JPS60103642A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60103642A
JPS60103642A JP58210834A JP21083483A JPS60103642A JP S60103642 A JPS60103642 A JP S60103642A JP 58210834 A JP58210834 A JP 58210834A JP 21083483 A JP21083483 A JP 21083483A JP S60103642 A JPS60103642 A JP S60103642A
Authority
JP
Japan
Prior art keywords
oxide film
isolation
groove
semiconductor device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58210834A
Other languages
Japanese (ja)
Inventor
Motonori Kawaji
河路 幹規
Toshihiko Takakura
俊彦 高倉
Akihisa Uchida
明久 内田
Shigeo Kuroda
黒田 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58210834A priority Critical patent/JPS60103642A/en
Priority to FR8413338A priority patent/FR2554970B1/en
Priority to GB08422520A priority patent/GB2148593B/en
Priority to DE19843440721 priority patent/DE3440721A1/en
Priority to KR1019840006962A priority patent/KR920010828B1/en
Priority to IT23519/84A priority patent/IT1177148B/en
Publication of JPS60103642A publication Critical patent/JPS60103642A/en
Priority to US07/011,932 priority patent/US4819054A/en
Priority to SG77388A priority patent/SG77388G/en
Priority to US07/284,557 priority patent/US5011788A/en
Priority to HK30789A priority patent/HK30789A/en
Priority to US07/642,922 priority patent/US5141888A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7325Vertical transistors having an emitter-base junction leaving at a main surface and a base-collector junction leaving at a peripheral surface of the body, e.g. mesa planar transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To simplify the process and thus improve the characteristics of transistors by a method wherein an isolating region in an element is composed of insulator. CONSTITUTION:An isolating oxide film 10 is formed between a diffused layer 14 serving as the collector outlet and a base diffused layer 16 at the same time with an oxide film 9 in the U-goove isolation region. As a result, the process only for forming the oxide film 10 is unnecessitated. Besides, as in the case of isolation between the collector outlet 14 and the base diffused layer 16 by means of a shallow U-groove, deep U-grooves 7a and 7b can be formed at once without the need of cutting the U-grooves by twice, and the process simplifies thereby. Since the formed bi-polar transistor has the oxide film 10 between the collector outlet and the base diffused layer formed at the same time with the oxide film in the U-groove, this oxide film 10 becomes almost uniform in thickness from its center to both ends.

Description

【発明の詳細な説明】 [利用分野] この発明は、半導体技術に関し、例えば半導体装置にお
ける分離領域の形成に利用して有効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to semiconductor technology, and relates to a technology effective for use in forming isolation regions in semiconductor devices, for example.

[背景技術] 半導体集積回路における素子間の分離法として、拡散層
を用いた接合分離法と基板表面のLOGO8と呼ばれる
選択酸化膜を利用した酸化膜分離法が行なわれている。
[Background Art] As a method for isolating elements in a semiconductor integrated circuit, a junction isolation method using a diffusion layer and an oxide film isolation method using a selective oxide film called LOGO8 on a substrate surface are used.

ところが、これらの分離法では、素子分離領域の幅が比
較的大きくされてしまい、素子を微細化して行くに従っ
て素子分離領域の占める割合が大きくなり、LS I(
大規模集積回路)の高密度化を図る上での障害となる。
However, in these isolation methods, the width of the element isolation region is made relatively large, and as elements become smaller, the ratio occupied by the element isolation region increases.
This poses an obstacle to increasing the density of large-scale integrated circuits.

そこで、本出願人は、素子分離領域となる部分を削って
U字状の溝c以下TJ溝と称する)を形成し、このU溝
の内側に酸化膜を形成してからTJ溝の中をポリシリコ
ン(多結晶シリコン)で埋めることによって素子分離領
域とするU溝分離法と称する分離技術を提案した(特願
昭57−168355号)。
Therefore, the present applicant cut away the part that will become the element isolation region to form a U-shaped groove c (hereinafter referred to as TJ groove), formed an oxide film inside this U groove, and then cut the inside of the TJ groove. He proposed an isolation technique called the U-groove isolation method in which element isolation regions are created by filling polysilicon (polycrystalline silicon) (Japanese Patent Application No. 168355/1982).

上記先願発明では、第1図に示すように素子(トランジ
スタ)間の分離をエピタキシャル層3と埋込層2を貫通
して基板1の表面に達するような深いU溝分離領域27
a、27bで行ない、コレクタ引出し口となる拡散層1
4とベース用拡散層16との間の分離をエピタキシャル
層3のみを貫通して埋込層2の表面に達するような浅い
U溝分離領域27cで行なう。あるいは、第2図に示さ
れているように、素子間の分離を深いU溝分離領域27
a、27bで行ない、コレクタ引出し口14との間の分
離を比較的厚い酸化膜10で行なうようにしている。
In the above-mentioned prior invention, as shown in FIG.
a, 27b, and the diffusion layer 1 serves as the collector outlet.
4 and the base diffusion layer 16 is achieved by a shallow U-groove isolation region 27c that penetrates only the epitaxial layer 3 and reaches the surface of the buried layer 2. Alternatively, as shown in FIG.
a, 27b, and is separated from the collector outlet 14 by a relatively thick oxide film 10.

