JPH0222984B2 - - Google Patents

Info

Publication number
JPH0222984B2
JPH0222984B2 JP57203709A JP20370982A JPH0222984B2 JP H0222984 B2 JPH0222984 B2 JP H0222984B2 JP 57203709 A JP57203709 A JP 57203709A JP 20370982 A JP20370982 A JP 20370982A JP H0222984 B2 JPH0222984 B2 JP H0222984B2
Authority
JP
Japan
Prior art keywords
mercury
zinc
weight
indium
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57203709A
Other languages
Japanese (ja)
Other versions
JPS5994371A (en
Inventor
Keiichi Kagawa
Hiroshi Hirahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP57203709A priority Critical patent/JPS5994371A/en
Publication of JPS5994371A publication Critical patent/JPS5994371A/en
Publication of JPH0222984B2 publication Critical patent/JPH0222984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルカリ電池およびその製造方法に関
し、詳しくはカドミウム、スズ、タリウム、鉛、
ビスマスから選ばれる少なくとも1種以上とイン
ジウムを並存させたアマルガム化亜鉛合金粉末ま
たは亜鉛−水銀合金粉末を電池用陰極活物質とし
て用いたアルカリ電池およびその製造方法に関す
る。 亜鉛を陰極活物質として用いたアルカリ電池等
においては、水酸化カリウム水溶液等の強アルカ
リ性電解液を用いるため、電池を密閉しなければ
ならない。この電池の密閉は、電池の小形化をは
かる際には特に重要であるが、同時に電池保存中
の亜鉛の腐食により発生する水素ガスを閉じ込め
ることになる。従つて長期保存中に電池内部のガ
ス圧が高まり、密閉が完全なほど爆発等の危険が
伴なう。その対策として、電池の構造に工夫をこ
らし発生ガスを選択的に電池外部へ導くことも
種々行なわれているが、未だ完全なものではな
い。そこで、亜鉛陰極活物質の腐食そのものを防
止して電池内部のガス発生を少なくすることが研
究され、水銀の水素過電圧を利用した水銀含有亜
鉛粉末を陰極活物質として用いることが専ら行な
われている。 しかしながら、今日市販されているアルカリ電
池の陰極活物質は5〜15重量%程度の多量の水銀
を含有しており、人体や他の生物体に危険を与
え、環境汚染を起こす恐れが大きい。 そこで、水銀を用いず、代わりに鉛等を添加し
た亜鉛電極を用いてガス発生を抑制する方法も提
案されている。しかしながら、そのような元素は
ある程度のガス発生抑制効果を奏するが、水銀と
置換されるにはほど遠いのが現状である。また、
鉛イオンやカドミウムイオン等を添加した水銀イ
オンを含む酸性溶液に亜鉛粉末を浸漬して置換法
によるアマルガメーシヨンを行なうと同時に鉛や
カドミウムを亜鉛粉末に添加させる方法も提案さ
れているが、該方法によつても、ガス発生を効果
的に抑制しつつ水銀の含有量を低下させることは
できなかつた。 本発明は、以上のような現状に鑑み、陰極活物
質からの水素ガス発生を抑制するために必要な水
銀の含有率を著しく減少させるとともに電池特性
も向上させる陰極活物質を用いたアルカリ電池お
よびその製造方法を提供することを目的とする。 本発明者らはこの目的に沿つて鋭意研究の結
果、亜鉛からなる陰極活物質において、水銀に加
えてカドミウム、スズ、タリウム、鉛、ビスマス
から選ばれる少なくとも1種以上とインジウムを
併存させると、水銀とカドミウム、スズ、タリウ
ム、鉛、ビスマスから選ばれる少なくとも1種以
上とインジウムがガス発生抑制に対して相乗的に
作用し、従来より用いられてきた水銀含有亜鉛粉
末からなる陰極活物質における場合よりも水銀量
を著しく減少させても、水銀含有亜鉛粉末を陰極
活物質として用いた場合と比較して同等以上のガ
ス発生抑制効果並びに電池性能効果を奏すること
を見出し、本発明に至つた。 すなわち、本発明のアルカリ電池はカドミウ
ム、スズ、タリウム、鉛、ビスマスから選ばれる
少なくとも1種以上とインジウムを併用させたア
マルガム化亜鉛合金粉末または亜鉛−水銀合金粉
末を電池用陰極活物質として用いることを特徴と
するアルカリ電池である。 従来の単なる水銀含有亜鉛粉末からなる陰極活
物質が5〜15重量%の水銀含有率を有するのに対
して、本発明のアルカリ電池に使用される陰極活
物質は水銀含有率が5重量%以下、さらには、1
重量%以下になつても従来のものと同等以上にガ
ス発生を抑制することができる。もちろん、水銀
の含有率を大きくし、それに応じてガス発生抑制
機能を高めることもできる。本発明における陰極
活物質の好ましい水銀含有率は、実用的には、5
重量%以下で従来の水銀含有亜鉛粉末からなる陰
極活物質よりも充分に大きい抑制効果を有する。 また、本発明におけるアマルガム化亜鉛合金粉
末または亜鉛−水銀合金粉末のインジウムの含有
率は0.005〜1重量%が好ましく、それ以上含有
しても効果が少ない。 本発明におけるアマルガム化亜鉛合金粉末また
は亜鉛−水銀合金粉末には、カドミウム、スズ、
タリウム、鉛、ビスマスから選ばれる少なくとも
1種以上が含有され、その含有率はそれぞれカド
ミウムが0.001〜0.5重量%、スズが0.001〜1重量
%、タリウムが0.001〜0重量%、鉛が0.005〜1
重量%、ビスマスが0.001〜1重量%の割合で少
なくとも1種以上含まれ、それ以上含有しても効
果が少なく。少量含有すればよい。 本発明のアルカリ電池は、種々の方法で得られ
るが、好ましい製造方法とは、 (1) カドミウム、スズ、タリウム、鉛、ビスマス
から選ばれる少なくとも1種以上とインジウム
と水銀を合金化させ、該合金を用いて亜鉛粉末
をアマルガメーシヨンさせて得られるアマルガ
ム化亜鉛合金粉末を電池用陰極活物質として用
いる方法、 (2) 溶融亜鉛にカドミウム、スズ、タリウム、
鉛、ビスマスから選ばれる少なくとも1種以上
とインジウムを混合して合金化させ、粉末とし
たものをアマルガメーシヨンさせて得られるア
マルガム化亜鉛合金粉末を電池用陰極活物質と
して用いる方法、 (3) 溶融亜鉛にカドミウム、スズ、タリウム、
鉛、ビスマスから選ばれる少なくとも1種以上
とインジウムと水銀を混合し合金化させ、粉末
としたものを電池用陰極活物質として用いる方
法、 等である。 なお、これらの方法以外に例えば、カドミウ
ム、スズ、タリウム、鉛、ビスマスから選ばれる
少なくとも1種以上を水銀ち合金化させ、該合金
を用いて亜鉛−インジウム合金粉末をアマルガメ
ーシヨンする方法並びに溶融亜鉛にカドミウム、
スズ、タリウム、鉛、ビスマスから選ばれる少な
くとも1種以上を混合して合金化させ、粉末とし
たものをインジウムと水銀の合金でアマルガメー
ションする方法等を用いてもさしつかえない。 第(1)の製造方法は、例えば次のようにして実施
される。 先ず水酸化カリウム水溶液のようなアルカリ液
に亜鉛粉末を投入し、1〜30分間予備撹拌を行な
う。次いで、予めカドミウム、スズ、タリウム、
鉛、ビスマスから選ばれる少なくとも1種以上と
インジウムと水銀を混合して合金化させたものを
細孔より除々に上記の亜鉛粉末含有アルカリ液に
滴下しつつ30〜120分間撹伴後、水洗し、30〜60
℃の低温で乾燥させることによつて、所定のアマ
ルガム化亜鉛合金粉末を得る。水銀は亜鉛のみな
らず、カドミウムやインジウム等とも比較的低温
下において合金を作る性質を有し、例えば合金中
のカドミウム/水銀あるいはインジウム/水銀の
比率がそのまま保持されつつ該合金が亜鉛粉末中
に含有される。従つて合金中のカドミウム、イン
ジウム等の含有率を変えることによつて、亜鉛粉
末中のカドミウム、インジウム、水銀等の含有率
を自由に変えることができる。 また第(2)の製造方法としては、先ず溶融亜鉛に
カドミウム、スズ、タリウム、鉛、ビスマスから
選ばれる少なくとも1種以上とインジウムを添加
し、撹伴しながら均一合金化させた後、該溶湯を
空気噴霧させ、粉末化させたものを上述の方法と
同様な方法、すなわち該合金粉末を含有するアル
カリ液に水銀を添加することにより所定のアマル
ガム化亜鉛合金粉末を得る。 また第(3)の方法としては、溶融亜鉛中にカドミ
ウム、スズ、タリウム、鉛、ビスマスから選ばれ
る少なくとも1種以上とインジウムと水銀を添加
し、撹拌しながら均一合金化させた後、該溶湯を
