JPS5994371A - Alkaline battery and its manufacturing method - Google Patents

Alkaline battery and its manufacturing method

Info

Publication number
JPS5994371A
JPS5994371A JP57203709A JP20370982A JPS5994371A JP S5994371 A JPS5994371 A JP S5994371A JP 57203709 A JP57203709 A JP 57203709A JP 20370982 A JP20370982 A JP 20370982A JP S5994371 A JPS5994371 A JP S5994371A
Authority
JP
Japan
Prior art keywords
zinc
mercury
weight
powder
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57203709A
Other languages
Japanese (ja)
Other versions
JPH0222984B2 (en
Inventor
Keiichi Kagawa
賀川 恵市
Hiroshi Hirahara
平原 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP57203709A priority Critical patent/JPS5994371A/en
Publication of JPS5994371A publication Critical patent/JPS5994371A/en
Publication of JPH0222984B2 publication Critical patent/JPH0222984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the effect of suppressing gas generation and the effect of battery performance by using the amalgamated zinc ally powder in which one or more kinds of cadmium, tin, thallium, lead, and bismuth is/are allowed to coexist with indium or zinc-mercury alloy powder as the cathode active material. CONSTITUTION:The amalgamated zinc alloy powder in which one or more kinds of cadmium, tin, thallium, lead, and bismuth is/are allowed to coexist with indium or zinc-mercury alloy powder is used as the active material of a cathode 4. It is recommended that the volume of each element in the said powder should be listed below: The content of indium is 0.005-1wt%, the content of cadmium is 0.001-0.05wt%, the content of tin is 0.001-1wt%, the content of thallium is 0.001-1wt%, the content of lead is 0.005-1wt%, the content of bismuth is 0.001-1wt%, and the content of mercury is less than 5wt%.

Description

【発明の詳細な説明】 本発明はアルカリ電池およびその製造方法に関し、詳し
くはカドミウム、スズ、タリウム、鉛、ビスマスから選
ばれる少なくとも1種以上とインジウムを並存させたア
マルガム化亜鉛合金粉末または亜鉛−水銀合金粉末を電
池用陰極活物質として用いたアルカリ電池およびその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkaline battery and a method for manufacturing the same, and more specifically, an amalgamated zinc alloy powder or a zinc- The present invention relates to an alkaline battery using mercury alloy powder as a cathode active material for batteries, and a method for manufacturing the same.

亜鉛を陰極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は、電池の小形化をはかる際には特に重要であるが
、同時に電池保存中の亜鉛の腐食により発生する水素ガ
スを閉じ込めることになる。従って長期保存中に電池内
部のガス圧が高まり、密閉が完全なほど爆発等の危険が
伴なう。その対策として、電池の構造に工夫をこらし発
生ガスを選択的に電池外部へ導くことも種々行なわれて
いるが、未だ完全なものではない。
In alkaline batteries using zinc as a cathode active material, the battery must be sealed tightly because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when trying to downsize the battery, but it also traps hydrogen gas generated by corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion. As a countermeasure against this problem, various efforts have been made to improve the structure of the battery and selectively guide the generated gas to the outside of the battery, but these efforts are still not perfect.

そこで、亜鉛陰極活物質の腐食そのものを防止して電池
内部のガス発生を少なくすることが研究され、水銀の水
素過電圧を利用した水銀含有亜鉛粉末を陰極活物質とし
て用いることが専ら行なわれている。
Therefore, research has been conducted to prevent the corrosion of the zinc cathode active material itself and reduce gas generation inside the battery, and the use of mercury-containing zinc powder, which utilizes the hydrogen overvoltage of mercury, as the cathode active material has been carried out exclusively. .

しかしながら、今日市販されているアルカリ電池の陰極
活物質は5〜15重量%重量%釜量の水銀を含有してお
り、人体や他の生物体に危険を与え、環境汚染を起こす
恐れが大きい。
However, the cathode active materials of alkaline batteries commercially available today contain mercury in an amount of 5 to 15% by weight, which poses a danger to humans and other living organisms, and is highly likely to cause environmental pollution.

そこで、水銀を用いず、代わりに鉛等を添加した亜鉛電
極を用いてガス発生を抑制する方法も提案されている。
Therefore, a method has been proposed in which gas generation is suppressed by using a zinc electrode to which lead or the like is added instead of using mercury.

しかしながら、そのような元素はある程度のガス発生抑
制効果を奏するが、水銀と置換されるにはほど遠いのが
現状である。また、鉛イオンやカドミウムイオン等を添
加した水銀イオンを含む酸性溶液に亜鉛粉末を浸漬して
置換法によるアマルガメーションを行なうと同時に鉛や
カドミウムを亜鉛粉末に添加させる方法も提案されてい
るが、該方法によっても、ガス発生を効果的に抑制しつ
つ水銀の含有量を低下させることはできなかった。
However, although such elements have a gas generation suppressing effect to some extent, they are currently far from being able to replace mercury. In addition, a method has been proposed in which zinc powder is immersed in an acidic solution containing mercury ions to which lead ions, cadmium ions, etc. have been added, and amalgamation is performed by the substitution method, and at the same time lead and cadmium are added to the zinc powder. Regardless of the method used, it has not been possible to reduce the mercury content while effectively suppressing gas generation.