ところが、上記のような深いU溝分離領域27a、27
bと浅いU溝分離領域27cによる分離構造にあっては
、深いU溝と浅いU溝を形成しなければならないため、
プロセスが複雑になる。またU溝分離法では、U溝の深
さの制御が難しいため、U溝27cが深くなりすぎるお
それがあり、U溝27cが深くなって埋込層2に食い込
むと、コレクタ抵抗が増加してトランジスタの動作速度
が遅くなるという不都合がある。
However, the deep U-groove isolation regions 27a, 27 as described above
In the isolation structure using the shallow U-groove isolation region 27c, a deep U-groove and a shallow U-groove must be formed.
The process becomes more complicated. In addition, in the U-groove separation method, since it is difficult to control the depth of the U-groove, there is a risk that the U-groove 27c will become too deep.If the U-groove 27c becomes deep and digs into the buried layer 2, the collector resistance will increase. This has the disadvantage that the operating speed of the transistor becomes slow.

一方、コレクタ引出し口14とベース用拡散層との間の
分離を酸化膜10で行なう構造にあっては、酸化膜10
を形成する工程を別個設けたのではプロセスが複雑とな
る。そこで、例えばチップ周辺等の不活性領域に形成す
るLOGO8やアイソプレーナの技術による厚いフィー
ルド酸化膜と同時に分離用酸化膜】0を形成することが
考えられるが、このような方法によって分離用酸化膜1
−3= 〇を形成すると、第3図に示すように酸化膜10の両端
部にバーズビークができるため、酸化膜10の両端とU
溝分離領域27d、27eとの境界部において、酸化膜
10が薄くなってしまう。その結果、符号Aが示すよう
な箇所においてコレクタ引出し口14とベース用拡散層
とが短絡されて充分に分離されなくなるという不都合が
あることが分った。
On the other hand, in a structure in which the collector outlet 14 and the base diffusion layer are separated by the oxide film 10, the oxide film 10
Providing a separate process for forming the wafer would complicate the process. Therefore, it is conceivable to form an isolation oxide film 0 at the same time as a thick field oxide film using LOGO8 or isoplanar technology, which is formed in an inactive area around the chip. 1
-3= When ○ is formed, bird's beaks are formed at both ends of the oxide film 10 as shown in FIG.
The oxide film 10 becomes thinner at the boundary between the groove isolation regions 27d and 27e. As a result, it was found that there was an inconvenience in that the collector outlet 14 and the base diffusion layer were short-circuited at a location indicated by the symbol A, and were not sufficiently separated from each other.

なお、第3図は第2図における■−■線に沿った断面図
である。
Note that FIG. 3 is a cross-sectional view taken along the line ■-■ in FIG. 2.

[発明の目的] この発明の目的は、従来に比べて顕著な効果を奏する半
導体技術を提供することにある。
[Object of the Invention] An object of the present invention is to provide a semiconductor technology that exhibits remarkable effects compared to the prior art.

この発明の他の目的は、半導体基板に形成される素子の
特性を向上させることにある。
Another object of the invention is to improve the characteristics of elements formed on a semiconductor substrate.

この発明のさらに他の目的は、プロセスの工程数を増加
させることなくコレクタ引出し口となる拡散層とベース
用拡散層との間を充分に分離できる半導体装置の製造方
法を提供することにある。
Still another object of the present invention is to provide a method of manufacturing a semiconductor device that can sufficiently isolate a diffusion layer serving as a collector outlet and a base diffusion layer without increasing the number of process steps.

この発明の前記ならびにそのほかの目的と新規4− な特徴については、本明細書の記述および添附図面から
明かになるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[発明の概要] 本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
[Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

すなわち、U溝分離領域によって素子間分離が行なわれ
るようにされたバイポーラ集積回路において、分離用の
U溝内に形成される酸化膜の形成と同時にコレクタ引出
し口とベース領域との間に分離用酸化膜を形成させるよ
うにすることによって、新たに分離用酸化膜を形成する
工程を設ける必要性をなくすとともに、形成された分離
用酸化膜が埋込層に達することがなく、かつその両端部
のU溝分離領域との境界部においても充分な厚みを有す
ることができるようにして、プロセスを簡略化し、また
トランジスタの特性を向上させるという上記目的を達成
するものである。
That is, in a bipolar integrated circuit in which elements are isolated by a U-groove isolation region, an oxide film is formed in the U-groove for isolation, and at the same time an oxide film is formed between the collector outlet and the base region for isolation. By forming an oxide film, there is no need to provide a new process for forming an isolation oxide film, and the formed isolation oxide film does not reach the buried layer, and both ends of the isolation oxide film are prevented from reaching the buried layer. The above object of simplifying the process and improving the characteristics of the transistor is achieved by making it possible to have a sufficient thickness even at the boundary between the U-groove isolation region and the U-groove isolation region.