空気噴霧させ、所定の亜鉛合金粉末を得る。 このようにして得られたアマルガム化亜鉛合金
粉末または亜鉛−水銀合金粉末亜鉛合金粉末を陰
極活物質として用いることによつて、ガス発生が
抑制され、しかも電池性能に優れたアルカリ電池
が提供される。 以下、実施例および比較例に基づいて本発明を
具体的に説明する。 実施例 1(a)〜(g) 1:10塩酸浴にて、カドミウム1.0重量部、鉛
5.1重量部、インジウム2.1重量部、水銀91.8重量
部を混合して、カドミウム、鉛、インジウムの比
率がそれぞれ1.0重量%、5.1重量%、2.1重量%の
カドミウム−鉛−インジウムアマルガムを調製し
た。次いで、予め調整していた10重量%の水酸化
カリウム溶液0.5に35〜100メツシユの市販の電
池用亜鉛粉末250gを投入し、20℃で5分間予備
撹拌を行なつた。次に前記カドミウム−鉛−イン
ジウムアマルガムを所定量細孔から除々に滴下し
ながら20℃で60分間撹拌することによつてアマル
ガメーションを行なつた。アマルガメーション終
了後、水洗を行ない45℃で一昼夜乾燥させた。こ
のようにして、カドミウム、鉛、インジウム、水
銀の含有率がそれぞれ0.01重量%、0.05重量%、
0.02重量%、0.9重量%の亜鉛−カドミウム−鉛
−インジウム−水銀粉末(実施例1(a))を得た。 また、同様な方法でカドミウム−鉛−インジウ
ムアマルガムまたはカドミウム−スズ−ビスマス
−インジウムアマルガムを得、最終的に各元素の
含有率が、下記のごときアマルガム化亜鉛合金粉
末を得た。 (1) カドミウム0.01重量%、鉛0.05重量%、イン
ジウム0.02重量%、水銀1.5重量%の亜鉛−カ
ドミウム−鉛−インジウム−水銀粉末(実施例
1(b))。 (2) カドミウム0.01重量%、鉛0.05重量%、イン
ジウム0.02重量%、水銀3重量%の亜鉛−カド
ミウム−鉛−インジウム−水銀粉末(実施例1
(c))。 (3) カドミウム0.01重量%、鉛0.05重量%、イン
ジウム0.02重量%、水銀5重量%の亜鉛−カド
ミウム−鉛−インジウム−水銀粉末(実施例1
(d))。 (4) カドミウム0.01重量%、鉛0.05重量%、イン
ジウム0.02重量%、水銀7重量%の亜鉛−カド
ミウム−鉛−インジウム−水銀粉末(実施例1
(e))。 (5) カドミウム0.03重量%、鉛0.05重量%、イン
ジウム0.1重量%、水銀0.9重量%の亜鉛−カド
ミウム−鉛−インジウム−水銀粉末(実施例1
(f))。 (6) カドミウム0.01重量%、スズ0.01重量%、ビ
スマス0.01重量%、インジウム0.02重量%、水
銀0.09重量%の亜鉛−カドミウム−スズ−ビス
マス−インジウム−水銀粉末(実施例1(g))。 このようにして得られたアマルガム化亜鉛合金
粉末を陰極活物質として水素ガス発生試験を行な
つた。結果を第1表に示す。なお、ガス発生試験
は、電解液として濃度40重量%の水酸化カリウム
水溶液に酸化亜鉛を飽和させたもの5mlを用い、
アマルガム化亜鉛合金粉末からなる陰極活物質を
それぞれ10gを用いて、45℃でガス発生速度
(mg/g・日)を測定した。 また、このアマルガム化亜鉛合金粉末からなる
陰極活物質について、第1図に示す構造のアリカ
リマンガン電池を用いて電池性能を評価した。第
1図のアルカリマンガン電池は、正極缶1、正極
2、セバレーター3、アマルガム化亜鉛合金粉末
または亜鉛−水銀合金粉末をカルボキシメチルセ
ルロースでゲル化した負極4、負極集電体5、ゴ
ムパツキン6、押さえ板7で構成されている。 このアルカリマンガン電池を用いて放電負荷4
Ω、20℃の放電条件により終止電圧0.9Vまでの
放電持続時間を測定し、後述の従来の陰極活物質
を用いた比較例1(d)の測定値100とした指数で示
した。結果を第2表に示す。 実施例 2(a)〜(c) 溶融亜鉛にスズ、鉛、インジウムを投入して、
約450℃の温度で撹拌して、次いでこの溶融合金
を4Kg/cm2の圧力の圧縮空気で粉末化し、20〜
200メツシユの粒度でスズ、鉛、インジウムの含
有率が0.05重量%、0.1重量%、0.02重量%の亜鉛
−スズ−鉛−インジウムの合金粉末を得た。この
合金粉末と水銀を用いて、実施例1と同様な方法
でアマルガメーシヨンして、スズ、鉛、インジウ
ム、水銀含有率がそれぞれ0.05重量%、0.1重量
%、0.02重量%、0.9重量%の亜鉛−スズ−鉛−
インジウム−水銀粉末(実施例2(a))を得た。 また、同様の方法で、タリウム、インジウム、
水銀含有率がそれぞれ0.03重量%、0.1重量%、
0.9重量%の亜鉛−タリウム−インジウム−水銀
粉末(実施例2(b))並びにカドミウム、スズ、タ
リウム、鉛、ビマス、、インジウム、水銀の含有
率がそれぞれ0.01重量%、0.01重量%、0.01重量
%、0.05重量%、0.01重量%、0.02重量%、0.9重
量%の亜鉛−カドミウム−スズ−タリウム−鉛−
ビスマス−インジウム−水銀粉末(実施例2(c))
を得た。 これらのアマルガム化亜鉛合金粉末を陰極活物
質として用い、実施例1と同様な方法によつて、
ガス発生試験と電池性能試験を行ない、その結果
を第1表および第2表に示した。 実施例 3 溶融亜鉛にカドミウム、タリウム、鉛、インジ
ウム、水銀を投入し、約450℃の温度で撹拌し、
次いでこの溶融合金を4Kg/cm2の圧力の圧縮空気
で粉末化し、20〜200メツシユの粒度でカドミウ
ム、タリウム、鉛、インジウム、水銀の含有率が
それぞれ0.02重量%、0.02重量%、0.05重量%、
0.02重量%、0.9重量%の亜鉛−カドミウム−タ
リウム−鉛−インジウム−水銀粉末を得た。 この亜鉛−水銀合金粉末を陰極活物質として用
い、実施例として同様な方法によつて、ガス発生
試験と電池性能試験を行ない、その結果を第1表
および第2表に示した。 比較例 1(a)〜(e) 従来から用いられている水銀含有率0.9重量%
(比較例1(a))、1.5重量%(比較例(b))、3重量%
(比較例1(c))、5重量%(比較例1(d))、7重量
%(比較例(e))の亜鉛−水銀粉末を陰極活物質と
し、実施例1と同様な方法によつて、ガス発生試
験と電池性能試験を行ない、その結果を第1表お
よび第2表に示した。
The present invention relates to an alkaline battery and a method for manufacturing the same, and specifically relates to cadmium, tin, thallium, lead,
The present invention relates to an alkaline battery using an amalgamated zinc alloy powder or a zinc-mercury alloy powder containing indium and at least one selected from bismuth as a cathode active material for the battery, and a method for manufacturing the same. In alkaline batteries using zinc as a cathode active material, the battery must be sealed tightly because a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used. This sealing of the battery is particularly important when trying to downsize the battery, but it also traps hydrogen gas generated by corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion. As a countermeasure against this problem, various efforts have been made to improve the structure of the battery and selectively guide the generated gas to the outside of the battery, but these efforts are still not perfect. Therefore, research has been conducted to prevent the corrosion of the zinc cathode active material itself and reduce gas generation inside the battery, and the use of mercury-containing zinc powder, which utilizes the hydrogen overvoltage of mercury, as the cathode active material