JPH0454992B2 - - Google Patents

Info

Publication number
JPH0454992B2
JPH0454992B2 JP57224945A JP22494582A JPH0454992B2 JP H0454992 B2 JPH0454992 B2 JP H0454992B2 JP 57224945 A JP57224945 A JP 57224945A JP 22494582 A JP22494582 A JP 22494582A JP H0454992 B2 JPH0454992 B2 JP H0454992B2
Authority
JP
Japan
Prior art keywords
sih
tft
thin film
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57224945A
Other languages
Japanese (ja)
Other versions
JPS59115561A (en
Inventor
Kazuhisa Kato
Shinichi Imashiro
Kimihiko Shiratori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP22494582A priority Critical patent/JPS59115561A/en
Publication of JPS59115561A publication Critical patent/JPS59115561A/en
Publication of JPH0454992B2 publication Critical patent/JPH0454992B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は薄膜トランジスタ(Thin Film
Transistor、以下TFTと略す)と呼ばれる半導
体薄膜を用いた電界効果トランジスタの製造方法
に係り、特にアモルフアスSi(以下a−Siと略す)
を半導体薄膜としたTFTの絶縁薄膜の製造方法
に関するものである。 第1図はTFTの一般的な断面構造の一例であ
り、ガラス、セラミツクなどの絶縁物基板1の上
に電界効果トランジスタとしてのゲート電極2が
MoやNiなどの金属、Ni−Crなどの合金或いは
必要があればIn2O3、SnO2、ITOなどの透明導電
性材料で形成されている。ゲート電極2に接する
薄膜層3は絶縁物薄膜であつて、その材料として
はSiO、SiO2、Al2O3などの酸化膜或いはSi3N4
などの窒化膜により形成される。ソース電極4、
ドレイン電極5に接する薄膜層6は半導体薄膜で
あつて、Se、CdS、GaAs、Ge、Siなどの半導体
材料が用いられるのであるが、この半導体薄膜6
は蒸着法、CVD法、プラズマCVD法などで形成
されるので通常多結晶或いはアモルフアス(非晶
質)となる。 このTFTは電界効果トランジスタであつて、
半導体層6の表面に形成されるチヤンネルを通し
てソース電極からドレイン電極へ流れる電流を絶
縁膜3を介してゲート電極2に与える電圧によつ
て制御するものである。 このTFTは、用いられる半導体薄膜が単結晶
である必要がないので基板の選択が容易であるこ
と、大面積のものが得られること、製造工程が比
較的簡単であることなどの理由で種々の装置に組
み合わせて最近広く用いられるようになつてき
た。特に液晶を用いた二次元表示装置の液晶駆動
用スイツチング素子としてその特性改善が研究さ
れ、また種々の材料を用いたTFTが研究開発さ
れている。 このTFTの特性を左右するものは大きく分け
て2つになる。その1つはチヤンネル長やチヤン
ネル幅などの形状因子であり、他の1つは半導体
層の移動度、絶縁膜の局在準位、トラツプなどの
物性因子であるが、前者は設計可能な因子である
ので、後者の因子の制御が重要なのである。 最近特性が比較的安定したTFTとして実用化
が進められているのは、半導体薄膜としてa−Si
を用い、絶縁薄膜として窒化シリコン膜を用いた
ものであるが、これらの薄膜は通常プラズマ
CVD法で形成されることが多い。しかしながら、
そのようなTFTにおいても種々の問題点ないし
欠点が存在し、特性が本当の意味で安定していな
いのが実情である。これは半導体層の性質の安定
性にも問題があるが、絶縁膜の性質の不安定性が
TFTの駆動ゲート電圧の大小、ドレイン電流、
スレツシヨルド電圧(TFTが正常動作を始める
ドレイン電圧の最低値)に与える影響は大きく
TFTの特性及びその安定性を大きく左右してい
たのである。 本発明は、半導体層としてa−Siをまた絶縁層
として窒化シリコン膜をグロー放電によるプラズ
マCVD法で形成したTFTにおいて、新たに見出
された絶縁膜の製作条件を提供することによつて
TFTの特性及びその安定性を向上させようとす
るものである。 以下、本発明の一実施例について説明する。 絶縁層である窒化シリコン膜(Si3N4)をプラ
ズマCVD法を用いて形成する場合、現在用いら
れるガスは1つはSiH4−N2系であり、もう1つ