[実施例] 第4図〜第14図は、本発明をバイポーラ集積回路に適
用した場合の実施例を製造工程順に示すものである。
[Embodiment] FIGS. 4 to 14 show an embodiment in which the present invention is applied to a bipolar integrated circuit in the order of manufacturing steps.

この実施例では、特に制限されないがP型シリコンから
なる半導体基板1上に、酸化膜を形成してからこの酸化
膜の適当な位置に埋込み拡散用パターンの穴をあけ、こ
の酸化膜製マ入りとしてN型不純物を熱拡散して部分的
にN十埋込層2を形成する。そして酸化膜を除去してか
ら、その、トに気相成長法によりN−型エピタキシャル
層3を成長させ、その表面に酸化膜(SiO2膜)4と
窒化膜(Si3N4膜)5を形成する。
In this embodiment, an oxide film is formed on a semiconductor substrate 1 made of P-type silicon, although it is not particularly limited, and holes for buried diffusion patterns are formed at appropriate positions in this oxide film, and a hole made of this oxide film is inserted. Then, an N-type impurity is thermally diffused to partially form an N0 buried layer 2. After removing the oxide film, an N-type epitaxial layer 3 is grown by vapor phase growth, and an oxide film (SiO2 film) 4 and a nitride film (Si3N4 film) 5 are formed on its surface.

それから、チップ周辺等の不活性領域となる部分の窒化
膜5を除去し、この窒化膜5をマスクとして通常のアイ
ソプレーナ技術によって基板1の主面を削ってから熱酸
化を行ない、第4図に示すように、比較的厚いフィール
ド酸化膜6を形成する。これによって、不活性領域上に
配設される配線の容量を減らすことができる。しかる後
、一旦窒化膜5を除去してから再び基板全体に亘って窒
化膜5′を形成する。
Then, the nitride film 5 in the portions that will become inactive areas such as around the chip is removed, and using this nitride film 5 as a mask, the main surface of the substrate 1 is shaved using normal isoplanar technology, and then thermal oxidation is performed. As shown in FIG. 2, a relatively thick field oxide film 6 is formed. This makes it possible to reduce the capacitance of wiring arranged on the inactive region. Thereafter, the nitride film 5 is once removed, and then a nitride film 5' is again formed over the entire substrate.

次に分離領域が形成されるべき部分(バイポーラトラン
ジスタの周囲およびベース領域とコレクタ引出し口との
境界部)の窒化膜5′をエツチングにより除去した後、
窒化膜5′をマスクとして熱酸化を行ない、分離領域が
形成される部分に少し厚い酸化膜4a、4a、・・・・
を形成する(第5図)。しかる後、ベース領域とコレク
タ引出し口との境界部の上をホトレジスト(鎖線Cで示
す)で覆っておいて、露出している酸化膜4aをウェッ
トエツチングにより除去し、その後、ホトレジストCを
除去してから、ヒドラジンエツチングを行なって溝の入
口のテーパを形成する。次にドライエツチングを行なっ
てP型基板1まで達するような比較的深いU溝7a、7
bを形成すると第6図の状態となる。
Next, after removing the nitride film 5' in the portion where the isolation region is to be formed (the periphery of the bipolar transistor and the boundary between the base region and the collector extraction port) by etching,
Thermal oxidation is performed using the nitride film 5' as a mask, and slightly thicker oxide films 4a, 4a, . . . are formed in the areas where isolation regions are to be formed.
(Figure 5). Thereafter, the boundary between the base region and the collector outlet is covered with a photoresist (indicated by a chain line C), and the exposed oxide film 4a is removed by wet etching, and then the photoresist C is removed. After that, hydrazine etching is performed to form a taper at the entrance of the groove. Next, dry etching is performed to form relatively deep U grooves 7a, 7 that reach the P type substrate 1.
When b is formed, the state shown in FIG. 6 is obtained.

次に、上記のごとくして形成されたU溝7a。Next, the U groove 7a formed as described above.

7b内にボロン等のイオン打込みを行ない、熱処理を施
すことによりチャンネルストッパ層8を形成する(第7
図)。
A channel stopper layer 8 is formed by implanting boron or other ions into 7b and performing heat treatment.
figure).