has been carried out exclusively. . However, the cathode active materials of alkaline batteries commercially available today contain a large amount of mercury, on the order of 5 to 15% by weight, which poses a danger to humans and other living organisms, and is highly likely to cause environmental pollution. Therefore, a method has been proposed in which gas generation is suppressed by using a zinc electrode to which lead or the like is added instead of using mercury. However, although such elements have a gas generation suppressing effect to some extent, they are currently far from being able to replace mercury. Also,
A method has also been proposed in which zinc powder is immersed in an acidic solution containing mercury ions to which lead ions, cadmium ions, etc. have been added, and amalgamation is performed by the substitution method, and at the same time lead and cadmium are added to the zinc powder. Even with this method, it was not possible to reduce the mercury content while effectively suppressing gas generation. In view of the above-mentioned current situation, the present invention provides an alkaline battery using a cathode active material that significantly reduces the content of mercury necessary to suppress hydrogen gas generation from the cathode active material and also improves battery characteristics. The purpose is to provide a manufacturing method thereof. As a result of intensive research in line with this objective, the present inventors have found that in a negative electrode active material made of zinc, in addition to mercury, at least one selected from cadmium, tin, thallium, lead, and bismuth coexists with indium. When mercury, at least one member selected from cadmium, tin, thallium, lead, and bismuth and indium act synergistically to suppress gas generation, in a cathode active material made of mercury-containing zinc powder, which has been used conventionally. The present inventors have discovered that even if the amount of mercury is significantly reduced, the same or higher gas generation suppression effect and battery performance effect can be achieved compared to the case where mercury-containing zinc powder is used as the cathode active material, leading to the present invention. That is, the alkaline battery of the present invention uses an amalgamated zinc alloy powder or a zinc-mercury alloy powder, which is a combination of at least one selected from cadmium, tin, thallium, lead, and bismuth and indium, as a cathode active material for the battery. It is an alkaline battery characterized by While the conventional cathode active material consisting of a simple mercury-containing zinc powder has a mercury content of 5 to 15% by weight, the cathode active material used in the alkaline battery of the present invention has a mercury content of 5% by weight or less. , furthermore, 1
Even if the amount is less than % by weight, gas generation can be suppressed to a degree equivalent to or greater than that of conventional products. Of course, it is also possible to increase the mercury content and increase the gas generation suppressing function accordingly. The preferred mercury content of the cathode active material in the present invention is practically 5
It has a sufficiently greater suppressive effect than the conventional cathode active material made of mercury-containing zinc powder at a weight percent or less. Further, the indium content of the amalgamated zinc alloy powder or zinc-mercury alloy powder in the present invention is preferably 0.005 to 1% by weight, and even if it is contained more than that, the effect is small. The amalgamated zinc alloy powder or zinc-mercury alloy powder in the present invention includes cadmium, tin,
Contains at least one or more selected from thallium, lead, and bismuth, and the content is 0.001 to 0.5% by weight of cadmium, 0.001 to 1% by weight of tin, 0.001 to 0% by weight of thallium, and 0.005 to 1% of lead.