はSiH4−NH3系であり、希釈するガスとしては
N2,Arガスなどである。今までは得られる膜の
組成(N/Si比)或いは膜の歪などが着目され、
組成が同じでも膜の歪、局在準位が少なそうであ
るなどの理由からSiH4−NH3系がより多く用い
られている。これら2つの混合ガス系を比較して
みると、実験結果として次のような傾向が得られ
た。すなわち、SiH4−N2系による絶縁層のTFT
の場合、ゲート電圧Vg=0におけるドレイン電
流Id(すなわち、TFTのOFF電流)は小さくて良
いのであるが、スレツシヨルド電圧Vthが大きく
また変動しやすい傾向があつた。Vthの移動と変
動が大きいことは液晶などを用いた二次元表示装
置の一定電圧による駆動ができないといつた大き
な問題点を生じさせる。この原因は断定できない
が窒化シリコン膜の局在準位による窒化シリコン
膜と半導体層との電荷のやりとりに起因すると思
われる。 一方、SiH4−NH3系による絶縁層のTFTの場
合、Vthは比較的小さくまた変動は少ないが、
Vg=0におけるId、すなわちTFTのOFF電流が
大きく、従つてON−OFF比が大きくとれずスイ
ツチング特性が良くないという問題点が生じる。
これもまた原因を断定できないが、半導体層であ
るa−Siの極く表面に反転層を形成せしめるよう
な要因を絶縁層が有しているものと思われる。 本発明者等はこの2つの系のそれぞれの長所を
生かしながら安定したTFTを得るガスの条件を
探すべく実験した結果、SiH4−NH3−N2なる混
合ガスにH2ガスを加えたSiH4−NH3−N2−H2
において良好な結果が得られることを見出したの
である。 本発明の内容を以下の実施例によつて更に詳し
く説明する。まずTFTの製作工程及び形状は次
の通りである。 (1) ガラス基板(コーニング7059)上にMoを電
子ビーム蒸着で約1000Å厚みで形成し、写真蝕
刻法で幅70μmの線としゲート電極とする。 (2) 次にグロー放電によるプラズマCVD法で窒
化シリコン膜を2000Å、更にその上にa−Si膜
を3000Å形成する。 (3) 写真蝕刻法でゲート電極上にあるa−Si層の
みを幅90μmの線にする。 (4) その上にAlを約2000Å蒸着し、写真蝕刻法
によりチヤンネル長10μm、チヤンネル幅1.7mm
の大きさになるよう電極の分離を行いTFTを
完成する。 このような製作工程及び形状のTFTにおいて、
グロー放電によるプラズマCVD法の条件は次の
通りである。
The present invention relates to a thin film transistor (Thin Film Transistor).
It relates to a method for manufacturing a field effect transistor using a semiconductor thin film called Transistor (hereinafter abbreviated as TFT), especially amorphous Si (hereinafter abbreviated as a-Si).
The present invention relates to a method for manufacturing an insulating thin film of TFT using a semiconductor thin film. Figure 1 shows an example of a general cross-sectional structure of a TFT, in which a gate electrode 2 as a field effect transistor is placed on an insulating substrate 1 made of glass, ceramic, etc.
It is formed of a metal such as Mo or Ni, an alloy such as Ni-Cr, or, if necessary, a transparent conductive material such as In 2 O 3 , SnO 2 or ITO. The thin film layer 3 in contact with the gate electrode 2 is an insulating thin film, and its material is an oxide film such as SiO, SiO 2 , Al 2 O 3 or Si 3 N 4
It is formed from a nitride film such as. source electrode 4,
The thin film layer 6 in contact with the drain electrode 5 is a semiconductor thin film, and semiconductor materials such as Se, CdS, GaAs, Ge, and Si are used.
