KR100328848B1 - Manufacturing Method of Thin Film Transistor - Google Patents

Manufacturing Method of Thin Film Transistor Download PDF

Info

Publication number
KR100328848B1
KR100328848B1 KR1019980024341A KR19980024341A KR100328848B1 KR 100328848 B1 KR100328848 B1 KR 100328848B1 KR 1019980024341 A KR1019980024341 A KR 1019980024341A KR 19980024341 A KR19980024341 A KR 19980024341A KR 100328848 B1 KR100328848 B1 KR 100328848B1
Authority
KR
South Korea
Prior art keywords
layer
semiconductor layer
forming
thin film
gate electrode
Prior art date
Application number
KR1019980024341A
Other languages
Korean (ko)
Other versions
KR20000003175A (en
Inventor
이경하
Original Assignee
주식회사 현대 디스플레이 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현대 디스플레이 테크놀로지 filed Critical 주식회사 현대 디스플레이 테크놀로지
Priority to KR1019980024341A priority Critical patent/KR100328848B1/en
Publication of KR20000003175A publication Critical patent/KR20000003175A/en
Application granted granted Critical
Publication of KR100328848B1 publication Critical patent/KR100328848B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate

Abstract

본 발명은 박막 트랜지스터 액정표시소자의 제조방법에 관한 것으로, 특히, 고이동도를 얻을 수 있는 박막 트랜지스터의 제조방법에 관한 것이다. 본 발명의 박막 트랜지스터의 제조방법은, 상부면에 게이트 전극이 형성되고, 상기 게이트 전극이 덮혀지도록 전면 상에 게이트 절연막이 도포된 기판을 제공하는 단계; 상기 게이트 전극 상부의 게이트 절연막 상에 비정질실리콘층과 미세 결정질실리콘층이 각각 10 내지 100두께와 10 내지 200두께로 적어도 2 내지 20층씩이 번갈아 적층된 다층구조의 반도체층을 형성하는 단계; 상기 반도체층의 중심부 상에 에치 스톱퍼를 형성하는 단계; 상기 에치 스톱퍼의 양측 가장자리 및 반도체층 상에 오믹층은 형성 하는 단계; 상기 오막층 상에 소오스/드레인 전극을 형성하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a thin film transistor liquid crystal display device, and more particularly, to a method for manufacturing a thin film transistor capable of obtaining high mobility. According to an aspect of the present invention, there is provided a method of fabricating a thin film transistor, the method comprising: providing a substrate having a gate electrode formed on an upper surface thereof and a gate insulating film coated on a front surface thereof so as to cover the gate electrode; An amorphous silicon layer and a fine crystalline silicon layer are each 10 to 100 on the gate insulating layer on the gate electrode. Thickness and 10 to 200 Forming a semiconductor layer having a multilayer structure in which at least 2 to 20 layers are alternately stacked in thickness; Forming an etch stopper on a central portion of the semiconductor layer; Forming an ohmic layer on both edges of the etch stopper and the semiconductor layer; And forming a source / drain electrode on the ohmic layer.

Description

박막 트랜지스터의 제조방법Manufacturing Method of Thin Film Transistor

본 발명은 박막 트랜지스터 액정표시소자의 제조방법에 관한 것으로, 특히, 고이동도를 얻을 수 있는 박막 트랜지스터의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a thin film transistor liquid crystal display device, and more particularly, to a method for manufacturing a thin film transistor capable of obtaining high mobility.

텔레비젼 및 그래픽 디스플레이 등의 표시 장치에 이용되는액정표시소자(Liquid Crystal Display : 이하, LCD)는 CRT(Cathod-ray tube)를 대신하여 개발되어져 왔다. 특히, 매트릭스 형태로 배열된 각 화소마다 박막 트랜지스터(Thin Film Transistor : 이하, TFT)가 구비되는 TFT LCD는 고속 응답 특성을 갖는 잇점과 고화소수에 적합하다는 잇점 때문에 CRT에 필적할만한 화면의 고화질화 및 대형화, 컬러화 등을 실현하고 있다.Liquid crystal displays (LCDs) used in display devices such as televisions and graphic displays have been developed in place of the CRT (Cathod-ray tube). In particular, TFT LCDs equipped with thin film transistors (TFTs) for each pixel arranged in a matrix form have high speed response characteristics and are suitable for high pixel numbers, so that the screen quality comparable to the CRT is increased and large. Colorization is realized.