At least one type of bismuth is contained in a proportion of 0.001 to 1% by weight, and even if more than that is contained, the effect is small. It is sufficient to contain a small amount. The alkaline battery of the present invention can be obtained by various methods, but a preferred manufacturing method is (1) alloying indium and mercury with at least one selected from cadmium, tin, thallium, lead, and bismuth; A method of using amalgamated zinc alloy powder obtained by amalgamating zinc powder using an alloy as a cathode active material for batteries, (2) Adding cadmium, tin, thallium,
A method of using an amalgamated zinc alloy powder obtained by mixing indium with at least one selected from lead and bismuth and amalgamating the resulting powder as a cathode active material for batteries, (3 ) Molten zinc contains cadmium, tin, thallium,
A method of mixing and alloying at least one member selected from lead and bismuth with indium and mercury, and using the resulting powder as a cathode active material for batteries. In addition to these methods, for example, there is a method in which at least one selected from cadmium, tin, thallium, lead, and bismuth is alloyed with mercury, and the alloy is used to amalgamate zinc-indium alloy powder. Cadmium in molten zinc,
It is also possible to use a method such as mixing and alloying at least one selected from tin, thallium, lead, and bismuth, making a powder, and amalgamating the powder with an alloy of indium and mercury. The manufacturing method (1) is carried out, for example, as follows. First, zinc powder is added to an alkaline solution such as an aqueous potassium hydroxide solution and preliminarily stirred for 1 to 30 minutes. Next, cadmium, tin, thallium,
An alloyed mixture of at least one selected from lead and bismuth, indium, and mercury is gradually dropped into the alkaline solution containing zinc powder through the pores, stirred for 30 to 120 minutes, and then washed with water. ,30~60
A predetermined amalgamated zinc alloy powder is obtained by drying at a low temperature of °C. Mercury has the property of forming an alloy not only with zinc but also with cadmium, indium, etc. at relatively low temperatures. For example, while the cadmium/mercury or indium/mercury ratio in the alloy remains the same, the alloy is mixed into zinc powder. Contains. Therefore, by changing the content of cadmium, indium, etc. in the alloy, the content of cadmium, indium, mercury, etc. in the zinc powder can be freely changed. In the second manufacturing method, first, at least one selected from cadmium, tin, thallium, lead, and bismuth and indium are added to molten zinc, and after homogeneous alloying with stirring, the molten zinc is A predetermined amalgamated zinc alloy powder is obtained by air atomizing and pulverizing the powder in the same manner as described above, that is, by adding mercury to an alkaline solution containing the alloy powder. Further, as the third method, at least one selected from cadmium, tin, thallium, lead, and bismuth, indium, and mercury are added to molten zinc, and after homogeneous alloying with stirring, the molten zinc is mixed with indium and mercury. is air atomized to obtain a specified zinc alloy powder. By using the thus obtained amalgamated zinc alloy powder or zinc-mercury alloy powder or zinc alloy powder as a cathode active material, an alkaline battery with suppressed gas generation and excellent battery performance can be provided. . The present invention will be specifically described below based on Examples and Comparative Examples. Example 1(a) to (g) 1.0 parts by weight of cadmium and lead in a 1:10 hydrochloric acid bath