本発明は、以上のような現状に鑑み、陰極活物質からの
水素ガス発生を抑制するために必要な水銀の含有率を著
しく減少させるとともに電池特性も向上させる陰極活物
質を用いたアルカリ電池およびその製造方法を提供する
ことを目的とする。
In view of the above-mentioned current situation, the present invention provides an alkaline battery using a cathode active material that significantly reduces the content of mercury necessary to suppress hydrogen gas generation from the cathode active material and also improves battery characteristics. The purpose is to provide a manufacturing method thereof.

本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる陰極活物質において、水銀に加えてカドミウム、
スズ、タリウム、鉛、ビスマスから選ばれる少なくとも
1種以上とインジウムを併存させると、水銀とカドミウ
ム、スズ、タリウム、鉛、ビスマスから選ばれる少なく
とも1種以上とインジウムがガス発生抑制に対して相乗
的に作用し、従来より用いられてきた水銀含有亜鉛−粉
末からなる陰極活物質における場合よりも水銀量を著し
く減少させても、水銀含有亜鉛粉末を陰極活物質として
用いた場合と比較して同等以上のガス発生抑制効果並び
に電池性能効果を奏することを見出し、本発明に至った
As a result of intensive research in line with this objective, the present inventors found that in addition to mercury, cadmium,
When indium coexists with at least one selected from tin, thallium, lead, and bismuth, mercury and at least one selected from cadmium, tin, thallium, lead, and bismuth and indium act synergistically to suppress gas generation. Even though the amount of mercury is significantly reduced compared to the conventionally used cathode active material made of mercury-containing zinc powder, it is equivalent to the case where mercury-containing zinc powder is used as the cathode active material. It has been discovered that the above-mentioned gas generation suppressing effect and battery performance effect can be achieved, and the present invention has been achieved.

すなわち、本発明のアルカリ電池はカドミウム、スズ、
タリウム、鉛、とスマスから選ばれる少なくとも1種以
上とインジウムを併存させたアマルガム化亜鉛合金粉末
または亜鉛−水銀合金粉末を電池用陰極活物質として用
いることを特徴とするアルカリ電池である。
That is, the alkaline battery of the present invention contains cadmium, tin,
The alkaline battery is characterized in that an amalgamated zinc alloy powder or a zinc-mercury alloy powder containing indium and at least one selected from thallium, lead, and sumas is used as a cathode active material for the battery.

従来の単なる水銀含有亜鉛粉末からなる陰極活物質が5
〜15重量%の水銀含有率を有するのに対して、本発明
のアルカリ電池に使用される陰極活物質は水銀含有率が
5重量%以下、さらには、1重量%以下になっても従来
のものと同等以上にガス発生を抑制することができる。
The conventional cathode active material consisting of simple mercury-containing zinc powder is
In contrast, the cathode active material used in the alkaline battery of the present invention has a mercury content of 5% by weight or less, or even 1% by weight or less, compared to the conventional one. It is possible to suppress gas generation to a greater extent than that of conventional methods.

もちろん、水銀の含有率を大きくし、それに応じてガス
発生抑制機能を高めることもできる。本発明における陰
極活物質の好ましい水銀含有率は、実用的には、5重量
%以下で従来の水銀含有亜鉛粉末からなる陰極活′If
IJ質よりも充分に大きい抑制効果を有する。
Of course, it is also possible to increase the mercury content and increase the gas generation suppressing function accordingly. Practically, the preferable mercury content of the cathode active material in the present invention is 5% by weight or less, and the cathode active material made of conventional mercury-containing zinc powder is
It has a sufficiently greater suppressive effect than IJ quality.

また、本発明におけるアマルガム化亜鉛合金粉末または
亜鉛−水銀合金粉末のインジウムの含有率は0.005
〜1重量%が好ましく、それ以上含有しても効果が少な
い。
Further, the indium content of the amalgamated zinc alloy powder or zinc-mercury alloy powder in the present invention is 0.005
The content is preferably 1% by weight, and even if the content is more than that, the effect will be small.

本発明におけるアマルガム化亜鉛合金粉末または亜鉛−
水銀合金粉末には、カドミウム、スズ1、−1 タリウム、鉛、ビスマスから選ばれる少なくとも1種以
上が含有され、その含有率はそれぞれカドミウムが0.
001〜0.05重M%、ススカo、oo1〜1重量%
、タリウムがo、ooi〜1重但%、鉛が0.005〜
1重量%、ビスマスがo、o−oi〜1重量%の割合で
少なくとも1種以上含まれ、それ以上含有しても効果が
少な(、少量含有すればよい。
Amalgamated zinc alloy powder or zinc in the present invention
The mercury alloy powder contains at least one or more selected from cadmium, tin 1, -1 thallium, lead, and bismuth, and the content ratio of each is cadmium 0.
001-0.05 weight M%, soot o, oo1-1 weight%
, thallium is o, ooi ~ 1% by weight, lead is 0.005 ~
At least one type of bismuth is contained in a proportion of o, o-oi to 1% by weight, and even if it is contained more than that, the effect is small (it only needs to be contained in a small amount).