여기서, TFT LCD는 통상 매트릭스 형태로 배열된 각 화소들마다 그들의 구동을 독립적으로 제어하기 위한 스위칭 소자로서 TFT가 형성되어 있는 하부기판과, 컬러화를 실현하기 위한 레드(Red), 블루(Blue), 및 그린(Green)의 삼색으로 이루어진 컬러필터들이 반복적으로 배열되어 있는 상부기판이 액정층의 개재하에 합착 되어 이루어진 구조이다.Here, a TFT LCD is usually a lower substrate on which TFTs are formed as switching elements for independently controlling their driving for each pixel arranged in a matrix form, and red, blue, And an upper substrate on which color filters composed of three colors of green are repeatedly arranged under the interposition of the liquid crystal layer.

도 1은 상기한 종래 TFT LCD의 하부기판을 도시한 단면도로서, 도시된 바와 같이, 유리 기판(1) 상에는 게이트 전극(2)이 형성되어 있고, 이러한 게이트 전극(2)이 덮혀지도록 유리기판(1) 전면에는 게이트 절연막(3)이 도포되어 있다. 그리고, 게이트 전극(2) 상부의 게이트 절연막(3) 상에는 패턴의 형태로 도핑되지 않은 비정질실리콘층으로 이루어진 반도체층(4)이 형성되어 있으며, 이 반도체층(4)의 중심부 상에는 통상 SiNX와 같은 금속층으로된 에치 스톱퍼(5)가 형성되어 있고, 상기 에치 스톱퍼(5) 및 반도체층(4) 상에는 불순물이 도핑된 비정질실리콘층으로 이루어진 오믹층(6)이 형성되어 있다.1 is a cross-sectional view illustrating a lower substrate of the conventional TFT LCD. As shown in the drawing, a gate electrode 2 is formed on a glass substrate 1, and a glass substrate (2) is covered so that the gate electrode 2 is covered. 1) The gate insulating film 3 is coated on the entire surface. On the gate insulating film 3 above the gate electrode 2, a semiconductor layer 4 made of an undoped amorphous silicon layer in the form of a pattern is formed, and on the center of the semiconductor layer 4, usually SiN X and An etch stopper 5 made of the same metal layer is formed, and an ohmic layer 6 made of an amorphous silicon layer doped with impurities is formed on the etch stopper 5 and the semiconductor layer 4.

또한, 화소영역에 해당하는 게이트 절연막 부분 상에는 투명 금속인 ITO(Indium Tin Oxide) 금속으로된 화소전극(8)이 형성되어 있고, 오믹층(6) 상에는 소오스/드레인 전극(7A, 7B)이 형성되어 있으며, 도시된 바와 같이, 소오스 전극(7A)은 화소전극(8)과 콘택되어 있다.In addition, a pixel electrode 8 made of indium tin oxide (ITO) metal, which is a transparent metal, is formed on a portion of the gate insulating layer corresponding to the pixel region, and source / drain electrodes 7A and 7B are formed on the ohmic layer 6. As shown, the source electrode 7A is in contact with the pixel electrode 8.

그러나, 상기와 같은 종래 TFT LCD는 비정질실리콘층으로 이루어진 반도체층의 낮은 이동도와 높은 광누설로 인하여 대화면의 고품위 LCD를 제작하는데 어려운 문제점이 있었다. 즉, 액정을 구동하기 위해 요구되는 최소한의 시간내에 차징을 시키기 위해서는 높은 이동도를 요구하게 되며, 또한, 14인치급 이상의 동영상 TFT LCD를 구현하기 위해서는 1.5cm2/Vs 이상의 이동도를 확보해야 하지만, 종래 비정질실리콘층으로 이루어진 반도체층의 경우에는 이동도가 1.2cm2/Vs 이하이기 때문에 대화면 TFT LCD의 제조에 적용시킬 수 없다.However, the conventional TFT LCD as described above has a problem that it is difficult to manufacture a high-quality LCD of a large screen due to the low mobility and high light leakage of the semiconductor layer consisting of an amorphous silicon layer. That is, in order to charge within the minimum time required to drive the liquid crystal, high mobility is required, and in order to realize a 14-inch or larger moving picture TFT LCD, it is necessary to secure mobility of 1.5 cm 2 / Vs or more. In the case of a semiconductor layer made of a conventional amorphous silicon layer, the mobility is 1.2 cm 2 / Vs or less, and thus it cannot be applied to the manufacture of a large screen TFT LCD.