その後、熱酸化によりU溝7a、7bの内側に7− 酸化膜等の絶縁膜9を約6000A程度の厚みになるよ
うに形成する。すると、このときベース領域とコレクタ
引出し口との間の窒化膜5′が除去されているため、こ
の部分に6000〜7000λ程度の比較的厚い分離用
酸化膜lOが形成される。そこで次に、基板全体に亘っ
てCVD法等により窒化膜をデポジョンすると、第8図
のようにU溝7a、7bの酸化膜9の内側に窒化膜11
が形成される。
Thereafter, an insulating film 9 such as a 7-oxide film is formed to a thickness of about 6000 Å inside the U grooves 7a and 7b by thermal oxidation. Then, since the nitride film 5' between the base region and the collector outlet is removed at this time, a relatively thick isolation oxide film lO of about 6000 to 7000 λ is formed in this portion. Then, when a nitride film is deposited over the entire substrate by CVD or the like, a nitride film 11 is formed inside the oxide film 9 of the U grooves 7a and 7b as shown in FIG.
is formed.

第8図の状態の後は、基板全体にポリシリコン(多結晶
シリコン)をCVD法(ケミカル・ベイパー・デポジシ
ョン法)により比較的厚くデポジションして、U溝7a
、7b内にポリシリコンを充填させる。そして、基板表
面のポリシリコン層をドライエツチングにより除去して
平坦化し、U溝7a、7b内にポリシリコン12が残る
ようにする(第9図)。
After the state shown in FIG. 8, a relatively thick layer of polysilicon (polycrystalline silicon) is deposited over the entire substrate by the CVD method (chemical vapor deposition method).
, 7b are filled with polysilicon. Then, the polysilicon layer on the surface of the substrate is removed and planarized by dry etching, so that polysilicon 12 remains in the U grooves 7a and 7b (FIG. 9).

それから、熱酸化を行なってU溝内のポリシリコン12
の表面を酸化させてポリシリコン12の上に酸化膜13
を形成してから、第10図のよう8− に、コレクタ引出し口の上の窒化膜5′を除去し、N型
不純物のイオン打込みを行なって熱拡散させ、コレクタ
引出し口となるN型拡散層14を形成する。
Then, thermal oxidation is performed to remove the polysilicon 12 inside the U-groove.
An oxide film 13 is formed on the polysilicon 12 by oxidizing the surface of the polysilicon 12.
After forming the nitride film 5' on the collector outlet, as shown in FIG. Form layer 14.

第10図の状態の後は、窒化膜5′を除去してから基板
の主面側全体にベース領域を形成するためのP型不純物
のイオン打込みを行なう。そして、酸化膜4,6上に再
び窒化膜15を形成してから熱処理を行なってベース用
拡散層16を形成し、次にエミッタ領域となる部分の窒
化膜15を除去する(第11図)。
After the state shown in FIG. 10, the nitride film 5' is removed and P-type impurity ions are implanted to form a base region over the entire main surface of the substrate. Then, a nitride film 15 is formed again on the oxide films 4 and 6, and then heat treatment is performed to form a base diffusion layer 16, and then the nitride film 15 in the portion that will become the emitter region is removed (FIG. 11). .

しかる後、エミッタ領域となる部分の表面の酸化膜4を
エツチングにより除去してから窒化膜15上全体にCV
D法によりポリシリコンを薄くデポジションさせる。そ
れから、このポリシリコン層に対して、ひ素のようなN
型不純物のイオン打込みを行なってから、熱処理を施し
てポリシリコン層からの拡散によってエミッタ用拡散層
18を形成する。次に、上記ポリシリコン層に対しホト
エツチングを行なって不用な部分を除去して、第12図
に示すように、エミッタ用拡散層18上にポリシリコン
電極19を残す。
Thereafter, the oxide film 4 on the surface of the portion that will become the emitter region is removed by etching, and then CV etching is applied to the entire nitride film 15.
Deposit a thin layer of polysilicon using method D. This polysilicon layer is then treated with N such as arsenic.
After ion implantation of type impurities, heat treatment is performed to form an emitter diffusion layer 18 by diffusion from the polysilicon layer. Next, the polysilicon layer is photoetched to remove unnecessary portions, leaving a polysilicon electrode 19 on the emitter diffusion layer 18, as shown in FIG.

上記の場合、ポリシリコン層からの拡散によってエミッ
タ用拡散層18を形成しているが、ポリシリコンのデポ
ジション前にもエミッタ形成のためのイオン打込みと熱
処理を行なうようにして、ポリシリコンのデポジション
の前後2回に分けてイオン打込みと拡散を行なってエミ
ッタを形成するようにしてもよい。
In the above case, the emitter diffusion layer 18 is formed by diffusion from the polysilicon layer, but ion implantation and heat treatment for forming the emitter are performed before the polysilicon deposition. The emitter may be formed by performing ion implantation and diffusion twice before and after the position.

上記エミッタ用拡散層18の形成後は、窒化膜15上に
PSG膜(リン・ケイ酸ガラス膜)をCVD法により形
成し、層間絶縁膜20を形成する。
After forming the emitter diffusion layer 18, a PSG film (phosphorus silicate glass film) is formed on the nitride film 15 by the CVD method, and an interlayer insulating film 20 is formed.