本発明のアルカリ電池は、種々の方法で得られるが、好
ましい製造方法とは、 (1)カドミウム、スズ、タリウム、鉛、ピ′スマスか
ら選ばれる少なくとも1種以上とインジウムと水銀を合
金化させ、該合金を用いて亜鉛粉末をアマルガメーショ
ンさせて得られるアマルガム化亜鉛合金粉末を電池用陰
極活物質として用いる方法、 (2)溶融亜鉛にカドミウム、スズ、タリウム、鉛、ビ
スマスから選ばれる少なくとも1種以上とインジウムを
混合して合金化させ、粉末としたものをアマルガメーシ
ョンされて得られるアマルガム化亜鉛合金粉末を電池用
陰極活物質として用いる方法、 (3)溶融亜鉛にカドミウム、スズ、タリウム、鉛、ビ
スマスから選ばれる少なくとも1種以上とインジウムと
水銀を混合し合金化させ、粉末としたものを電池用陰極
活物質として用いる方法、等である。
The alkaline battery of the present invention can be obtained by various methods, but the preferred manufacturing method is (1) alloying indium and mercury with at least one selected from cadmium, tin, thallium, lead, and pith. , a method of using an amalgamated zinc alloy powder obtained by amalgamating zinc powder using the alloy as a cathode active material for a battery; (2) at least one member selected from cadmium, tin, thallium, lead, and bismuth in molten zinc; A method of using an amalgamated zinc alloy powder obtained by mixing the above with indium and amalgamating the powder as a cathode active material for batteries, (3) molten zinc with cadmium, tin, thallium, lead, For example, at least one selected from bismuth, indium, and mercury are mixed and alloyed, and the resulting powder is used as a cathode active material for batteries.

なお、これらの方法以外に例え、ば、カドミウム、スズ
、タリウム、鉛、ビスマスから選ばれる少なくとも1種
以上を水銀と合金化させ、該合金を用いて亜鉛−インジ
ウム合金粉末をアマルガメーションする方法並びに溶融
亜鉛にカドミウム、スズ、タリウム、鉛、ビスマスから
選ばれる少な(とも1種以上を混合して合金化させ、粉
末としたものをインジウムと水銀の合金でアマルガメー
ションする方法等を用いてもさしつがえない。
In addition to these methods, for example, there is a method in which at least one member selected from cadmium, tin, thallium, lead, and bismuth is alloyed with mercury, and the alloy is used to amalgamate zinc-indium alloy powder; Zinc can be alloyed with one or more of cadmium, tin, thallium, lead, and bismuth selected from cadmium, tin, thallium, lead, and bismuth, and the resulting powder is amalgamated with an alloy of indium and mercury. do not have.

第(1)の製造方法は、例えば次のようにして実施例 先ず水酸化カリウム水溶液のようなアルカリ液に亜鉛粉
末を投入し、1〜30分間予備攪拌を行なう。次いで、
予めカドミウム、スズ、タリウム、鉛、ビスマスから選
ばれる少なくとも1種以上とインジウムと水銀を混合し
て合金化させたものを細孔より徐々に上記の亜鉛粉末含
有アルカリ液に滴下しつつ30〜120分間攪拌後、水
洗し、30〜60℃の低湿で乾燥することによって、所
定のアマルガム化亜鉛合金粉末を得る。水銀は亜鉛のみ
ならず、カドミウムやインジウム等とも比較的低温下に
おいて合金を作る性質を有し、例えば合金中のカドミウ
ム/水銀あるいはインジウム/水銀の比率がそのまま保
持されつつ該合金が亜鉛粉末中に含有される。従って合
金中のカドミウム、インジウム等の含有率を変えること
によって、亜鉛粉末中のカドミウム、インジウム、水銀
等の含有率を自由に変えることができる。
The manufacturing method (1) is carried out, for example, as follows: Example First, zinc powder is added to an alkaline solution such as an aqueous potassium hydroxide solution, and preliminary stirring is performed for 1 to 30 minutes. Then,
An alloy of at least one selected from cadmium, tin, thallium, lead, and bismuth mixed with indium and mercury is gradually dropped into the above alkaline solution containing zinc powder through the pores while After stirring for a minute, the mixture is washed with water and dried at a low humidity of 30 to 60°C to obtain a predetermined amalgamated zinc alloy powder. Mercury has the property of forming an alloy not only with zinc but also with cadmium, indium, etc. at relatively low temperatures. For example, while the cadmium/mercury or indium/mercury ratio in the alloy remains the same, the alloy is mixed into zinc powder. Contains. Therefore, by changing the content of cadmium, indium, etc. in the alloy, the content of cadmium, indium, mercury, etc. in the zinc powder can be freely changed.

