ドレイン電極70を形成する
In the next step, as shown in FIG. 1(II), C1 and ITO are wet-etched using the resist 500 as a mask to form a source electrode 60 and a drain electrode 70.

続く工程として、第1図(III)に示すように、同一
レジスト500をそのまま用いて、バックチャネル部9
0に存在するa−8in+層5oをドライエツチングす
る。このドライエツチングには(l系のガス、例えばC
Cfl hガスに02を添加したガスを用いる。又、マ
ージンを含ませて、a−Siの1層40がわずかエツチ
ングされるまで行なう。したがって、バックチャネル部
90はi層のa−8i表面803が露出することになる
As a subsequent step, as shown in FIG. 1 (III), using the same resist 500 as it is, the back channel portion 9 is
Dry etching is performed on the a-8in+ layer 5o present at 0.0. This dry etching is performed using (l-based gas, e.g.
A gas obtained by adding 02 to Cfl h gas is used. Further, etching is performed until one layer 40 of a-Si is slightly etched, including a margin. Therefore, in the back channel section 90, the a-8i surface 803 of the i layer is exposed.

本発明においては、さらに次の工程として、第1図(I
V)に示すように次のプラズマ処理工程が付加されてい
る。
In the present invention, the next step is as shown in FIG.
As shown in V), the following plasma treatment step is added.

ドライエツチングに用いたエツチングガスを完全に排気
した後、0□ガスを用いてプラズマ放電を立て、10分
から15分程度前記エツチングした直後のバックチャネ
ル部90のi層a−8i表面803を曝す。このプラズ
マ処理によって、バックチャネル部90はa−8i表面
が酸化された表面変質層80となる。
After the etching gas used for dry etching is completely exhausted, a plasma discharge is generated using 0□ gas to expose the i-layer a-8i surface 803 of the back channel portion 90 immediately after the etching for about 10 to 15 minutes. Through this plasma treatment, the back channel portion 90 becomes a surface-altered layer 80 in which the a-8i surface is oxidized.

以上の工程を経て、レジスト500がハタ離され、最終
的には第3図に示すような断面形状を有するTPTが仕
上る。
Through the above steps, the resist 500 is separated, and finally a TPT having a cross-sectional shape as shown in FIG. 3 is completed.

上記のように、ドライエツチングに引続き、大気に取り
出さずにガスを切り換えて、プラズマ処理でき、a−8
i表面を汚すことがない。もし、エツチングとプラズマ
処理が分離された製造設備を用いる場合であっても、プ
ラズマ処理後はa−8iのi層と表面変質層との界面を
エツチング表面より深さ方向に内側に設けることが℃き
るため、その影響を著しく軽減することができる。
As mentioned above, following dry etching, plasma processing can be performed by switching the gas without taking it out to the atmosphere.
iDoes not stain the surface. Even if manufacturing equipment in which etching and plasma processing are separated is used, the interface between the i-layer of a-8i and the surface-altered layer should be provided inside the etched surface in the depth direction after plasma processing. ℃, the impact can be significantly reduced.

なお、このプラズマ処理に用いるガスとしては、ML 
酸L N2O、アンモニア、メタン、エタン、プロパン
、ジボランガスなどが単独、もしくはキャリアガクとし
て窒素、酸素ガスを用いた混合ガスなどが用いられる。
Note that the gas used for this plasma treatment is ML
Acid L N2O, ammonia, methane, ethane, propane, diborane gas, etc. may be used alone, or a mixed gas using nitrogen or oxygen gas as a carrier gas may be used.

これらを用いた場合、上記の工程順は同一であるが、出
来る表面変質層80が異なり、オーシュ分析の結果それ
ぞれN、O、C,Bなどが検出された。
When these were used, the above process order was the same, but the resulting surface altered layer 80 was different, and N, O, C, B, etc. were detected in each of them as a result of Ouch analysis.

このような表面変質層80を有するTPTは、第7図(
a)に示すようにTPT特性が製造初期42と液晶表示
デバイスに組立てた後で、分解検査した時41とではほ
とんど変化していない、極めて安定なものできた。これ
は、本発明の実施例において、バックチャネル部90が
パッシベーション膜が付与されてなくとも、表面変質層
80が形成されるため、次工程や、表示デバイス組立工
程において劣化しない特徴を有することによる。
A TPT having such a surface-altered layer 80 is shown in FIG.
As shown in a), the TPT characteristics hardly changed between the initial manufacturing stage 42 and when disassembled and inspected 41 after assembly into a liquid crystal display device, making it extremely stable. This is because in the embodiment of the present invention, even if the back channel portion 90 is not provided with a passivation film, the surface-altered layer 80 is formed, so it has a characteristic that it will not deteriorate in the next process or the display device assembly process. .