それから、ホトレジストをマスクにしてエツチングを行
ない、ベース、エミッタおよびコレクタの各電極部のコ
ンタクトホール21a〜21cを形成して第13図の状
態となる。
Then, etching is performed using a photoresist as a mask to form contact holes 21a to 21c for each of the base, emitter, and collector electrode portions, resulting in the state shown in FIG. 13.

その後、基板全面にアルミニウム等の配線材料を蒸着し
てから、ホトエツチングによりアルミ電極228〜22
cおよびアルミ配線を形成し、その上に5in2膜のよ
うなファイナルパッシベーション膜23を形成すること
により第14図のような完成状態にされる。
After that, a wiring material such as aluminum is deposited on the entire surface of the substrate, and then the aluminum electrodes 228 to 22 are formed by photo-etching.
C and aluminum wiring are formed, and a final passivation film 23 such as a 5in2 film is formed thereon to obtain a completed state as shown in FIG. 14.

上記実施例においては、U溝分離領域内の酸化膜9の形
成と同時にコレクタ引出し口となる拡散層14とベース
用拡散層16との間に分離用酸化膜10を形成するよう
にしているので、分離用酸化膜10の形成のためのみの
工程が不用となる。
In the above embodiment, the isolation oxide film 10 is formed between the diffusion layer 14, which becomes the collector outlet, and the base diffusion layer 16 at the same time as the formation of the oxide film 9 in the U-groove isolation region. , a step only for forming the isolation oxide film 10 is unnecessary.

しかも、コレクタ引出し口14とベース用拡散層16と
の間の分離を浅いU溝によって行なう場合のように、U
溝を2回に分けて削ってやる必要がなく、深いU溝7a
、7bを一気に形成できる。
Moreover, as in the case where the collector outlet 14 and the base diffusion layer 16 are separated by a shallow U groove,
There is no need to cut the groove in two parts, and the U groove 7a is deep.
, 7b can be formed all at once.

そのため、プロセスが簡単になる。This simplifies the process.

また、上記実施例のようなプロセスによって形成された
バイポーラトランジスタは、コレクタ引出し口14とベ
ース用拡散層16との間の分離用酸化膜10が、U溝内
の酸化膜と同時に形成されるため、この分離用酸化膜1
0が、第15図に示すようにその中央部から両端部にか
けて略均−な厚みとなる。
Furthermore, in the bipolar transistor formed by the process described in the above embodiment, the isolation oxide film 10 between the collector extraction port 14 and the base diffusion layer 16 is formed at the same time as the oxide film in the U-groove. , this isolation oxide film 1
0 has a substantially uniform thickness from the center to both ends, as shown in FIG.

そのため、LOGO8やアイソプレーナによる=11− フィールド酸化膜と同時に分離用酸化膜10を形成した
場合(第3図)のように、酸化膜10の両端部のU溝分
離領域27d、27eとの境界部が薄くなってベース・
コレクタ間が短絡されるようなことがなく、ベース・コ
レクタ間が充分に絶縁されるようになる、 また、酸化膜10の厚みの制御性は、U溝分離領域の深
さの制御性よりもすぐれているため、トランジスタの特
性のバラツキが少なくなるとともに、U溝分離領域によ
ってコレクタ引出し口14とベース用拡散層16との間
を分離する場合のようにU溝がエピタキシャル層2を貫
通して埋込層3に達することによりコレクタ抵抗が増加
されるおそれもない。
Therefore, as in the case where the isolation oxide film 10 is formed at the same time as the =11- field oxide film by LOGO8 or isoplanar (FIG. 3), the boundaries between the U-groove isolation regions 27d and 27e at both ends of the oxide film 10 The part becomes thinner and the base
The collectors will not be short-circuited, and the base and collector will be sufficiently insulated. In addition, the controllability of the thickness of the oxide film 10 is better than the controllability of the depth of the U-groove isolation region. As a result, variations in transistor characteristics are reduced, and the U-groove does not penetrate through the epitaxial layer 2, as in the case where the collector extraction port 14 and the base diffusion layer 16 are separated by the U-groove isolation region. There is no fear that the collector resistance will increase due to reaching the buried layer 3.

その結果、トランジスタの特性が大いに向上されるよう
になる。
As a result, the characteristics of the transistor are greatly improved.

なお、上記実施例では、トランジスタが形成された領域
を囲むようにU溝分離領域が形成されている。近接して
他のトランジスタが形成される場合、上記U溝分離領域
の一部がこのトランジスタ12− の分離領域としても使われる。また、その近くの領域で
別のトランジスタが形成されていない領域には、第14
図に示されているように厚いフィールド酸化膜6が形成
される。この厚いフィールド酸化膜上に例えば配線層が
形成される。
In the above embodiment, the U-groove isolation region is formed to surround the region where the transistor is formed. When another transistor is formed adjacently, a part of the U-groove isolation region is also used as an isolation region for this transistor 12-. In addition, in a region nearby where another transistor is not formed, a 14th transistor is formed.
A thick field oxide film 6 is formed as shown in the figure. For example, a wiring layer is formed on this thick field oxide film.