Since it is formed by vapor deposition, CVD, plasma CVD, etc., it is usually polycrystalline or amorphous. This TFT is a field effect transistor,
The current flowing from the source electrode to the drain electrode through the channel formed on the surface of the semiconductor layer 6 is controlled by the voltage applied to the gate electrode 2 via the insulating film 3. This TFT has been developed for various reasons, including the fact that the semiconductor thin film used does not need to be a single crystal, so it is easy to select a substrate, a large area can be obtained, and the manufacturing process is relatively simple. Recently, it has become widely used in combination with equipment. In particular, research has been conducted to improve the characteristics of switching elements for driving liquid crystals in two-dimensional display devices using liquid crystals, and TFTs using various materials are being researched and developed. There are broadly two things that affect the characteristics of this TFT. One is shape factors such as channel length and channel width, and the other is physical property factors such as mobility of semiconductor layer, localized level of insulating film, and traps, but the former is a factor that can be designed. Therefore, controlling the latter factor is important. The TFT that has recently been put into practical use with relatively stable characteristics is a-Si as a semiconductor thin film.
A silicon nitride film is used as the insulating thin film, but these thin films are usually exposed to plasma.
Often formed by CVD method. however,
The reality is that such TFTs have various problems and drawbacks, and their characteristics are not truly stable. This is a problem with the stability of the properties of the semiconductor layer, but it is also a problem with the instability of the properties of the insulating film.
The magnitude of TFT drive gate voltage, drain current,
It has a large effect on the threshold voltage (the lowest value of drain voltage at which the TFT starts operating normally).
This greatly influenced the characteristics and stability of TFTs. The present invention provides newly discovered insulating film manufacturing conditions for TFTs in which a-Si is used as a semiconductor layer and a silicon nitride film is used as an insulating layer by a plasma CVD method using glow discharge.
The aim is to improve the characteristics and stability of TFTs. An embodiment of the present invention will be described below. When forming a silicon nitride film (Si 3 N 4 ), which is an insulating layer, using the plasma CVD method, one of the gases currently used is SiH 4 -N 2 and the other is SiH 4 -NH 3 . system, and the diluting gas is
These include N 2 and Ar gas. Until now, the focus has been on the composition of the resulting film (N/Si ratio) or the strain of the film.
Even though the composition is the same, the SiH 4 -NH 3 system is more commonly used because it seems to have less distortion in the film and fewer localized levels. When comparing these two mixed gas systems, the following trends were obtained as experimental results. In other words, TFT with an insulating layer based on SiH 4 −N 2 system
In this case, the drain current Id (that is, the OFF current of the TFT) at gate voltage Vg=0 may be small, but the threshold voltage Vth tends to be large and fluctuate easily. The large movement and fluctuation of Vth causes a major problem such as the inability to drive a two-dimensional display device using a liquid crystal or the like with a constant voltage. Although the cause of this cannot be determined with certainty, it is thought to be caused by the exchange of charges between the silicon nitride film and the semiconductor layer due to localized levels in the silicon nitride film. On the other hand, in the case of a TFT with an insulating layer based on SiH 4 −NH 3 system, Vth is relatively small and has little variation, but
A problem arises in that Id at Vg=0, that is, the OFF current of the TFT is large, and therefore the ON-OFF ratio cannot be large, resulting in poor switching characteristics.
Although the cause of this cannot be determined, it is thought that the insulating layer has a factor that causes an inversion layer to be formed on the very surface of the a-Si semiconductor layer. The inventors of the present invention conducted experiments to find gas conditions that would provide a stable TFT while taking advantage of the respective advantages of these two systems. 4 −NH 3 −N 2 −H 2
They found that good results could be obtained. The content of the present invention will be explained in more detail with reference to the following examples. First, the manufacturing process and shape of the TFT are as follows. (1) Form Mo on a glass substrate (Corning 7059) to a thickness of approximately 1000 Å by electron beam evaporation, and use photolithography to form a line with a width of 70 μm to serve as the gate electrode. (2) Next, a silicon nitride film with a thickness of 2000 Å is formed using a plasma CVD method using glow discharge, and an a-Si film with a thickness of 3000 Å is further formed thereon. (3) Using photolithography, only the a-Si layer on the gate electrode is made into a 90 μm wide line. (4) Approximately 2000 Å of Al was vapor-deposited on it, and the channel length was 10 μm and the channel width was 1.7 mm by photolithography.
Complete the TFT by separating the electrodes so that they have the same size. In a TFT with such a manufacturing process and shape,
The conditions for the plasma CVD method using glow discharge are as follows.