한편, 종래에는 반도체층의 이동도를 향상시키기 위하여 비정질실리콘층 대신에 다결정실리콘층을 이용하는 연구가 진행되고 있으나, 이 경우, 이동도는 향상시킬 수 있지만, 제조비용이 증가되어 대화면 TFT LCD의 제조에 용이하게 적용할 수 없는 문제점이 있다.On the other hand, in the past, researches using a polysilicon layer instead of an amorphous silicon layer to improve the mobility of the semiconductor layer, but in this case, the mobility can be improved, but the manufacturing cost is increased to manufacture a large screen TFT LCD There is a problem that can not be easily applied to.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 고이동도를 구현할 수 있는 TFT의 제조방법을 제공하는데, 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, to provide a method for manufacturing a TFT that can implement high mobility, an object thereof.

도 1은 종래 기술에 따른 박막 트랜지스터 액정표시소자의 하부기판을 도시한 단면도.1 is a cross-sectional view showing a lower substrate of a thin film transistor liquid crystal display device according to the prior art.

도 2a 및 도 2b는 본 발명의 실시예에 따른 박막 트랜지스터의 제조방법을 설명하기 위한 공정 단면도.2A and 2B are cross-sectional views illustrating a method of manufacturing a thin film transistor according to an exemplary embodiment of the present invention.

(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

11 : 유리기판 12 : 게이트 전극11 glass substrate 12 gate electrode

13 : 게이트 절연막 14 : 비정실리콘층13 gate insulating film 14 amorphous silicon layer

15 : 미세 결정질실리콘층 16 : 반도체층15 fine crystalline silicon layer 16 semiconductor layer

17 : 에치 스톱퍼 18 : 오믹층17: etch stopper 18: ohmic layer

19A : 소오스 전극 19B : 드레인 전극19A: source electrode 19B: drain electrode

상기와 같은 목적을 달성하기 위한 본 발명의 TFT의 제조방법은, 상부면에게이트 전극이 형성되고, 상기 게이트 전극이 덮혀지도록 게이트 절연막이 도포된 기판을 제공하는 단계; 상기 게이트 전극 상부의 게이트 절연막 상에 비정질실리콘층과 미세 결정질실리콘층이 각각 10 내지 100두께와 10 내지 200두께로 적어도 2 내지 20층씩이 번갈아 적층된 다층 구조의 반도체층을 형성하는 단계; 상기 반도체층의 중심부 상에 에치 스톱퍼를 형성하는 단계; 상기 에치 스톱퍼의 양측 가장자리 및 반도체층 상에 오믹층을 형성하는 단계; 상기 오믹층 상에 소오스/드레인 전극을 형성하는 단계를 포함하는 것을 특징으로 한다.In accordance with another aspect of the present invention, there is provided a method of manufacturing a TFT, including: providing a substrate having a gate electrode formed on an upper surface thereof, and having a gate insulating film coated thereon to cover the gate electrode; An amorphous silicon layer and a fine crystalline silicon layer are each 10 to 100 on the gate insulating layer on the gate electrode. Thickness and 10 to 200 Forming a semiconductor layer having a multilayer structure in which at least 2 to 20 layers are alternately stacked in thickness; Forming an etch stopper on a central portion of the semiconductor layer; Forming an ohmic layer on both edges of the etch stopper and the semiconductor layer; And forming a source / drain electrode on the ohmic layer.