この実施例は本発明の他の実施例を示すもので、製造工
程の途中まで、前述の実施例と同一である。
This example shows another example of the present invention, and is the same as the previous example up to the middle of the manufacturing process.

第1図(I)〜(IV)までの前述の実施例と同様な方
法で製造した。その後、本実施例においては第2図にお
ける工程が付加された。第2図(V)において、第1図
(IV)まで行った後レジスト500をハクリしスパッ
タもしくはP−CVDによってSin、もしくはS i
N xなど、あるいはコーターによってポリイミドなど
の膜を形成し、層間絶縁膜100を形成した。その工程
の後、第2図(Vl)においてC1あるいはAρなどの
遮光膜110を1500人〜2000人形成し、レジス
)500を会して所望のパターン形成する。
It was manufactured in the same manner as in the previous examples shown in FIGS. 1 (I) to (IV). Thereafter, the steps shown in FIG. 2 were added in this example. In FIG. 2(V), after performing the steps up to FIG. 1(IV), the resist 500 is peeled off and a Sin or Si film is formed by sputtering or P-CVD.
An interlayer insulating film 100 was formed by forming a film such as Nx or polyimide using a coater. After that process, as shown in FIG. 2 (Vl), a light shielding film 110 such as C1 or Aρ is formed by 1500 to 2000 people, and a resist 500 is formed to form a desired pattern.

上記のように、本実施例においては、表面変質層80を
形成した(実施例1と同様)後層間絶縁膜10O、遮光
膜11O、を形成する工程が付加されている。その結果
最終形態としては第4図に示すような構造を有するTP
Tを製造することが出来る。
As described above, in this example, the step of forming the interlayer insulating film 10O and the light shielding film 11O after forming the surface-altered layer 80 (similar to Example 1) is added. As a result, the final form of the TP has the structure shown in Figure 4.
T can be manufactured.

従来のようにi層a−3i表面(第5図(I)の803
)にこれらの層間絶縁膜や遮光膜を設けた場合、TPT
特性の変動が起こり、再現性に劣しい製造方法であった
が、本発明の実施例のように、表面変質層80を形成す
る工程を介在させる製造方法によれば、実施例と同様第
7図(a)に示すようにTPT特性の安定性が保たれる
特徴を有していた。
As in the conventional case, the i-layer a-3i surface (803 in FIG. 5(I))
), if these interlayer insulating films and light shielding films are provided, TPT
Although the manufacturing method caused variations in characteristics and was poor in reproducibility, according to the manufacturing method including the step of forming the surface-altered layer 80 as in the example of the present invention, the seventh As shown in Figure (a), it had the characteristic that the stability of TPT characteristics was maintained.

これは、層間絶縁膜を形成する工程前にバックチャネル
部を表面変質層で保護した効果と考えられる。遮光膜を
設けず、層間絶縁膜のみの場合はこの層間絶縁膜は一般
で云うパッシベーション膜と等価であり、この場合も同
様の効果が得られている。
This is considered to be the effect of protecting the back channel portion with the surface-altered layer before the step of forming the interlayer insulating film. In the case where no light shielding film is provided and only an interlayer insulating film is provided, this interlayer insulating film is equivalent to a commonly-called passivation film, and the same effect is obtained in this case as well.