また第(2)の製造方法としては、先ず溶融亜鉛にカド
ミウム、スズ、タリウム、鉛、ビスマスから選ばれる少
なくとも1種以上とインジウムを添加し、攪拌しながら
均一合金化させた後、該溶湯を空気噴霧させ、粉末化さ
せたものを上述の方法と同様な方法、すなわち該合金粉
末を含有するアルカリ液に水銀を添加することにより所
定のアマルガム化亜鉛合金粉末を得る。
In the second manufacturing method, first, at least one selected from cadmium, tin, thallium, lead, and bismuth and indium are added to molten zinc, and after homogeneous alloying with stirring, the molten metal is A predetermined amalgamated zinc alloy powder is obtained by air atomizing and pulverizing the powder in the same manner as described above, that is, by adding mercury to an alkaline solution containing the alloy powder.

また第(3)の方法としては、溶融亜鉛中にカドミウム
、スズ、タリウム、鉛、ビスマスから選ばれる少なくと
も1種以上とインジウムと水銀を添加し、攪拌しながら
均一合金化させた後、該溶湯を空気噴霧させ、所定の亜
鉛合金粉末を得る。
Further, as the third method, at least one selected from cadmium, tin, thallium, lead, and bismuth, indium, and mercury are added to molten zinc, and after homogeneous alloying with stirring, the molten zinc is is air atomized to obtain a specified zinc alloy powder.

このようにして得られたアマルガム化亜鉛合金粉末また
は亜鉛−水銀合金粉末亜鉛合金粉末を陰極活物質として
用いることによっ−で、ガス発生が抑制され、しかも電
池性能に優れたアルカリ電池が提供される。− 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
By using the thus obtained amalgamated zinc alloy powder or zinc-mercury alloy powder or zinc alloy powder as a cathode active material, an alkaline battery with suppressed gas generation and excellent battery performance can be provided. Ru. - Hereinafter, the present invention will be specifically explained based on Examples and Comparative Examples.

実施例1(a)〜((] > 1:10塩酸浴にて、カドミウムi、o@1部、鉛5.
1重量部、インジウム2.1重量部、水銀91.8重量
部を混合して、カドミウム、鉛、インジウム9比率がそ
れぞれ1.0重量%、5.1重回%、2.1重量%のカ
ドミウム−鉛−インジウムアマルガムを調製した。次い
で、予め調整していた10重量%の水酸化カリウム溶液
0.5.’に35〜100メツシユの市販の電池用亜鉛
粉末250oを投入し、20℃で5分間予備攪拌を行な
った。次に前記カドミウム−鉛−インジウムアマルガム
を所定量細孔から徐々に滴下しながら20℃で60分間
攪拌することによってアマルガメーションを行なった。
Example 1 (a) ~ (() > 1:10 in a hydrochloric acid bath, cadmium i, o @ 1 part, lead 5.
By mixing 1 part by weight, 2.1 parts by weight of indium, and 91.8 parts by weight of mercury, the proportions of cadmium, lead, and indium were 1.0% by weight, 5.1% by weight, and 2.1% by weight, respectively. A cadmium-lead-indium amalgam was prepared. Next, 0.5% of a 10% by weight potassium hydroxide solution prepared in advance was added. 35 to 100 meshes of commercially available battery zinc powder (250°) were added to the solution, and preliminarily stirred at 20° C. for 5 minutes. Next, a predetermined amount of the cadmium-lead-indium amalgam was gradually dropped through the pores and stirred at 20° C. for 60 minutes to perform amalgamation.

アマルガメーション終了後、水洗を行ない45°Cで一
昼夜乾燥させた。このようにして、カドミウム、鉛、イ
ンジウム、水銀の含有率がそれぞれ0.01重量%、0
.05重量%、0.02重量%、09重量%の亜鉛−カ
ドミウムー鉛−インジウムー水銀粉末(実施例1(a)
)を得た。
After completing the amalgamation, it was washed with water and dried at 45°C overnight. In this way, the content of cadmium, lead, indium, and mercury was reduced to 0.01% by weight and 0.01% by weight, respectively.
.. Zinc-cadmium lead-indium-mercury powder (Example 1(a)
) was obtained.

また、同様な方法でカドミウム−鉛−インジウムアマル
ガムまたはカドミウムースズービスマスーインジウムア
マルカムを得、最終的に各元素の含有率が、下記のごと
きアマルガム化亜鉛合金粉末を得た。
Cadmium-lead-indium amalgam or cadmium mousse-subismuth-indium amalgam was also obtained in a similar manner, and finally amalgamated zinc alloy powder having the following content of each element was obtained.

(1)カドミウムo、 oi重量%、鉛0.05重量%
、インジウム0.02重量%、水銀1.5重量%の亜鉛
−カドミウムー鉛−インジウムー水銀粉末(実施例1(
b))。
(1) Cadmium o, oi weight%, lead 0.05 weight%
, 0.02% by weight of indium and 1.5% by weight of mercury zinc-cadmium lead-indium-mercury powder (Example 1 (
b)).

(2)カドミウム0.01重量%、鉛0.05重量%、
インジウム0.02重量%、水銀3重量%の亜鉛−力ド
ミウムー鉛−インジウムー水銀粉末(実施例1(c))
(2) Cadmium 0.01% by weight, lead 0.05% by weight,
Zinc-hydrodium lead-indium-mercury powder containing 0.02% by weight of indium and 3% by weight of mercury (Example 1(c))
.