また、上記実施例では、エミッタ領域の形成をその上に
形成されたポリシリコン電極19からの拡散によって行
なっているが、ポリシリコン電極19を形成しないで、
直接基板の主面にN型不純物のイオン打込みを行なって
、エミッタ用拡散層18を形成するようにしてもよい。
Further, in the above embodiment, the emitter region is formed by diffusion from the polysilicon electrode 19 formed thereon, but the emitter region is formed by diffusion from the polysilicon electrode 19 formed thereon.
The emitter diffusion layer 18 may be formed by directly implanting N-type impurity ions into the main surface of the substrate.

また、上記実施例では、ベースおよびエミッタ領域の形
成前にコレクタ引出し口となるN型拡散層14を形成す
るようにしているが、コレクタ引出し口をベース、エミ
ッタの形成後に形成するようにしてもよい。
Furthermore, in the above embodiment, the N-type diffusion layer 14 serving as the collector outlet is formed before the base and emitter regions are formed, but the collector outlet may be formed after the base and emitter are formed. good.

さらに、上記実施例では不活性領域のフィールド酸化膜
6の形成をアイソプレーナ技術で行なっているが、上記
コレクタ引出し口14とベース用拡散層16との間の分
離用酸化膜10と同じように、U溝内の酸化膜9の形成
と同時に行なうようにしてもよい。
Furthermore, in the embodiment described above, the field oxide film 6 in the inactive region is formed by isoplanar technology, but in the same way as the isolation oxide film 10 between the collector extraction port 14 and the base diffusion layer 16. , may be performed simultaneously with the formation of the oxide film 9 in the U-groove.

[効果] (1)U溝分離領域によって素子間分離が行なわれるよ
うにされたバイポーラ集積回路において、分離用のU溝
内に形成される酸化膜(絶縁物)の形成と同時に形成さ
れた分離用酸化膜(分離用絶縁物)がコレクタ引出し口
とベース領域との間に設けられるようにされているので
、コレクタ引出し口とベース領域との間の分離用酸化膜
(分離用絶縁物)の厚みが中央部から両端部にかけてほ
ぼ均一になり、ベース・コレクタ間が完全に分離される
ようになるとともに、分離用酸化膜(分離用絶縁物)の
厚みのバラツキも少ないという作用によって、トランジ
スタの特性が向上されるという効果がある。
[Effects] (1) In a bipolar integrated circuit in which element isolation is performed by a U-groove isolation region, the isolation formed at the same time as the formation of the oxide film (insulator) formed in the U-groove for isolation. Since the isolation oxide film (isolation insulator) is provided between the collector outlet and the base region, the isolation oxide film (isolation insulator) between the collector outlet and the base region is The thickness becomes almost uniform from the center to both ends, and the base and collector are completely isolated, and there is little variation in the thickness of the isolation oxide film (isolation insulator), which makes the transistor This has the effect of improving characteristics.

(2)U溝分離領域によって素子間分離が行なわれるよ
うにされたバイポーラ集積回路において、分離用のU溝
内に形成される酸化膜(絶縁物)の形成と同時にコレク
タ引出し口とベース領域との間に分離用酸化膜(分離用
絶縁物)を形成させるようにしたので、コレクタ引出し
口とベース領域との間の分離用酸化膜(分離用絶縁物)
を形成する工程を別個に設ける必要がないという作用に
より、プロセスが簡単になるという効果がある。
(2) In a bipolar integrated circuit in which elements are isolated by a U-groove isolation region, the collector lead-out port and the base region are Since an isolation oxide film (isolation insulator) is formed between the collector outlet and the base region, the isolation oxide film (isolation insulator) is
Since there is no need to provide a separate process for forming the , there is an effect that the process becomes simpler.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は上記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。例えば、上記実施例にお
ける不活性領域に設けられるフィールド酸化膜は、アイ
プレーナ技術によって形成されたものに限らず、LOG
O8等であってもよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the field oxide film provided in the inactive region in the above embodiment is not limited to one formed by eye-planar technology;
It may also be O8 or the like.

[利用分野] 以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野であるバイポーラ集積回路
に適用したものについて説明したが、この発明はこれに
限定されるものではなく、半導体基板の主面に酸化膜を
必要とする半導体装置一般に利用できるものである。
[Field of Application] In the above explanation, the invention made by the present inventor was mainly applied to bipolar integrated circuits, which is the field of application that formed the background of the invention, but the invention is not limited to this. It can be used in general semiconductor devices that require an oxide film on the main surface of a semiconductor substrate.