A cadmium-lead-indium amalgam having a ratio of cadmium, lead, and indium of 1.0% by weight, 5.1% by weight, and 2.1% by weight, respectively, was prepared by mixing 5.1 parts by weight of indium, 2.1 parts by weight of indium, and 91.8 parts by weight of mercury. Next, 250 g of commercially available battery zinc powder of 35 to 100 meshes was added to 0.5 of a 10% by weight potassium hydroxide solution prepared in advance, and preliminarily stirred at 20° C. for 5 minutes. Next, a predetermined amount of the cadmium-lead-indium amalgam was gradually dropped through the pores and stirred at 20° C. for 60 minutes to perform amalgamation. After the amalgamation was completed, it was washed with water and dried at 45°C overnight. In this way, the content of cadmium, lead, indium, and mercury is 0.01% by weight, 0.05% by weight, respectively.
Zinc-cadmium-lead-indium-mercury powders (Example 1(a)) of 0.02% by weight and 0.9% by weight were obtained. Further, a cadmium-lead-indium amalgam or a cadmium-tin-bismuth-indium amalgam was obtained in the same manner, and finally an amalgamated zinc alloy powder having the following content of each element was obtained. (1) Zinc-cadmium-lead-indium-mercury powder containing 0.01% by weight of cadmium, 0.05% by weight of lead, 0.02% by weight of indium, and 1.5% by weight of mercury (Example 1(b)). (2) Zinc-cadmium-lead-indium-mercury powder containing 0.01% by weight of cadmium, 0.05% by weight of lead, 0.02% by weight of indium, and 3% by weight of mercury (Example 1)
(c)). (3) Zinc-cadmium-lead-indium-mercury powder containing 0.01% by weight of cadmium, 0.05% by weight of lead, 0.02% by weight of indium, and 5% by weight of mercury (Example 1)
(d)). (4) Zinc-cadmium-lead-indium-mercury powder containing 0.01% by weight of cadmium, 0.05% by weight of lead, 0.02% by weight of indium, and 7% by weight of mercury (Example 1)
(e)). (5) Zinc-cadmium-lead-indium-mercury powder containing 0.03% by weight of cadmium, 0.05% by weight of lead, 0.1% by weight of indium, and 0.9% by weight of mercury (Example 1)
(f)). (6) Zinc-cadmium-tin-bismuth-indium-mercury powder (Example 1(g)) containing 0.01% by weight of cadmium, 0.01% by weight of tin, 0.01% by weight of bismuth, 0.02% by weight of indium, and 0.09% by weight of mercury. A hydrogen gas generation test was conducted using the thus obtained amalgamated zinc alloy powder as a cathode active material. The results are shown in Table 1. In addition, the gas generation test used 5 ml of a potassium hydroxide aqueous solution with a concentration of 40% by weight saturated with zinc oxide as the electrolyte.
Using 10 g of each cathode active material made of amalgamated zinc alloy powder, the gas generation rate (mg/g/day) was measured at 45°C. Further, the battery performance of the cathode active material made of this amalgamated zinc alloy powder was evaluated using an alkali manganese battery having the structure shown in FIG. The alkaline manganese battery shown in Fig. 1 consists of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of amalgamated zinc alloy powder or zinc-mercury alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a presser. It is composed of a plate 7. Discharge load 4 using this alkaline manganese battery
The discharge duration up to the final voltage of 0.9 V was measured under the discharge conditions of Ω and 20° C., and expressed as an index with the measured value of Comparative Example 1(d) using a conventional cathode active material described below as 100. The results are shown in Table 2. Example 2 (a) to (c) Adding tin, lead, and indium to molten zinc,
Stirred at a temperature of about 450°C, the molten alloy was then powdered with compressed air at a pressure of 4Kg/ cm2 and
Zinc-tin-lead-indium alloy powders with a particle size of 200 mesh and tin, lead, and indium contents of 0.05%, 0.1%, and 0.02% by weight were obtained. Using this alloy powder and mercury, amalgamation was performed in the same manner as in Example 1, and the tin, lead, indium, and mercury contents were 0.05% by weight, 0.1% by weight, 0.02% by weight, and 0.9% by weight, respectively. Zinc-tin-lead-
Indium-mercury powder (Example 2(a)) was obtained. In addition, thallium, indium,
Mercury content is 0.03% by weight and 0.1% by weight, respectively.