(3)カドミウム0.01重量%、鉛0.05重量%、
インジウム0.02重量%、水銀5重量%の亜鉛−カド
ミウムー鉛−インジウムー水銀粉末(実施例1(d))
(3) Cadmium 0.01% by weight, lead 0.05% by weight,
Zinc-cadmium lead-indium-mercury powder containing 0.02% by weight of indium and 5% by weight of mercury (Example 1(d))
.

(4)カドミウム0.01重量%、鉛0.05重量%、
インジウム0.02重量%、水銀7重量%の亜鉛−カド
ミウムー鉛−インジウムー水銀粉末(実施例1(e))
(4) Cadmium 0.01% by weight, lead 0.05% by weight,
Zinc-cadmium lead-indium-mercury powder containing 0.02% by weight of indium and 7% by weight of mercury (Example 1(e))
.

(5)カドミウム0.03重量%、鉛0.05重量%、
インジウム0.1重量%、水銀0.9重量%の亜鉛−カ
ドミウムー鉛−インジウムー水銀粉末(実施例1(f)
)。
(5) Cadmium 0.03% by weight, lead 0.05% by weight,
Zinc-cadmium lead-indium-mercury powder containing 0.1% by weight of indium and 0.9% by weight of mercury (Example 1(f)
).

(6)カドミウム0.01重量%、スズ0.01重量%
、ビスマス0.01重石%、インジウム0.02重量%
、水銀0.09重閤%の亜鉛−力ドミウムースズービス
マスーインジウムー水銀粉末(実施例1(0))。
(6) Cadmium 0.01% by weight, tin 0.01% by weight
, bismuth 0.01% by weight, indium 0.02% by weight
, 0.09% mercury by weight zinc-hydrogen mousse-bismuth-indium-mercury powder (Example 1 (0)).

このようにして得られたアマルガム化亜鉛合金粉末を陰
極活物質として水素ガス発生試験を行なった。結果を第
1表に示す。なお、ガス発生試験は、電解液として濃度
40重量%の水酸化カリウム水溶液に酸化亜鉛を飽和さ
せたもの511!を用い、′アマルガム化亜鉛合金粉末
からなる陰極活物質をそれぞれ10gを用いて、45℃
でガス発生速度(TIIg/g ・日)を測定した。
A hydrogen gas generation test was conducted using the thus obtained amalgamated zinc alloy powder as a cathode active material. The results are shown in Table 1. In the gas generation test, zinc oxide was saturated in a potassium hydroxide aqueous solution with a concentration of 40% by weight as the electrolytic solution 511! and 10 g of each cathode active material consisting of amalgamated zinc alloy powder at 45°C.
The gas generation rate (TIIg/g·day) was measured.

また、このアマルガム化亜鉛合金粉末からなる陰極活物
質について、第1図に示す構造のアルカリマンガン電池
を用いて電池性能を評価した。第1図のアルカリマンガ
ン電池は、正極缶1、正極2、セパレーター3、アマル
ガム化亜鉛合金粉末または亜鉛−水銀合金粉末をカルボ
キシメチルセルロースでゲル化した負極4、負極集電体
5、ゴムパツキン6、押さえ板7で構成されている。
Further, the battery performance of the cathode active material made of this amalgamated zinc alloy powder was evaluated using an alkaline manganese battery having the structure shown in FIG. The alkaline manganese battery shown in Fig. 1 includes a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of amalgamated zinc alloy powder or zinc-mercury alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a presser. It is composed of a plate 7.

このアルカリマンガン電池を用いて放電負荷4Ω、20
℃、の放電条件により終止電圧0.9Vまでの放電持続
時間を測定し、後述の従来の陰極活物質を用いた比較例
1(d)の測定値を100とした指数で示した。結果を
第2表に示す。
Using this alkaline manganese battery, the discharge load is 4Ω, 20Ω.
The discharge duration up to the final voltage of 0.9 V was measured under the discharge conditions of 100° C., and expressed as an index with the measured value of Comparative Example 1(d) using a conventional cathode active material described below as 100. The results are shown in Table 2.

例2 a)〜(C) 溶融亜鉛にスズ、鉛、インジウムを投入して、約450
℃の温度で攪拌して、次いでこの溶融合金を4 ka 
/ cmの圧力の圧縮空気で粉末化し、20〜200メ
ツシユの粒度でスズ、鉛、インジウムの含有率が0.0
5重量%、0.1重量%、0.02重量%の亜鉛−スズ
ー鉛−インジウムの合金粉末を得た。この合金粉末と水
銀を用いて、実施例1と同様な方法でアマルガメーショ
ンして、スズ、鉛、インジウム、水銀含有率がそれぞれ
0.05重量%、0.1重量%、0.02重量%、0,
9重量%の亜鉛−スズー鉛−インジウムー水銀粉末(実
施例2(a))を得た。
Example 2 a) ~ (C) Tin, lead, and indium are added to molten zinc to produce approximately 450
This molten alloy was then stirred at a temperature of 4 ka
Powdered with compressed air at a pressure of / cm, with a particle size of 20 to 200 mesh and a content of tin, lead, and indium of 0.0
Zinc-tin-lead-indium alloy powders of 5% by weight, 0.1% by weight, and 0.02% by weight were obtained. Using this alloy powder and mercury, amalgamation was performed in the same manner as in Example 1, so that the tin, lead, indium, and mercury contents were 0.05% by weight, 0.1% by weight, and 0.02% by weight, respectively. 0,
A 9% by weight zinc-tin-lead-indium-mercury powder (Example 2(a)) was obtained.