본 발명에 따르면, 반도체층을 수 개의 비정질실리콘층과 미세 결정질실리콘층의 적층 구조로 형성하고, 아울러, 미세 결정질실리콘층의 두께를 비정질실리콘층의 두께 보다 더 두껍게 형성하여 실질적인 전자의 흐름을 미세 결정질실리콘층이 주도하게 함으로써, 반도체층의 고이동도를 구현할 수 있다.According to the present invention, the semiconductor layer is formed of a laminated structure of several amorphous silicon layers and fine crystalline silicon layers, and the thickness of the fine crystalline silicon layer is formed thicker than the thickness of the amorphous silicon layer to substantially reduce the flow of electrons. By driving the crystalline silicon layer, high mobility of the semiconductor layer can be realized.

이하, 첨부된 도면에 의거하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 및 도 2b는 본 발명의 실시예에 따른 TFT의 제조방법을 설명하기 위한 공정 단면도로서, 우선, 도 2a에 도시된 바와 같이, 유리기판(11) 상에 게이트 전극(12)을 형성하고, 이러한 게이트 전극(12)이 덮혀지도록 유리기판(11) 전면 상에 게이트 절연막(13)을 형성한다. 그런 다음, 게이트 절연막(13) 상에 비정질실리콘층(14 : 이하, a-Si층이라 칭함)과 미세 결정질실리콘층(15 : 이하, μc-Si층이라 칭함)을 적층시킨다.2A and 2B are cross-sectional views illustrating a method of manufacturing a TFT according to an embodiment of the present invention. First, as shown in FIG. 2A, a gate electrode 12 is formed on a glass substrate 11. The gate insulating layer 13 is formed on the entire surface of the glass substrate 11 so that the gate electrode 12 is covered. Then, an amorphous silicon layer (14: hereinafter referred to as an a-Si layer) and a fine crystalline silicon layer (15: hereinafter referred to as a μc-Si layer) are laminated on the gate insulating film 13.

여기서, a-Si층(14)은 10 내지 100Å 두께로 형성하고, μc-Si층(15)은 10내지 200Å 두께로 형성함으로써, 상기 μc-Si층(15)의 두께가 a-Si층(14)의 두께와 같거나 크게 되도록 하며, 아울러, 상기 층들(14, 15)은 적어도 2층 이상씩, 바람직하게는, 통상적인 반도체층의 두께를 고려하여 2층 내지 20층씩을 번갈아 적층시킨다.Herein, the a-Si layer 14 is formed to have a thickness of 10 to 100 GPa, and the μc-Si layer 15 is formed to have a thickness of 10 to 200 GPa, so that the thickness of the μc-Si layer 15 is a-Si layer ( 14 and 15, and the layers 14 and 15 are alternately stacked by at least two layers, preferably two to twenty layers in consideration of the thickness of a conventional semiconductor layer.

이어서, 도 2b에 도시된 바와 같이, 적어도 2층 이상씩이 번갈아 적층되어 있는 μc-Si층과 a-Si층을 식각하여 게이트 전극(12) 상부의 게이트 절연막(13) 부분 상에 상기 a-Si층과 μc-Si층으로 이루어진 반도체층(15)을 형성한다.Subsequently, as shown in FIG. 2B, at least two or more layers of the c-Si layer and the a-Si layer are alternately etched to etch the a- on the portion of the gate insulating layer 13 above the gate electrode 12. A semiconductor layer 15 composed of an Si layer and a μc-Si layer is formed.

그리고 나서, a-Si층과 μc-Si층들의 적층 구조로된 반도체층(16)의 중심부 상에 공지된 방법으로 에치 스톱퍼(17)를 형성하고, 상기 에치 스톱퍼(17)의 양측 가장자리 및 노출된 반도체층(16) 상에 불순물이 도핑된 미세 결정질실리콘층(이하, n+μc-Si층으로 칭함)으로 이루어진 오믹층(18)을 형성한 후, 상기 오믹층(18) 상에 소오스/드레인 전극(19A, 19B)를 형성하여 TFT를 완성한다.Then, an etch stopper 17 is formed on the central portion of the semiconductor layer 16 in a stacked structure of a-Si layer and μc-Si layers, and both edges and exposures of the etch stopper 17 are formed. The ohmic layer 18 formed of a fine crystalline silicon layer doped with impurities (hereinafter, referred to as an n + μc-Si layer) on the semiconductor layer 16, and then a source / The drain electrodes 19A and 19B are formed to complete the TFT.