【表】 上表から判るように、この実施例においては窒
化シリコン膜製作条件においてガス組成のみを(A)
SiH4−NH3−H2、(B)SiH4−N2−H2、(C)SiH4
NH3−N2−H2と変えてTFTが製作されている。
これらの製作されたTFTのId−Vg特性を第2
図、第3図および第4図に示す。測定は暗室内
dryN2ガス中で行なつた。図中1,2は、それぞ
れ製作直後の特性1及び繰り返し測定後の特性2
を意味している。第2図から判るようにSiH4
NH3−H2系においてはVthは約1.5V程度と移動
は小さいが、Vg=0におけるIdが変動増加する
しまたその値も10-11〜10-10AとOFF電流は大き
い。また第3図から判るようにSiH4−N2−H2
においてはVg=0におけるIdは充分小さく
10-12A程度であるが、Vthの移動が3〜4V程度
と大きくなつてしまう。 このようにH2ガスの効果はSiH4−NH3系にお
いても、SiH4−N2系に不充分なのである。しか
るに第4図から判るようにSiH4−NH3系とSiH4
−N2系の混合の中にH2ガスをいれたSiH4−NH3
−N2−H2系においては、Vg=0におけるIdも
10-12Aと充分に小さく、Vthの移動は約1.1Vで繰
り返し測定しても殆んど変動せず安定したTFT
が得られたのである。その原因を断定することは
現段階においてはできないが、SiH4−NH3−N2
系にH2ガスが加わることによつてTFTに用いら
れる窒化シリコン膜が良好になつて安定すること
が判明した。 SiH4、NH3、N2、H2の比率とTFTに適した
膜の性質との関係を種々の実験によつて調べたと
ころ次のような結果が得られた。 モル比NH3/SiH4、N2/SiH4が余り小さいと
絶縁膜の抵抗値が下がりゲート絶縁層としての機
能が低下する。一方、余り大きいと耐薬品、耐湿
性に乏しい絶縁膜となる。結果としてTFTとし
て満足できるモル比はNH3/SiH4=2〜10,
N2/SiH4=4〜20と考えられる。モル比H2
SiH4は生膜速度と絶縁膜中のH濃度及び結合状
態に影響を与え、それによると思われるVthの変
動が観測された。TFTとして満足しうるモル比
はH2/SiH4=1〜20が良いことが判つた。これ
らに加えて放電(RF)電力が小さいときには、
NH3/SiH4,N2/SiH4は上述した範囲において
大である方が、逆に放電(RF)電力が大きい時
には、NH3/SiH4、N2/SiH4を上述の範囲内で
小さくとる方がTFTに用いられる窒化シリコン
膜として良好となる傾向が見いだされている。い
ずれにしてもSiH4−NH3−N2ガス系にH2ガスを
混合してグロー放電によるプラズマCVD法で形
成された窒化シリコン膜は、スレツシヨルド電圧
およびドレイン電流の移動変動が小さく、ドレイ
ンOFF電流が小さいといつたように安定して良
好な特性をもつTFTを得るには極めて望ましい
性質を有しているものである。
[Table] As can be seen from the table above, in this example, only the gas composition was changed to (A) under the silicon nitride film manufacturing conditions.
SiH 4 −NH 3 −H 2 , (B)SiH 4 −N 2 −H 2 , (C)SiH 4
TFT has been manufactured instead of NH 3 −N 2 −H 2 .
The Id-Vg characteristics of these fabricated TFTs are
3 and 4. Measurement is done in a dark room
Performed in dryN2 gas. 1 and 2 in the figure are characteristic 1 immediately after fabrication and characteristic 2 after repeated measurements, respectively.
It means. As can be seen from Figure 2, SiH 4
In the NH 3 -H 2 system, Vth is about 1.5V, which is a small movement, but Id at Vg=0 fluctuates and increases, and its value is 10 -11 to 10 -10 A, which is a large OFF current. Also, as can be seen from Figure 3, in the SiH 4 -N 2 -H 2 system, Id at Vg = 0 is sufficiently small.