また、同様の方法で、タリウム、インジウム、水銀含有
率がそれぞれ0.03重量%、0.1重量%、0.9重
量%の亜鉛−タリウム−インジウム−水銀粉末(実施例
2 (b ) )並びにカドミウム、スズ、タリウム、
鉛、ビスマス、インジウム、水銀の含有率がそれぞれ0
.01重量%、0.01重量%、0.01重量%、0.
05重量%、0.01重量%、0.02重量%、0,9
重量%の亜鉛−力ドミウムースズータリウムー鉛−ビス
マスーインジウムー水銀粉末(実施例2(C))を得た
In addition, by the same method, zinc-thallium-indium-mercury powder with thallium, indium, and mercury contents of 0.03% by weight, 0.1% by weight, and 0.9% by weight, respectively (Example 2 (b)) as well as cadmium, tin, thallium,
Content of lead, bismuth, indium, and mercury is 0 each
.. 01% by weight, 0.01% by weight, 0.01% by weight, 0.
05% by weight, 0.01% by weight, 0.02% by weight, 0.9
A zinc-hydrodium mousse-zoothallium-lead-bismuth-indium-mercury powder (Example 2(C)) was obtained in weight percent.

これらのアマルガム化亜鉛合金粉末を陰極活物質として
用い、実施例1と同様な方法によって、ガス発生試験と
電池性能試験を行ない、その結果を第1表および第2表
に示した。
Using these amalgamated zinc alloy powders as a cathode active material, a gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

!蓋」」− 溶融亜鉛にカドミウム、タリウム、鉛、インジウム、水
銀を投入し、約450℃の温度で攪拌し、次いでこの溶
融合金を4ka/cnfの圧力の圧縮空気で粉末化し、
20〜200メツシユの粒度でカドミウム、タリウム、
鉛、インジウム、水銀の含有率がそれぞれ0.02重量
%、0.02重量%、0.05重量%、0.02重量%
、0.9重D%の亜鉛−カドミウムータリウムー鉛−イ
ンジウムー水銀粉末を得た。
! "Lid" - molten zinc is charged with cadmium, thallium, lead, indium, and mercury, stirred at a temperature of about 450°C, and then the molten alloy is pulverized with compressed air at a pressure of 4ka/cnf,
Cadmium, thallium, with a particle size of 20 to 200 mesh
The content of lead, indium, and mercury is 0.02% by weight, 0.02% by weight, 0.05% by weight, and 0.02% by weight, respectively.
, 0.9% by weight of zinc-cadmium thallium-lead-indium-mercury powder was obtained.

この亜鉛−水銀合金粉末を陰極活物質として用い、実施
例1と同様な方法によって、ガス発生試験と電池性能試
験を行ない、その結果を第1表および第2表に示した。
Using this zinc-mercury alloy powder as a cathode active material, a gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

較例1(a)〜(e) 従来から用いられている水銀含有率0.9重量%(比較
例1(a))、1.5重量%(比較例1(b))、3重
量%(比較例1(c))、5重量%(比較例1(d))
、7重量%(比較例(e))の亜鉛−水銀粉末を陰極活
物質とし、実施例1と同様な方法によって、ガス発生試
験と電池性能試験を行ない、その結果を第1表および第
2表に示した。
Comparative Examples 1(a) to (e) Conventionally used mercury content: 0.9% by weight (Comparative Example 1(a)), 1.5% by weight (Comparative Example 1(b)), 3% by weight (Comparative Example 1(c)), 5% by weight (Comparative Example 1(d))
, 7% by weight (Comparative Example (e)) zinc-mercury powder was used as the cathode active material, and a gas generation test and a battery performance test were conducted in the same manner as in Example 1. The results are shown in Tables 1 and 2. Shown in the table.