상기와 같은 구조를 갖는 본 발명의 TFT에서는 반도체층을 수 개의 a-Si층과 μc-Si층의 적층 구조로 형성하기 때문에 상기 두 층들간의 슈퍼 래티스 효과(Super Lattice), 즉, 서로 다른 물질층들이 박막으로 적층되는 경우에 결정학적 측면에서 적층된 각 층들이 하나의 격자 구조로되어 전체적으로는 하나의 결정구조를 갖게 되는 효과로 인하여 이러한 반도체층에서의 전자의 흐름은 원할하게 이루어지게 된다.In the TFT of the present invention having the structure as described above, since the semiconductor layer is formed of a stacked structure of several a-Si layers and μc-Si layers, a super lattice effect between the two layers, that is, different materials In the case where the layers are stacked in a thin film, the flow of electrons in the semiconductor layer is smoothly performed due to the effect that each layer stacked in a crystallographic aspect has a single crystal structure as a whole.

자세하게, 결정구조 측면에서 μc-Si층은 미세 결정구조들이 서로 연결되어있는 그물구조를 가지고 있는 반면에 a-Si층은 결정구조가 없기 때문에, 본 발명의 실시예에서와 같이 상기 층들을 적층시키게 되면 a-Si층과 μc-Si층이 그들 각각의 구조적인 결함을 상호 보완함으로써 전체적으로는 다결정실리콘층과 유사한 결정구조를 갖게 되고, 이에 따라, 이동도는 다결정실리콘층에 필적할만한 값을 갖게 된다.Specifically, in terms of crystal structure, the μc-Si layer has a mesh structure in which fine crystal structures are connected to each other, whereas the a-Si layer has no crystal structure, so that the layers are stacked as in the embodiment of the present invention. In this case, the a-Si layer and the μc-Si layer complement each other of their structural defects, and thus have a crystal structure that is similar to that of the polycrystalline silicon layer as a whole, and thus the mobility has a value comparable to that of the polycrystalline silicon layer. .

따라서, 본 발명의 실시예에서와 같이 a-Si층과 μc-Si층을 적어도 2층 이상씩 번갈아 적층시키되, 상기 μc-Si층의 두께를 a-Si층의 두께와 같거나 더 두껍게 형성하게 되면, 실질적인 전자의 흐름이 결정성이 우수한 μc-Si층들에 의해 주도되기 때문에 수 개의 a-Si층과 μc-Si층의 적층 구조로 이루어진 반도체층의 이동도는 1.5cm2/Vs 이상의 고이동도를 갖게 된다.Accordingly, as in the embodiment of the present invention, the a-Si layer and the μc-Si layer are alternately stacked at least two layers, so that the thickness of the μc-Si layer is equal to or thicker than the thickness of the a-Si layer. In this case, since a substantial flow of electrons is driven by the excellent crystallinity of the μc-Si layers, the mobility of the semiconductor layer composed of a stack of several a-Si and μc-Si layers is high at 1.5 cm 2 / Vs or higher. You have a degree.

또한, μc-Si층은 빛에 대한 민감도가 거의 없기 때문에 a-Si층만으로 반도체층을 구성하는 종래의 TFT 보다는 광누설전류를 효과적으로 감소시킬 수 있는 잇점도 있다.In addition, since the μc-Si layer has little sensitivity to light, there is an advantage that the light leakage current can be effectively reduced than the conventional TFT constituting the semiconductor layer with only the a-Si layer.