一15=-15=

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、U溝分離法を適用した先願の半導体装置にお
けるバイポーラトランジスタの構成例を示す断面図、 第2図は、同じく他の構成例を示す断面図、第3図は、
第2図における■−■線に沿った断面図、 第4図〜第14図は、本発明の一実施例を製造工程順に
示す断面図、 第15図は、第11図におけるB−B線に沿った断面図
である。 l・・・・半導体基板、2・・・・N十埋込層、3・・
・・エピタキシャル層、4・・・・酸化膜、 5.5’
。 15・・・・窒化膜、6・・・・フィールド酸化膜、7
a、7b・・・・溝(U溝)、8・・・・チャンネルス
トッパ層、9・・・・絶縁膜(酸化膜)、10・・・・
分離用絶縁膜(分離用酸化膜)、11・・・・絶縁膜(
窒化膜)、12・・・・誘電体(ポリシリコン)、13
・・・・酸化膜、14・・・・コレクタ引出し口となる
拡散層、16・・・・ベース用拡散層、1816− ・・・・エミッタ用拡散層、19・・・・ポリシリコン
電極、20・・・・層間絶縁膜、21a〜21c・・・
・コンタクトホール、22a〜22c・・・・アルミ電
極、23・・・・パッシベーション膜、278〜27e
・・・・U溝分離領域。
FIG. 1 is a sectional view showing a configuration example of a bipolar transistor in a semiconductor device of a prior application applying the U-groove isolation method, FIG. 2 is a sectional view showing another configuration example, and FIG.
A sectional view taken along the line ■-■ in FIG. 2, FIGS. 4 to 14 are sectional views showing one embodiment of the present invention in the order of manufacturing steps, and FIG. 15 is a sectional view taken along the line BB in FIG. 11. FIG. l... Semiconductor substrate, 2... N0 buried layer, 3...
...Epitaxial layer, 4...Oxide film, 5.5'
. 15...Nitride film, 6...Field oxide film, 7
a, 7b...Groove (U groove), 8...Channel stopper layer, 9...Insulating film (oxide film), 10...
Isolation insulating film (isolation oxide film), 11... Insulating film (
nitride film), 12...dielectric (polysilicon), 13
... Oxide film, 14... Diffusion layer serving as collector outlet, 16... Diffusion layer for base, 1816-... Diffusion layer for emitter, 19... Polysilicon electrode, 20... Interlayer insulating film, 21a to 21c...
・Contact hole, 22a-22c...aluminum electrode, 23...passivation film, 278-27e
...U groove separation area.

Claims (1)

【特許請求の範囲】 1、半導体基板の主面に形成される素子の活性領域間に
溝を掘って内側に絶縁膜を形成してから誘導体を充填す
ることにより分離領域が形成されてなる半導体装置にお
いて、少なくとも上記素子内の分離領域が絶縁物からな
ることを特徴とする半導体装置。 2、上記素子内の分離領域を構成する絶縁物が、その中
央部から、素子の外側囲繞をするように形成された上記
溝との境界部まで略均−な厚みを有するように形成され
てなることを特徴とする特許請求の範囲第1項記載の半
導体装置。 3、半導体基板の主面に形成される素子の活性領域間に
溝を掘って内側に絶縁膜を形成してから誘導体を充填し
て分離領域を形成するようにした半導体装置の製造方法
において、上記素子内の分離領域に上記分離用の溝の内
側に形成する絶縁膜と同一の工程によって同時に分離用
絶縁膜を形成するようにしたことを特徴とする半導体装
置の製造方法。 4、上記分離用溝の内側に形成される絶縁膜が酸化膜で
あって、上記素子としてのバイポーラトランジスタのコ
レクタ引出し口となる拡散層とベース用拡散層との間に
、上記分離用の溝の内側に形成される酸化膜と同時に分
離用酸化膜を形成するようにしたことを特徴とする特許
請求の範囲第3項記載の半導体装置の製造方法。
[Claims] 1. A semiconductor in which an isolation region is formed by digging a trench between the active regions of an element formed on the main surface of a semiconductor substrate, forming an insulating film on the inside, and then filling it with a dielectric. A semiconductor device, wherein at least the isolation region within the element is made of an insulator. 2. The insulator constituting the isolation region within the element is formed to have a substantially uniform thickness from its center to the boundary with the groove formed so as to surround the outside of the element. A semiconductor device according to claim 1, characterized in that: 3. A method for manufacturing a semiconductor device, in which a groove is dug between active regions of elements formed on the main surface of a semiconductor substrate, an insulating film is formed inside, and then a dielectric is filled to form an isolation region, A method for manufacturing a semiconductor device, characterized in that an isolation insulating film is simultaneously formed in the isolation region in the element by the same process as an insulating film formed inside the isolation groove. 4. The insulating film formed inside the isolation groove is an oxide film, and the isolation groove is formed between the diffusion layer serving as the collector outlet of the bipolar transistor as the element and the base diffusion layer. 4. The method of manufacturing a semiconductor device according to claim 3, wherein the isolation oxide film is formed at the same time as the oxide film formed inside the semiconductor device.
JP58210834A 1982-09-29 1983-11-11 Semiconductor device and manufacture thereof Pending JPS60103642A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP58210834A JPS60103642A (en) 1983-11-11 1983-11-11 Semiconductor device and manufacture thereof
FR8413338A FR2554970B1 (en) 1983-11-11 1984-08-29 METHOD FOR MANUFACTURING A DEVICE WITH INTEGRATED SEMICONDUCTOR CIRCUITS
GB08422520A GB2148593B (en) 1983-10-14 1984-09-06 Process for manufacturing the isolating regions of a semiconductor integrated circuit device
DE19843440721 DE3440721A1 (en) 1983-11-11 1984-11-07 Method of producing an integrated semiconductor circuit
KR1019840006962A KR920010828B1 (en) 1983-11-11 1984-11-07 Process for manufacturing semiconductor integrated circuit device
IT23519/84A IT1177148B (en) 1983-11-11 1984-11-09 PROCEDURE FOR THE MANUFACTURE OF A SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE
US07/011,932 US4819054A (en) 1982-09-29 1987-02-06 Semiconductor IC with dual groove isolation
SG77388A SG77388G (en) 1983-10-14 1988-11-18 Process for manufacturing a semiconductor integrated circuit device
US07/284,557 US5011788A (en) 1982-09-29 1988-12-15 Process of manufacturing semiconductor integrated circuit device and product formed thereby
HK30789A HK30789A (en) 1983-10-14 1989-04-13 Process for manufacturing a semiconductor integrated circuit device
US07/642,922 US5141888A (en) 1982-09-29 1991-01-18 Process of manufacturing semiconductor integrated circuit device having trench and field isolation regions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58210834A JPS60103642A (en) 1983-11-11 1983-11-11 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60103642A true JPS60103642A (en) 1985-06-07