Although it is about 10 -12 A, the movement of Vth becomes large, about 3 to 4 V. In this way, the effect of H 2 gas is insufficient for the SiH 4 -NH 3 system as well as for the SiH 4 -N 2 system. However, as shown in Figure 4, the SiH 4 -NH 3 system and the SiH 4
-SiH 4 -NH 3 containing H 2 gas in a mixture of -N 2
In the −N 2 −H 2 system, Id at Vg=0 is also
10 -12 A, which is sufficiently small, and the Vth movement is approximately 1.1V, making it a stable TFT with almost no fluctuation even after repeated measurements.
was obtained. Although it is not possible to determine the cause at this stage, SiH 4 −NH 3 −N 2
It was found that the addition of H 2 gas to the system improves and stabilizes the silicon nitride film used in TFTs. The relationship between the ratio of SiH 4 , NH 3 , N 2 , and H 2 and the properties of a film suitable for TFT was investigated through various experiments, and the following results were obtained. If the molar ratios NH 3 /SiH 4 and N 2 /SiH 4 are too small, the resistance value of the insulating film decreases and its function as a gate insulating layer deteriorates. On the other hand, if it is too large, the insulating film will have poor chemical resistance and moisture resistance. As a result, the molar ratio that can be satisfied as a TFT is NH 3 /SiH 4 = 2 to 10,
It is thought that N 2 /SiH 4 =4 to 20. Molar ratio H 2 /
SiH 4 affects the biofilm speed, H concentration and bonding state in the insulating film, and fluctuations in Vth were observed, which seems to be caused by this. It has been found that the molar ratio H 2 /SiH 4 =1 to 20 is satisfactory for TFT. In addition to these, when the discharge (RF) power is small,
It is better for NH 3 /SiH 4 and N 2 /SiH 4 to be within the above range, but conversely when the discharge (RF) power is large, NH 3 /SiH 4 and N 2 /SiH 4 should be within the above range. It has been found that the smaller the thickness, the better the silicon nitride film used in TFTs. In any case, the silicon nitride film formed by the plasma CVD method using glow discharge by mixing H 2 gas in the SiH 4 -NH 3 -N 2 gas system has small movement fluctuations in threshold voltage and drain current, and the drain is turned OFF. It has extremely desirable properties in order to obtain a TFT with stable and good characteristics, such as a small current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な薄膜トランジスタ(TFT)
の断面構造例。第2図は絶縁膜製作条件として
SiH4−NH3−H2ガスを用いた場合のTFTのId−
Vg特性例を示すグラフ。第3図は絶縁膜製作条
件としてSiH4−N2−H2ガスを用いた場合の
TFTのId−Vg特性例を示すグラフ。第4図は絶
縁膜製作条件として本発明によるSiH4−NH3
N2−H2ガスを用いた場合のTFTのId−Vg特性
例を示すグラフである。 1……基板;2……ゲート電極;3……薄膜
層;4……ソース電極;5……ドレイン電極;6
……半導体薄膜。
Figure 1 shows a typical thin film transistor (TFT)
Example of cross-sectional structure. Figure 2 shows the insulating film manufacturing conditions.
Id− of TFT when using SiH 4 −NH 3 −H 2 gas
Graph showing an example of Vg characteristics. Figure 3 shows the case where SiH 4 −N 2 −H 2 gas is used as the insulating film manufacturing condition.
Graph showing an example of Id-Vg characteristics of TFT. Figure 4 shows SiH 4 −NH 3 − according to the present invention as the insulating film manufacturing conditions.
It is a graph showing an example of Id-Vg characteristics of TFT when N2 - H2 gas is used. 1... Substrate; 2... Gate electrode; 3... Thin film layer; 4... Source electrode; 5... Drain electrode; 6
...Semiconductor thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 アモルフアスシリコン膜を半導体層とし、窒
化シリコン膜をゲート絶縁層としてそれらをグロ
ー放電によるプラズマCVD法で形成する薄膜ト
ランジスタの製造方法において、上記ゲート絶縁
層を得るためのガス組成として、SiH4−NH3
N2−H2の混合ガスを使用し、且つ上記ガスのモ
ル比がNH3/SiH4=2〜10;N2/SiH4=4〜
20;H2/SiH4=1〜20の範囲にあるようにした
ことを特徴とする薄膜トランジスタの製造方法。
1. In a method for manufacturing a thin film transistor in which an amorphous silicon film is used as a semiconductor layer and a silicon nitride film is used as a gate insulating layer and they are formed by a plasma CVD method using glow discharge, the gas composition for obtaining the gate insulating layer is SiH 4NH3−
A mixed gas of N 2 - H 2 is used, and the molar ratio of the above gases is NH 3 /SiH 4 = 2 to 10; N 2 /SiH 4 = 4 to
20; A method for manufacturing a thin film transistor, characterized in that H 2 /SiH 4 is in a range of 1 to 20.