게다가, 본 발명의 실시예에서는 오믹층을 n+μc-Si층으로 형성하기 때문에 소오스/드레인 전극과 반도체층간의 접촉 저항을 감소시킬 수 있다. 즉, μc-Si층이 결정성이 있는 것에 기인하여 결정성이 없는 a-Si층에 불순물을 도핑하는 종래의 방법보다는 본 발명의 실시예가 불순물의 도핑 효율을 최소한 10배 이상 향상시킬 수 있으며, 이에 따라, 오믹층의 접촉 저항을 종래의 경우 보다 효과적으로 감소시킬 수 있게 되어 고이동도의 전자 흐름을 유도할 수 있게 되고, 결과적으로는TFT의 구동시에 온(On) 전류는 향상시키게 되고, 반면에, 오프(Off) 전류는 감소시킬 수 있게 된다.In addition, in the embodiment of the present invention, since the ohmic layer is formed of an n + μc-Si layer, the contact resistance between the source / drain electrodes and the semiconductor layer can be reduced. That is, the embodiment of the present invention can improve the doping efficiency of the impurity at least 10 times, rather than the conventional method of doping the impurity to the non-crystalline a-Si layer due to the crystallinity of the μc-Si layer, Accordingly, the contact resistance of the ohmic layer can be more effectively reduced than in the conventional case, thereby inducing high mobility electron flow, and consequently, the on current is improved when the TFT is driven. In turn, the off current can be reduced.

이상에서와 같이, 본 발명은 TFT의 반도체층을 수 개의 a-Si층과 μc-Si층의 적층 구조로 형성하여 반도체층의 이동도를 1.5cm2/Vs 이상의 고이동도가 되도록 할 수 있기 때문에 대화면 TFT LCD의 제조에 용이하게 적용시킬 수 있다.As described above, the present invention can form the semiconductor layer of the TFT in a stacked structure of several a-Si layer and μc-Si layer so that the mobility of the semiconductor layer can be high mobility of 1.5 cm 2 / Vs or more. Therefore, the present invention can be easily applied to the manufacture of large-screen TFT LCDs.

또한, μc-Si층은 빛에 대한 민감도가 낮기 때문에 광누설전류를 효과적으로 감소시킬 수 있으며, 이에 따라, 통상의 TFT LCD의 제조공정에서 광차단층을 형성하기 위한 공정을 삭제시킬 수 있게 되어 제조 공정을 단순화시킬 수 있다.In addition, since the μc-Si layer has low sensitivity to light, it is possible to effectively reduce the light leakage current, thereby eliminating the process for forming the light blocking layer in the conventional TFT LCD manufacturing process. Can be simplified.

게다가, 반도체층과 소오스/드레인 전극 사이에 개재되는 오믹층을 n+μc-Si층으로 형성하여 그들간의 접촉저항을 감소시킴으로써, 고이동도의 전자 흐름을 효과적으로 유도할 수 있다.In addition, an ohmic layer interposed between the semiconductor layer and the source / drain electrodes is formed as an n + μc-Si layer to reduce the contact resistance therebetween, thereby effectively inducing high mobility electron flow.

한편, 여기에서는 본 발명의 특정 실시예에 대하여 설명하고 도시하였지만, 당업자에 의하여 이에 대한 수정과 변형을 할 수 있다. 따라서, 이하, 특허청구의 범위는 본 발명의 진정한 사상과 범위에 속하는 한 모든 수정과 변형을 포함하는 것으로 이해할 수 있다.Meanwhile, although specific embodiments of the present invention have been described and illustrated, modifications and variations can be made by those skilled in the art. Accordingly, the following claims are to be understood as including all modifications and variations as long as they fall within the true spirit and scope of the present invention.

Claims (4)