第1表および第2表に示されるごとく、本発明に係わる
実施例1(a)〜(g)、実施例2(a)〜(C)、実
施例3は、いずれも比較例1(a)〜(e)に比べて、
水銀含有量を著しく減少させてもガス発生抑制効果は高
い水準にある。また、電池性能も水銀を5重量%含有す
る亜鉛−水銀粉末を陰極活物質とした比較例1(d))
に比べて優れていることが理解される。
As shown in Tables 1 and 2, Examples 1 (a) to (g), Examples 2 (a) to (C), and Example 3 related to the present invention are all related to Comparative Example 1 (a). ) to (e),
Even if the mercury content is significantly reduced, the gas generation suppressing effect remains at a high level. In addition, the battery performance was also improved (Comparative Example 1(d)) in which zinc-mercury powder containing 5% by weight of mercury was used as the cathode active material.
It is understood that it is superior to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わるアルカリマンガン電池の断面
図を示す。 1:正極缶、2:正極、3:セパレーター、4:アマル
ガム化亜鉛合金粉末または亜鉛−水銀合金粉末をカルボ
キシメチルセルロースでゲル化した負極、5:負極集電
体、6:ゴムパツキン、7:押さえ板 手   続   補   正   書 昭和57年11月26日 特許庁長官 若 杉 和 夫 殿 2、発明の名称 アルカリ電池およびその製造方法 3、補正をする者 事件との関係  特 許 出 願 入 居 所 東京都中央区日本橋室町二丁目1番地1名 称
 (618)三井金属鉱業株式会社代表者 高島節男 4、代理人〒105 住 所 東京都港区虎ノ門二丁目8番1号自発補正 6、補正の対象 別添の通り 8、添付書類 (1)訂正願書   1通 (2)図面   1通 第 1 一=汁 ノ ア ゝ\−6 □1 一一−4
FIG. 1 shows a cross-sectional view of an alkaline manganese battery according to the present invention. 1: Positive electrode can, 2: Positive electrode, 3: Separator, 4: Negative electrode made by gelling amalgamated zinc alloy powder or zinc-mercury alloy powder with carboxymethyl cellulose, 5: Negative electrode current collector, 6: Rubber packing, 7: Holder plate Procedures Amendment Written by Kazuo Wakasugi, Commissioner of the Patent Office, November 26, 19822 Name of the invention Alkaline battery and its manufacturing method3 Relationship with the case of the person making the amendment Patent application Place of residence Chuo, Tokyo 2-1 Muromachi, Nihonbashi-ku, 1 Name (618) Mitsui Kinzoku Mining Co., Ltd. Representative: Setsuo Takashima 4, Agent: 〒105 Address: 2-8-1 Toranomon, Minato-ku, Tokyo Voluntary amendment 6, subject of amendment Attachment Street 8, Attached documents (1) Application for correction 1 copy (2) Drawing 1 copy No. 1 1 = Soup Noa\-6 □1 11-4

Claims (1)

【特許請求の範囲】 1、カドミウム、スズ、タリウム、鉛、ビスマスから選
ばれる少なくとも1種以上とインジウムをイ;1存させ
たアマルガム化亜鉛粉末または亜鉛−水銀合金粉末を電
池用陰極活物質として用いることを特徴とするアルカリ
電池。 2、前記アマルガム化亜鉛粉末または亜鉛−水銀合金粉
末のインジウムの含有率が0.005〜1重足%である
前記特許請求の範囲第1項記載のアルカリ電池。 3、前記アマ、ルガム化亜鉛粉末または亜鉛−水銀合金
粉末のカドミウムの含有率がo、ooi〜0.05重M
%、スズの含有率が0.001〜1重量%、タリウムの
含有率がo、ooi〜1重間%、鉛の含有率が0.00
5〜1重準%、ビスマスの含有率が0.001〜1重量
%の割合で少なくとも1種以上含まれる前記特許請求の
範囲第1項または第2項記載のアルカリ電池。 4、前記アマルガム化亜鉛粉末または亜鉛−水銀合金粉
末の水銀の含有率が5重量%以下である前記特許請求の
範囲第1項、第2項また【ま第3項に記載のアルカリ電
池。 5、前記アマルガム化亜鉛粉末または亜鉛−水銀合金粉
末の水銀の含有率が1重量%以下である前記特許請求の
範囲第4項に記載のアルカリ電池。 6、カドミウム、スス゛、タリウム、鉛、ビスマスから
選ばれる少なくとも1種以上とインジウムと水銀を合金
化させ、該合金を用いて亜鉛粉末をアマルガメーション
させて得られるアマルガム化亜鉛合金粉末を電池用陰極
活物質として用いることを特徴とするアルカリ電池の製
造方法。 7、溶融亜鉛にカドミウム、スズ、タリウム、鉛、ビス
マスから選ばれる少なくとも1種以上とインジウムを混
合して合金化させ、粉末としたものをアマルガメ・−ジ
ョンさせて得られるアマルガム化亜鉛合金粉末を電池用
陰極活物質として用いることを特徴とするアルカリ電池
の製造方法。 8、溶融亜鉛にカドミウム、スズ、タリウム、鉛、ビス
マスから選ばれる少なくとも1種以上とインジウムと水
銀を混合し合金化させ、粉末としたものを電池用陰極活
物質として用いることを特徴とするアルカリ電池の製造
方法。
[Claims] 1. Amalgamated zinc powder or zinc-mercury alloy powder containing at least one member selected from cadmium, tin, thallium, lead, and bismuth and indium as a cathode active material for batteries. An alkaline battery characterized in that it is used. 2. The alkaline battery according to claim 1, wherein the amalgamated zinc powder or zinc-mercury alloy powder has an indium content of 0.005 to 1%. 3. The cadmium content of the flax, rugumized zinc powder or zinc-mercury alloy powder is o, ooi to 0.05 weight M
%, tin content is 0.001 to 1% by weight, thallium content is o, ooi to 1% by weight, lead content is 0.00%.
The alkaline battery according to claim 1 or 2, wherein the alkaline battery contains at least one kind of bismuth at a ratio of 5 to 1 weight % and a bismuth content of 0.001 to 1 weight %. 4. The alkaline battery according to claim 1, 2 or 3, wherein the mercury content of the amalgamated zinc powder or zinc-mercury alloy powder is 5% by weight or less. 5. The alkaline battery according to claim 4, wherein the amalgamated zinc powder or zinc-mercury alloy powder has a mercury content of 1% by weight or less. 6. Amalgamated zinc alloy powder obtained by alloying indium and mercury with at least one selected from cadmium, sulphur, thallium, lead, and bismuth, and amalgamating zinc powder using the alloy, can be used as a cathode active material for batteries. A method for producing an alkaline battery, characterized in that it is used as a substance. 7. Amalgamated zinc alloy powder obtained by alloying molten zinc with at least one selected from cadmium, tin, thallium, lead, and bismuth and indium, and amalgamating the powder. A method for producing an alkaline battery, characterized in that it is used as a cathode active material for a battery. 8. An alkali characterized by mixing molten zinc with at least one member selected from cadmium, tin, thallium, lead, and bismuth, indium, and mercury to form a powder, and using the powder as a cathode active material for batteries. How to manufacture batteries.
JP57203709A 1982-11-22 1982-11-22 Alkaline battery and its manufacturing method Granted JPS5994371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203709A JPS5994371A (en) 1982-11-22 1982-11-22 Alkaline battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203709A JPS5994371A (en) 1982-11-22 1982-11-22 Alkaline battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5994371A true JPS5994371A (en) 1984-05-31
JPH0222984B2 JPH0222984B2 (en) 1990-05-22