JP22494582A 1982-12-23 1982-12-23 Manufacture of thin film transistor Granted JPS59115561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22494582A JPS59115561A (en) 1982-12-23 1982-12-23 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22494582A JPS59115561A (en) 1982-12-23 1982-12-23 Manufacture of thin film transistor

Publications (2)

Publication Number Publication Date
JPS59115561A JPS59115561A (en) 1984-07-04
JPH0454992B2 true JPH0454992B2 (en) 1992-09-01

Family

ID=16821650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22494582A Granted JPS59115561A (en) 1982-12-23 1982-12-23 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPS59115561A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680827B2 (en) * 1988-08-12 1994-10-12 日本プレシジョン・サーキッツ株式会社 Inverted stagger type amorphous silicon thin film transistor and manufacturing method thereof
JP2827637B2 (en) * 1991-12-02 1998-11-25 日本電気株式会社 Thin film transistor device and method of manufacturing the same
TW384515B (en) * 1993-07-14 2000-03-11 Frontec Inc Electronic device and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419662A (en) * 1977-07-15 1979-02-14 Hitachi Ltd Forming method of plasma cvd film
JPS559427A (en) * 1978-07-07 1980-01-23 Hitachi Ltd Manufacturing device of silicon nitride film
JPS55107234A (en) * 1979-02-13 1980-08-16 Hitachi Ltd Method of monitoring deposition film quality
JPS56135968A (en) * 1980-03-27 1981-10-23 Canon Inc Amorphous silicon thin film transistor and manufacture thereof
JPS5769778A (en) * 1980-10-17 1982-04-28 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419662A (en) * 1977-07-15 1979-02-14 Hitachi Ltd Forming method of plasma cvd film
JPS559427A (en) * 1978-07-07 1980-01-23 Hitachi Ltd Manufacturing device of silicon nitride film
JPS55107234A (en) * 1979-02-13 1980-08-16 Hitachi Ltd Method of monitoring deposition film quality
JPS56135968A (en) * 1980-03-27 1981-10-23 Canon Inc Amorphous silicon thin film transistor and manufacture thereof
JPS5769778A (en) * 1980-10-17 1982-04-28 Matsushita Electric Ind Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS59115561A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
US8907336B2 (en) Stable amorphous metal oxide semiconductor
US4625224A (en) Thin film transistor having polycrystalline silicon layer with 0.01 to 5 atomic % chlorine
JPS58199564A (en) Semiconductor element
JP2007158307A (en) Field effect transistor
JPH05283691A (en) Thin film transistor and manufacture thereof
US6326226B1 (en) Method of crystallizing an amorphous film
JPS633463A (en) Manufacture of thin film transistor
JPS59141271A (en) Thin-film transistor
US9583633B2 (en) Oxide for semiconductor layer of thin film transistor, thin film transistor and display device
JPS63308384A (en) Thin film transistor
JPH0454992B2 (en)
Lin et al. Amorphous-silicon thin-film transistors with very high field-effect mobility
US4982251A (en) Semiconductor element
JPS59213169A (en) Thin film transistor
JPS58148458A (en) Thin film transistor
JP2794833B2 (en) Method for manufacturing thin film transistor
JPS61150278A (en) Thin film transistor
JPH0367350B2 (en)
JPS60198864A (en) Thin film transistor
JPS63178559A (en) Thin-film transistor
JPH03263323A (en) Forming method of plasma cvd silicon nitride film
JPS6226861A (en) Amorphous silicon thin film transistor
JPH0277159A (en) Thin film semiconductor element
JPH04243166A (en) Thin film transistor and manufacture thereof
KR910001910B1 (en) Surface display device