〔発明の効果〕〔Effect of the invention〕

以上説明したよりに本発明は、TPTのバックチャネル
部に表面変質層が形成される工程を加えることにより、
a−8iの活性層であるi層表面の汚染や劣化が生じな
く、TPT特性の安定性や信頼性の高い製造方法とする
ことができた。又、パッシベーション膜や遮光膜を設け
るTPTの製造方法においても同様の効果が得られる。
As explained above, the present invention adds a step of forming a surface-altered layer in the back channel part of TPT,
The surface of the i-layer, which is the active layer of a-8i, was not contaminated or deteriorated, and a manufacturing method with high stability and reliability of TPT characteristics could be achieved. Further, similar effects can be obtained in a TPT manufacturing method in which a passivation film or a light shielding film is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)〜(IV)は本発明の一実施例による製造
方法を説明するための工程順を示す断面図、第2図(I
)、 (It)は本発明の製造方法の他の実施例を説明
するための工程順を示す断面図、第3図は第1図の工程
を経た最終構造を示す断面図、第4図は第1図及び第2
図の工程を経た最終構造を示す断面図、第5図(1)〜
(III)は従来の製造方法を説明するための工程順を
示す断面図、第6図は従来の製造方法による最終構造を
示す断面図、第7図(a)およ、び(b)は従来及び本
発明のTPT特性の変化を説明するための特性図である
。 50−n”a−8i膜、803−i、a−8i表面、9
0・・・・・・バックチャネル部、80・・・・・・表
面変質層、100・・・・・・層間絶縁膜、110・・
・・・・遮光膜。 代理人 弁理士  内 原   晋 弼  7 (α)、 (b) ゲ゛−ト電尽
Figures 1 (1) to (IV) are cross-sectional views showing the process order for explaining a manufacturing method according to an embodiment of the present invention, and Figure 2 (I
), (It) is a cross-sectional view showing the process order for explaining another embodiment of the manufacturing method of the present invention, FIG. 3 is a cross-sectional view showing the final structure after the steps in FIG. 1, and FIG. Figures 1 and 2
Cross-sectional view showing the final structure after going through the steps shown in the figure, Figure 5 (1) -
(III) is a sectional view showing the process order for explaining the conventional manufacturing method, FIG. 6 is a sectional view showing the final structure by the conventional manufacturing method, and FIGS. 7(a) and (b) are FIG. 3 is a characteristic diagram for explaining changes in TPT characteristics of the conventional and the present invention. 50-n”a-8i membrane, 803-i, a-8i surface, 9
0... Back channel part, 80... Surface altered layer, 100... Interlayer insulating film, 110...
...Light-shielding film. Agent Patent Attorney Shinsuke Uchihara 7 (α), (b) Gate Denjin

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上にゲート電極、ゲート絶縁膜、アモルファ
スシルコン膜、ソース及びドレイン電極の順に形成され
る逆スタガード、アモルファスシリコン薄膜トランジス
タの製造方法において、ソース電極とドレイン電極間の
バックチャネル部のアモルファスシルコン膜の高不純物
濃度層をエッチングするチャネル堀込み工程の後に、N
、O、C、Bの少なくとも1種類以上が存在する雰囲気
のプラズマ放電により、エッチングしたアモルファスシ
ルコン膜のi層表面を曝して変質層を形成する工程を有
することを特徴とする薄膜トランジスタの製造方法。
In a method for manufacturing an inverted staggered amorphous silicon thin film transistor in which a gate electrode, a gate insulating film, an amorphous silicon film, a source and a drain electrode are formed in this order on an insulating substrate, an amorphous silicon film is formed in the back channel region between the source electrode and the drain electrode. After the channel digging process that etches the high impurity concentration layer of the film, N
A method for manufacturing a thin film transistor, comprising the step of exposing the i-layer surface of an etched amorphous silicon film to form an altered layer by plasma discharge in an atmosphere containing at least one of O, C, and B. .
JP30351887A 1987-11-30 1987-11-30 Manufacture of thin-film transistor Pending JPH01144682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30351887A JPH01144682A (en) 1987-11-30 1987-11-30 Manufacture of thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30351887A JPH01144682A (en) 1987-11-30 1987-11-30 Manufacture of thin-film transistor

Publications (1)

Publication Number Publication Date
JPH01144682A true JPH01144682A (en) 1989-06-06

Family

ID=17921948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30351887A Pending JPH01144682A (en) 1987-11-30 1987-11-30 Manufacture of thin-film transistor

Country Status (1)