0.9% by weight of zinc-thallium-indium-mercury powder (Example 2(b)) and contents of cadmium, tin, thallium, lead, bimuth, indium, and mercury of 0.01% by weight, 0.01% by weight, and 0.01% by weight, respectively. %, 0.05 wt%, 0.01 wt%, 0.02 wt%, 0.9 wt% zinc-cadmium-tin-thallium-lead-
Bismuth-indium-mercury powder (Example 2(c))
I got it. Using these amalgamated zinc alloy powders as a cathode active material, in the same manner as in Example 1,
A gas generation test and a battery performance test were conducted, and the results are shown in Tables 1 and 2. Example 3 Cadmium, thallium, lead, indium, and mercury were added to molten zinc and stirred at a temperature of about 450°C.
This molten alloy is then pulverized with compressed air at a pressure of 4 Kg/cm 2 to obtain particles with a particle size of 20 to 200 mesh and a content of cadmium, thallium, lead, indium, and mercury of 0.02% by weight, 0.02% by weight, and 0.05% by weight, respectively. ,
Zinc-cadmium-thallium-lead-indium-mercury powders of 0.02% by weight and 0.9% by weight were obtained. Using this zinc-mercury alloy powder as a cathode active material, a gas generation test and a battery performance test were conducted in the same manner as in Examples, and the results are shown in Tables 1 and 2. Comparative examples 1(a) to (e) Conventionally used mercury content of 0.9% by weight
(Comparative Example 1(a)), 1.5% by weight (Comparative Example (b)), 3% by weight
(Comparative Example 1(c)), 5% by weight (Comparative Example 1(d)), and 7% by weight (Comparative Example (e)) zinc-mercury powder were used as cathode active materials, and the same method as in Example 1 was used. Therefore, a gas generation test and a battery performance test were conducted, and the results are shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】 第1表および第2表に示されるごとく、本発明
に係わる実施例1(a)〜(g)、実施例2(a)〜(c)、実施
例3は、いずれも比較例1(a)〜(e)に比べて、水銀
含有量を著しく減少させてもガス発生抑制効果は
高い水準にある。また、電池性能も水銀を5重量
%含有する亜鉛−水銀粉末を陰極活物質とした比
較例1(d)に比べて優れていることが理解される。 比較例 2(a)〜(b) 実施例1(a)において、カドミウムと鉛を含有さ
せない以外は全て実施例1(a)と同様の方法でイン
ジウム0.02重量%、水銀0.9重量%の亜鉛−イン
ジウム−水銀粉末を得た(比較例2(a))。 また、実施例1(a)において、インジウムを含有
させない以外は全て実施例1(a)と同様の方法でカ
ドミウム0.01重量%、鉛0.05重量%、水銀0.9重量
%の亜鉛−カドミウム−鉛−水銀粉末を得た(比
較例2(b))。 このようにして得られたアマルガム化亜鉛合金
粉末を用い、実施例1(a)と同様にガス発生量およ
び放電時間を測定し、結果を配合割合と共に第3
表に示す。なお、参考のために、実施例1(a)の配
合割合および試験結果も併せて同表に示す。 比較例 3(a)〜(b) 実施例2(a)において、スズと鉛を含有させない
以外は全て実施例2(a)と同様の方法でインジウム
0.02重量%、水銀0.9重量%の亜鉛−インジウム
−水銀粉末を得た(比較例3(a))。 また、実施例2(a)において、インジウムを含有
させない以外は全て実施例2(a)と同様の方法でス
ズ0.05重量%、鉛0.10重量%、水銀0.9重量%の亜
鉛−スズ−鉛−水銀粉末を得た(比較例3(b))。 このようにして得られたアマルガム化亜鉛合金
粉末を用い、実施例2(a)と同様にガス発生量およ
び放電時間を測定し、結果を配合割合と共に第3
表に示す。なお、参考のために、実施例2(a)の配
合割合および試験結果も併せて同表に示す。 比較例 4(a)〜(b) 実施例3において、カドミウム、タリウム、鉛
を含有させない以外は全て実施例3と同様の方法
でインジウム0.02重量%、水銀0.9重量%の亜鉛
−インジウム−水銀粉末を得た(比較例4(a))。 また、実施例3において、インジウムを含有さ
せない以外は全て実施例3と同様の方法でカドミ
ウム0.02重量%、タリウム0.02重量%、鉛0.05重
量%、水銀0.9重量%の亜鉛−カドミウム−タリ
ウム−鉛−水銀粉末を得た(比較例4(b))。 このようにして得られた亜鉛−水銀合金粉末を
用い、実施例3と同様にス発生量および放電時間
を測定し、結果を配合割合と共に第3表に示す。
なお、参考のために、実施例3の配合割合および
試験結果も併せて同表に示す。
[Table] As shown in Tables 1 and 2, Examples 1 (a) to (g), Examples 2 (a) to (c), and Example 3 related to the present invention are all comparative examples. Compared to 1(a) to (e), the gas generation suppressing effect is at a high level even if the mercury content is significantly reduced. It is also understood that the battery performance is superior to Comparative Example 1(d) in which zinc-mercury powder containing 5% by weight of mercury was used as the cathode active material. Comparative Examples 2(a) to (b) Zinc containing 0.02% by weight of indium and 0.9% by weight of mercury was prepared in the same manner as in Example 1(a) except that cadmium and lead were not contained in Example 1(a). Indium-mercury powder was obtained (Comparative Example 2(a)). In addition, in Example 1(a), zinc-cadmium-lead-mercury was prepared in the same manner as in Example 1(a) except that indium was not included. A powder was obtained (Comparative Example 2(b)). Using the amalgamated zinc alloy powder obtained in this way, the amount of gas generated and the discharge time were measured in the same manner as in Example 1(a), and the results were reported together with the blending ratio.