Family

ID=16595879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58210834A Pending JPS60103642A (en) 1982-09-29 1983-11-11 Semiconductor device and manufacture thereof

Country Status (5)

Country Link
JP (1) JPS60103642A (en)
KR (1) KR920010828B1 (en)
DE (1) DE3440721A1 (en)
FR (1) FR2554970B1 (en)
IT (1) IT1177148B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155639A (en) * 1989-11-14 1991-07-03 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275989A (en) * 1975-12-22 1977-06-25 Hitachi Ltd Production of semiconductor device
US4139442A (en) * 1977-09-13 1979-02-13 International Business Machines Corporation Reactive ion etching method for producing deep dielectric isolation in silicon
US4238278A (en) * 1979-06-14 1980-12-09 International Business Machines Corporation Polycrystalline silicon oxidation method for making shallow and deep isolation trenches
JPS57204133A (en) * 1981-06-10 1982-12-14 Hitachi Ltd Manufacture of semiconductor integrated circuit
JPS5958838A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155639A (en) * 1989-11-14 1991-07-03 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
FR2554970B1 (en) 1986-08-29
KR850004181A (en) 1985-07-01
DE3440721A1 (en) 1985-05-23
KR920010828B1 (en) 1992-12-17
IT1177148B (en) 1987-08-26
IT8423519A1 (en) 1986-05-09
FR2554970A1 (en) 1985-05-17
DE3440721C2 (en) 1993-09-02
IT8423519A0 (en) 1984-11-09

Similar Documents

Publication Publication Date Title
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
KR920006851B1 (en) Method of forming trench isolation in an intergrated circuit
US5141888A (en) Process of manufacturing semiconductor integrated circuit device having trench and field isolation regions
EP0139371B1 (en) Process for manufacturing a mos integrated circuit employing a method of forming refractory metal silicide areas
EP0055521B1 (en) Method of filling a groove in a semiconductor substrate
US4486266A (en) Integrated circuit method
JPH06342802A (en) High-performance semiconductor device and its manufacture
GB2148593A (en) Process for manufacturing the isolating regions of a semiconductor integrated circuit device
EP1067599B1 (en) A method of forming structures with buried oxide regions in a semiconductor substrate
JPS60103642A (en) Semiconductor device and manufacture thereof
JP2669377B2 (en) Method for manufacturing semiconductor device
JPS60241261A (en) Semiconductor device and manufacture thereof
JP5176050B2 (en) Field plate resistance with increased route forming region on top
JPS60136327A (en) Manufacture of semiconductor device
KR900003616B1 (en) Manufacture of semiconductor device
JPS5992546A (en) Bipolar integrated circuit device
JPH0234179B2 (en)
JPH09326399A (en) Semiconductor device and its manufacture
JPS60211958A (en) Semiconductor device
JPS58200553A (en) Semiconductor device
JPH0373139B2 (en)
JPH11289082A (en) Semiconductor device and its manufacture
JP2718101B2 (en) Method for manufacturing semiconductor device
JPH05109884A (en) Manufacture of semiconductor device
JPH023256A (en) Manufacture of semiconductor device