상부면에 게이트 전극이 형성되고, 상기 게이트 전극이 덮혀지도록 게이트 절연막이 도포된 기판을 제공하는 단계;Providing a substrate having a gate electrode formed on an upper surface thereof, and having a gate insulating film coated thereon to cover the gate electrode; 상기 게이트 전극 상부의 게이트 절연막 상에 비정질실리콘층과 미세 결정질실리콘층이 각각 10 내지 100두께와 10 내지 200두께로 적어도 2 내지 20층씩이 번갈아 적층된 다층 구조의 반도체층을 형성하는 단계;An amorphous silicon layer and a fine crystalline silicon layer are each 10 to 100 on the gate insulating layer on the gate electrode. Thickness and 10 to 200 Forming a semiconductor layer having a multilayer structure in which at least 2 to 20 layers are alternately stacked in thickness; 상기 반도체층의 중심부 상에 에치 스톱퍼를 형성하는 단계;Forming an etch stopper on a central portion of the semiconductor layer; 상기 에치 스톱퍼의 양측 가장자리 및 반도체층 상에 오믹층을 형성하는 단계;Forming an ohmic layer on both edges of the etch stopper and the semiconductor layer; 상기 오믹층 상에 소오스/드레인 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 박막 트랜지스터의 제조방법.And forming a source / drain electrode on the ohmic layer. 제 1 항에 있어서, 상기 반도체층은 비정질실리콘층이 상기 게이트 절연막과 콘택되어 있는 것을 특징으로 하는 박막 트랜지스터의 제조방법.The method of claim 1, wherein an amorphous silicon layer is in contact with the gate insulating layer. 제 1 항에 있어서, 상기 반도체층은 미세 결정질실리콘층이 상기 게이트 절연막과 콘택되어 있는 것을 특징으로 하는 박막 트랜지스터의 제조방법.2. The method of claim 1, wherein the semiconductor layer has a fine crystalline silicon layer in contact with the gate insulating film. 제 1 항에 있어서, 상기 오믹층은 불순물이 도핑된 미세 결정질실리콘층으로형성하는 것을 특징으로 하는 박막 트랜지스터의 제조방법.The method of claim 1, wherein the ohmic layer is formed of a fine crystalline silicon layer doped with impurities.
KR1019980024341A 1998-06-26 1998-06-26 Manufacturing Method of Thin Film Transistor KR100328848B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980024341A KR100328848B1 (en) 1998-06-26 1998-06-26 Manufacturing Method of Thin Film Transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980024341A KR100328848B1 (en) 1998-06-26 1998-06-26 Manufacturing Method of Thin Film Transistor

Publications (2)

Publication Number Publication Date
KR20000003175A KR20000003175A (en) 2000-01-15
KR100328848B1 true KR100328848B1 (en) 2002-08-21

Family

ID=19540924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980024341A KR100328848B1 (en) 1998-06-26 1998-06-26 Manufacturing Method of Thin Film Transistor

Country Status (1)

Country Link
KR (1) KR100328848B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848557B1 (en) * 2002-05-02 2008-07-25 엘지디스플레이 주식회사 A thin film transistor liquid crystal display and a fabrication method thereof

Also Published As

Publication number Publication date
KR20000003175A (en) 2000-01-15

Similar Documents

Publication Publication Date Title
KR100257158B1 (en) Thin film transistor and method for manufacturing the same
JP3762002B2 (en) Thin film transistor and liquid crystal display device
US20210041733A1 (en) Array substrate, method manufacturing same and touch display panel
KR0175390B1 (en) Polysilicon tft and the manufacture thereof
US7471350B2 (en) Array substrate for liquid crystal display and fabrication method thereof
WO2019037631A1 (en) Array substrate and manufacturing method therefor
US8093596B2 (en) Pixel structure
JP3139154B2 (en) Liquid crystal device and method of manufacturing the same
KR100328848B1 (en) Manufacturing Method of Thin Film Transistor
JPH098311A (en) Fabrication and structure of thin film semiconductor device
JPH03201538A (en) Manufacture of thin film transistor
JPH0637314A (en) Thin-film transistor and manufacture thereof
KR100390457B1 (en) A structure of thin film transistor and a method for manufacturing the same
JPH07263698A (en) Thin film transistor and its manufacture
KR100539583B1 (en) Method for crystallizing Silicon and method for manufacturing Thin Film Transistor (TFT) using the same
JP2647100B2 (en) Thin film transistor
KR20120053770A (en) Method for fabricating array substrate having thin film transistor
JPH11154752A (en) Thin film transistor, liquid crystal display device using the same and manufacture of tft array substrate
JPH1187721A (en) Thin-film transistor and liquid crystal display device comprising the same, and manufacture of tft array substrate
JPH0677485A (en) Inverted stagger-type thin-film transistor and its manufacture
JP4100655B2 (en) Thin film transistor manufacturing method
JPH0385529A (en) Thin-film semiconductor display device
JP2661320B2 (en) Manufacturing method of liquid crystal display device
US7750349B2 (en) Switching element substrate, for a liquid crystal display device, including an insulating substrate
JP2006039272A (en) Display device and manufacturing method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140218

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170220

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180222

Year of fee payment: 17

EXPY Expiration of term