Country Link
JP (1) JPH01144682A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241175A (en) * 1988-03-23 1989-09-26 Seikosha Co Ltd Manufacture of amolphous silicon thin film transistor
JPH02146736A (en) * 1988-11-28 1990-06-05 Fujitsu Ltd Manufacture of thin film transistor
NL9302256A (en) * 1992-12-28 1994-07-18 Casio Computer Co Ltd Thin film transistor for liquid crystal display and method of manufacturing it.
JP2007180511A (en) * 2005-12-28 2007-07-12 Samsung Electronics Co Ltd Thin-film transistor substrate, manufacturing method therefor, and display panel having the same
CN100353511C (en) * 2003-08-26 2007-12-05 友达光电股份有限公司 Method for mfg. amorphous silicon film electric crystal of organic electricity excitation light
WO2008105244A1 (en) * 2007-02-28 2008-09-04 Zeon Corporation Active matrix substrate, method for producing the same, and flat display
WO2009128553A1 (en) * 2008-04-18 2009-10-22 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same
JP2011102990A (en) * 2010-12-16 2011-05-26 Sharp Corp Method for manufacturing liquid crystal display device
US7998801B2 (en) 2008-04-25 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor having altered semiconductor layer
US8053294B2 (en) 2008-04-21 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor by controlling generation of crystal nuclei of microcrystalline semiconductor film
US8119468B2 (en) 2008-04-18 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same
US8227278B2 (en) 2008-09-05 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299084A (en) * 1986-06-19 1987-12-26 Toshiba Corp Manufacture of thin film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299084A (en) * 1986-06-19 1987-12-26 Toshiba Corp Manufacture of thin film transistor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241175A (en) * 1988-03-23 1989-09-26 Seikosha Co Ltd Manufacture of amolphous silicon thin film transistor
JPH02146736A (en) * 1988-11-28 1990-06-05 Fujitsu Ltd Manufacture of thin film transistor
NL9302256A (en) * 1992-12-28 1994-07-18 Casio Computer Co Ltd Thin film transistor for liquid crystal display and method of manufacturing it.
US5539551A (en) * 1992-12-28 1996-07-23 Casio Computer Co., Ltd. LCD TFT drain and source electrodes having ohmic barrier, primary conductor, and liquid impermeable layers and method of making
CN100353511C (en) * 2003-08-26 2007-12-05 友达光电股份有限公司 Method for mfg. amorphous silicon film electric crystal of organic electricity excitation light
JP2007180511A (en) * 2005-12-28 2007-07-12 Samsung Electronics Co Ltd Thin-film transistor substrate, manufacturing method therefor, and display panel having the same
US8785934B2 (en) 2005-12-28 2014-07-22 Samsung Display Co., Ltd. Thin film transistor substrate for display panel
US8647928B2 (en) 2005-12-28 2014-02-11 Samsung Display Co., Ltd. Method for manufacturing thin film transistor and liquid crystal by treating a surface layer
WO2008105244A1 (en) * 2007-02-28 2008-09-04 Zeon Corporation Active matrix substrate, method for producing the same, and flat display
US8138032B2 (en) 2008-04-18 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing thin film transistor having microcrystalline semiconductor film
US8119468B2 (en) 2008-04-18 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same
WO2009128553A1 (en) * 2008-04-18 2009-10-22 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method for manufacturing the same
US8053294B2 (en) 2008-04-21 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor by controlling generation of crystal nuclei of microcrystalline semiconductor film
US7998801B2 (en) 2008-04-25 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor having altered semiconductor layer
US8227278B2 (en) 2008-09-05 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing thin film transistor and display device
JP2011102990A (en) * 2010-12-16 2011-05-26 Sharp Corp Method for manufacturing liquid crystal display device

Similar Documents

Publication Publication Date Title
US6350995B1 (en) Thin film transistor and manufacturing method therefore
JPH11283934A (en) Manufacturing method of thin-film transistor and liquid crystal display device using the same
JP3501793B2 (en) Thin film transistor and method of manufacturing the same
JPH1093102A (en) Method of manufacture thin-film transistor
JPH0887033A (en) Production of active matrix display
US4684435A (en) Method of manufacturing thin film transistor
JPS63316470A (en) Manufacture of thin film transistor
JPH01144682A (en) Manufacture of thin-film transistor
JPS62131578A (en) Manufacture of thin film transistor
JP2639356B2 (en) Method for manufacturing thin film transistor
TW474023B (en) Thin film transistor process of liquid crystal display
JPH05304171A (en) Thin-film transistor
JPH0613405A (en) Thin film transistor and manufacture thereof
JP2737982B2 (en) Method for manufacturing thin film transistor
JP3358284B2 (en) Method for manufacturing thin film transistor
JPH10173195A (en) Thin film transistor and its manufacturing method
JPH01120070A (en) Thin-film transistor
JPS63190385A (en) Thin-film transistor and manufacture thereof
JPH02224254A (en) Thin film transistor, manufacture thereof, matrix circuit substrate, and picture display using it
JP4248987B2 (en) Method for manufacturing array substrate
JP2503001B2 (en) Method for manufacturing thin film transistor
JP2630195B2 (en) Thin film field effect transistor and method of manufacturing the same
JPS63155766A (en) Thin film transistor
JPS62214670A (en) Manufacture of thin film transistor
JPH02295132A (en) Manufacture of thin-film transistor