Shown in the table. For reference, the blending ratio and test results of Example 1(a) are also shown in the same table. Comparative Examples 3(a) to (b) Indium was prepared in the same manner as in Example 2(a) except that tin and lead were not contained in Example 2(a).
A zinc-indium-mercury powder containing 0.02% by weight and 0.9% by weight of mercury was obtained (Comparative Example 3(a)). In addition, in Example 2(a), zinc-tin-lead-mercury was prepared in the same manner as in Example 2(a) except that indium was not contained. A powder was obtained (Comparative Example 3(b)). Using the amalgamated zinc alloy powder obtained in this way, the amount of gas generated and the discharge time were measured in the same manner as in Example 2(a), and the results were reported together with the blending ratio.
Shown in the table. For reference, the blending ratio and test results of Example 2(a) are also shown in the same table. Comparative Example 4(a)-(b) Zinc-indium-mercury powder containing 0.02% by weight of indium and 0.9% by weight of mercury was prepared in the same manner as in Example 3 except that cadmium, thallium, and lead were not contained. was obtained (Comparative Example 4(a)). In Example 3, 0.02% by weight of cadmium, 0.02% by weight of thallium, 0.05% by weight of lead, and 0.9% by weight of mercury were prepared in the same manner as in Example 3 except that indium was not included. Mercury powder was obtained (Comparative Example 4(b)). Using the zinc-mercury alloy powder thus obtained, the amount of gas generated and the discharge time were measured in the same manner as in Example 3, and the results are shown in Table 3 together with the blending ratio.
For reference, the blending ratio and test results of Example 3 are also shown in the same table.

【表】【table】

【表】 第3表の結果から明らかなように、カドミウ
ム、スズ、タリウム、鉛、ビスマスから選ばれる
少なくとも1種以上とインジウムを並存させた実
施例1(a)、実施例2(a)および実施例3は、製造方
法の如何に拘らず、ガス発生量が低減され、しか
も電池性能(放電持続時間)も良好である。 これに対して、インジウムのみを用い、カドミ
ウム等を含有しない比較例2(a)、比較例3(a)およ
び比較例4(a)は、ガス発生量や電池性能が対応す
る実施例と比較して大幅に劣る。また、カドミウ
ム等を用い、インジウムを含有しない比較例2
(b)、比較例3(b)および比較例4(b)においても、ガ
ス発生量や電池性能が対応する実施例としては比
較して大幅に劣る。 このことから、本発明のガス発生量の低減と電
池性能の向上という効果は、カドミウム、スズ、
タリウム、鉛、ビスマスから選ばれる少なくとも
1種以上とインジウムを並存させる相乗作用によ
つて初めて発揮されることが判る。
[Table] As is clear from the results in Table 3, Example 1(a), Example 2(a) and In Example 3, regardless of the manufacturing method, the amount of gas generated is reduced and the battery performance (discharge duration) is also good. On the other hand, Comparative Example 2(a), Comparative Example 3(a), and Comparative Example 4(a), which use only indium and do not contain cadmium etc., are compared with the corresponding examples in gas generation amount and battery performance. significantly inferior. In addition, Comparative Example 2 using cadmium etc. and not containing indium
(b), Comparative Example 3(b), and Comparative Example 4(b) are also significantly inferior in gas generation amount and battery performance compared to the corresponding examples. From this, the effects of reducing the amount of gas generated and improving battery performance of the present invention can be seen from the following:
It can be seen that this effect is first exhibited by the synergistic effect of indium coexisting with at least one member selected from thallium, lead, and bismuth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係わるアルカリマンガン電
池の断面図を示す。 1:正極缶、2:正極、3:セパレーター、
4:アマルガム化亜鉛合金粉末または亜鉛−水銀
合金粉末をカルボキシメチルセルロースでゲル化
した負極、5:負極集電体、6:ゴムパツキン、
7:押さえ板。
FIG. 1 shows a cross-sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: separator,
4: Negative electrode made by gelling amalgamated zinc alloy powder or zinc-mercury alloy powder with carboxymethyl cellulose, 5: Negative electrode current collector, 6: Rubber packing,
7: Pressing board.