Family

ID=16478546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203709A Granted JPS5994371A (en) 1982-11-22 1982-11-22 Alkaline battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5994371A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177258A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS6177259A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS6177257A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS61153950A (en) * 1984-12-27 1986-07-12 Mitsui Mining & Smelting Co Ltd Zinc alkaline storage battery
JPS61153949A (en) * 1984-12-27 1986-07-12 Mitsui Mining & Smelting Co Ltd Zinc alkaline storage battery
JPS63171843A (en) * 1987-01-10 1988-07-15 Dowa Mining Co Ltd Zinc alloy for battery and its production
JPS63171842A (en) * 1987-01-10 1988-07-15 Dowa Mining Co Ltd Zinc alloy for battery and its production
JPS63304571A (en) * 1987-01-21 1988-12-12 Dowa Mining Co Ltd Zinc alloy for battery and its manufacturing method
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084840A (en) * 1973-11-30 1975-07-09
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084840A (en) * 1973-11-30 1975-07-09
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371737B2 (en) * 1984-09-21 1991-11-14 Mitsui Kinzoku Kogyo Kk
JPS6177259A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS6177257A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS6177258A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPH0418671B2 (en) * 1984-09-21 1992-03-27 Mitsui Kinzoku Kogyo Kk
JPH0418672B2 (en) * 1984-09-21 1992-03-27 Mitsui Kinzoku Kogyo Kk
JPS61153950A (en) * 1984-12-27 1986-07-12 Mitsui Mining & Smelting Co Ltd Zinc alkaline storage battery
JPH0371738B2 (en) * 1984-12-27 1991-11-14 Mitsui Kinzoku Kogyo Kk
JPS61153949A (en) * 1984-12-27 1986-07-12 Mitsui Mining & Smelting Co Ltd Zinc alkaline storage battery
JPH0418673B2 (en) * 1984-12-27 1992-03-27 Mitsui Kinzoku Kogyo Kk
JPS63171842A (en) * 1987-01-10 1988-07-15 Dowa Mining Co Ltd Zinc alloy for battery and its production
JPS63171843A (en) * 1987-01-10 1988-07-15 Dowa Mining Co Ltd Zinc alloy for battery and its production
JPS63304571A (en) * 1987-01-21 1988-12-12 Dowa Mining Co Ltd Zinc alloy for battery and its manufacturing method
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Also Published As

Publication number Publication date
JPH0222984B2 (en) 1990-05-22

Similar Documents

Publication Publication Date Title
JP3215446B2 (en) Zinc alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JPS5994371A (en) Alkaline battery and its manufacturing method
JP3215447B2 (en) Zinc alkaline battery
WO2005057695A1 (en) Alkaline button cell and method for producing same
JPS5971259A (en) Alkaline storage battery and its manufacturing method
JPS61153950A (en) Zinc alkaline storage battery
JPH0317182B2 (en)
JPS58225565A (en) Alkaline battery
JPS62123653A (en) Zinc-alkaline battery
JPH0636765A (en) Zinc-alkaline battery
JPH0620687A (en) Alkaline battery
JP3219418B2 (en) Zinc alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPS58181266A (en) Negative active material for battery and its manufacture
JPH02304866A (en) Manufacture of negative active material for alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPH02213050A (en) Manufacture of negative active material for alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPS61290651A (en) Zinc alkaline battery
JPH01279564A (en) Manufacture of amalgamated zinc alloy powder
JPS61153952A (en) Zinc alkaline storage battery
JPH02304868A (en) Alkaline battery and its negative active material
JPH0822822A (en) Zinc alkaline battery
JPS6240160A (en) Zinc alkaline battery