Claims (1)

【特許請求の範囲】 1 カドミウム、スズ、タリウム、鉛、ビスマス
から選ばれる少なくとも1種以上とインジウムを
併存させたアマルガム化亜鉛粉末または亜鉛−水
銀合金粉末を電池用陰極活物質として用いること
を特徴とするアルカリ電池。 2 前記アマルガム化亜鉛粉末または亜鉛−水銀
合金粉末のインジウムの含有率が0.005〜1重量
%である前記特許請求の範囲第1項記載のアルカ
リ電池。 3 前記アマルガム化亜鉛粉末または亜鉛−水銀
合金粉末のカドミウムの含有率が0.001〜0.05重
量%、スズの含有率が0.001〜1重量%、タリウ
ムの含有率が0.001〜1重量%、鉛の含有率が
0.005〜1重量%、ビスマスの含有率が0.001〜1
重量%の割合で少なくとも1種以上含まれる前記
特許請求の範囲第1項または第2項記載のアルカ
リ電池。 4 前記アマルガム化亜鉛粉末または亜鉛−水銀
合金粉末の水銀の含有率が5重量%以下である前
記特許請求の範囲第1項、第2項または第3項に
記載のアルカリ電池。 5 前記アマルガム化亜鉛粉末または亜鉛−水銀
合金粉末の水銀の含有率が1重量%以下である前
記特許請求の範囲第4項に記載のアルカリ電池。 6 カドミウム、スズ、タリウム、鉛、ビスマス
から選ばれる少なくとも1種以上とインジウムと
水銀を合金化させ、該合金を用いて亜鉛粉末をア
マルガメーシヨンさせて得られるアマルガム化亜
鉛合金粉末を電池用陰極活物質として用いること
を特徴とするアルカリ電池の製造方法。 7 溶融亜鉛にカドミウム、スズ、タリウム、
鉛、ビスマスから選ばれる少なくとも1種以上と
インジウムを混合して合金化させ、粉末としたも
のをアマルガメーシヨンさせて得られるアマルガ
ム化亜鉛合金粉末を電池用陰極活物質として用い
ることを特徴とするアルカリ電池の製造方法。 8 溶融亜鉛にカドミウム、スズ、タリウム、
鉛、ビスマスから選ばれる少なくとも1種以上と
インジウムと水銀を混合し合金化させ、粉末とし
たものを電池用陰極活物質として用いることを特
徴とするアルカリ電池の製造方法。
[Claims] 1. Amalgamated zinc powder or zinc-mercury alloy powder containing indium and at least one selected from cadmium, tin, thallium, lead, and bismuth is used as a cathode active material for batteries. alkaline battery. 2. The alkaline battery according to claim 1, wherein the amalgamated zinc powder or zinc-mercury alloy powder has an indium content of 0.005 to 1% by weight. 3 The amalgamated zinc powder or zinc-mercury alloy powder has a cadmium content of 0.001 to 0.05% by weight, a tin content of 0.001 to 1% by weight, a thallium content of 0.001 to 1% by weight, and a lead content of the powder. but
0.005-1% by weight, bismuth content 0.001-1
The alkaline battery according to claim 1 or 2, which contains at least one kind in proportion by weight. 4. The alkaline battery according to claim 1, 2, or 3, wherein the mercury content of the amalgamated zinc powder or zinc-mercury alloy powder is 5% by weight or less. 5. The alkaline battery according to claim 4, wherein the amalgamated zinc powder or zinc-mercury alloy powder has a mercury content of 1% by weight or less. 6. Amalgamated zinc alloy powder obtained by alloying indium and mercury with at least one selected from cadmium, tin, thallium, lead, and bismuth, and amalgamating zinc powder using the alloy, for use in batteries. A method for producing an alkaline battery, characterized in that it is used as a cathode active material. 7 Cadmium, tin, thallium, molten zinc,
Amalgamated zinc alloy powder obtained by mixing indium with at least one selected from lead and bismuth and amalgamating the resulting powder is used as a cathode active material for batteries. A method for manufacturing alkaline batteries. 8 Cadmium, tin, thallium, molten zinc,
A method for producing an alkaline battery, characterized in that at least one selected from lead and bismuth, indium, and mercury are mixed and alloyed to form a powder, which is used as a cathode active material for a battery.
JP57203709A 1982-11-22 1982-11-22 Alkaline battery and its manufacturing method Granted JPS5994371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57203709A JPS5994371A (en) 1982-11-22 1982-11-22 Alkaline battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57203709A JPS5994371A (en) 1982-11-22 1982-11-22 Alkaline battery and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5994371A JPS5994371A (en) 1984-05-31
JPH0222984B2 true JPH0222984B2 (en) 1990-05-22

Family

ID=16478546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57203709A Granted JPS5994371A (en) 1982-11-22 1982-11-22 Alkaline battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5994371A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177258A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS6177257A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS6177259A (en) * 1984-09-21 1986-04-19 Mitsui Mining & Smelting Co Ltd Zinc alkaline battery
JPS61153950A (en) * 1984-12-27 1986-07-12 Mitsui Mining & Smelting Co Ltd Zinc alkaline storage battery
JPS61153949A (en) * 1984-12-27 1986-07-12 Mitsui Mining & Smelting Co Ltd Zinc alkaline storage battery
JPS63171843A (en) * 1987-01-10 1988-07-15 Dowa Mining Co Ltd Zinc alloy for battery and its production
JPS63171842A (en) * 1987-01-10 1988-07-15 Dowa Mining Co Ltd Zinc alloy for battery and its production
JPS63304571A (en) * 1987-01-21 1988-12-12 Dowa Mining Co Ltd Zinc alloy for battery and its manufacturing method
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084840A (en) * 1973-11-30 1975-07-09
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084840A (en) * 1973-11-30 1975-07-09
JPS5325833A (en) * 1976-08-20 1978-03-10 Seiko Instr & Electronics Alkaline battery

Also Published As

Publication number Publication date
JPS5994371A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JPH0222984B2 (en)
JPH0371737B2 (en)
JPH0371738B2 (en)
JPH0421310B2 (en)
JPH0317181B2 (en)
JPH0418671B2 (en)
JPH0317182B2 (en)
JPH0622122B2 (en) Zinc alkaline battery
JP3219418B2 (en) Zinc alkaline battery
JPS62123653A (en) Zinc-alkaline battery
JPH0620687A (en) Alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPH0418673B2 (en)
JPH02304866A (en) Manufacture of negative active material for alkaline battery
JPS6158165A (en) Gelled negative electrode of nommercury sealed alkaline battery
JPH0665031B2 (en) Zinc alkaline battery
JPH0418672B2 (en)
JPS61290651A (en) Zinc alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPS63279566A (en) Alkaline battery
JPS61290652A (en) Zinc alkaline battery